Exercise

Write a grammar for the language \[\{ a^n^2 | n \geq 1 \} \]

Solution

\[
S \rightarrow IT \\
T \rightarrow aTM | a \\
aM \rightarrow MAa \\
aA \rightarrow Aa \\
AM \rightarrow MA \\
IM \rightarrow I \\
IA \rightarrow aI \\
I \rightarrow e
\]

Comments:
I is a marker at the beginning of the strings; the second production generates \(n \) symbols \(a \) and \(n-1 \) symbols \(M \). The idea is that \(M \) is a sort of "multiplier", adding a symbol \(A \) for every symbol \(a \). At the end, the marker \(I \) "braces" from left to right, "killing" symbols \(M \) and turning \(A \) into \(a \). The number of symbols \(a \) at the end, being \(n \), times the number of \(A \) generated in the beginning, is \(m + (m-1)m = m^2 \).

Example of derivation:

\[
Exercise

Prove that the language $L = \{ a^k \mid k \text{ is not prime} \}$ is not regular.

Solution

We have already proved that the language

$$M = \{ a^k \mid k \text{ is prime} \}$$

is not regular (see page 4.3). By contradiction, assume that L is regular. Since the class of regular languages is closed under complementation, we have that \overline{L} is regular. Since $\overline{L} = M$, then M is regular too, which is a contradiction. Therefore, L cannot be regular.
Exercise

Give a context-free grammar for the language over \(\Sigma = \{0,1\} \) defined as follows: \(\{0^i 1^i 2^i \mid i \geq 2 \} \) and \(i \geq 2 \).

Solution

The grammar is

\[
S \rightarrow 0S11 \mid 0S1 \mid e
\]

Exercise

Prove that the language

\[
L = \{ a^{2^k} \mid k \geq 1 \}
\]

is not regular.

Solution

We apply the pumping lemma, assuming that \(L \) is regular. We choose \(w = a^{2^{m^2}} \) by choosing

\(w = a^{2^{m^2}} \) in fact here \(|w| = 2^{m^2} > m^2 \).

By the pumping lemma, \(w = xyz \), \(|xy| \leq m \), \(xy^2z \in L \) for all \(i \geq 0 \). We choose \(i = 2 \), so

\[w' = xy^{2}z \in L. \]

Observe that \(|w'| = |w| + |y| = m^2 + |y| \). Since \(|xy| \leq m \), a fortiori \(|y| \leq m \), so

\[|w'| = m^2 + 2 |y| \leq m^2 + 2m < m^3 + m^2 + 3m + 3 = (m+1)^3. \]

Therefore \(|w'| = m^2 + 2 |y| < (m+1)^3 \)

so \(|w'| \) cannot be a perfect cube.
Ex 6.4 (4.42 from textbook)

Minimize the following DFA.

Solution

We construct the list of distinguishability. Notice that, in the table, pairs marked with i are those that are not equivalent with respect to \equiv_i and are equivalent w.r.t. \equiv_{i-1}. In the beginning, we work with the pair (q_1, q_2) where q_1 is fixed and q_2 is not or vice versa; in fact, we are determining classes of equivalence w.r.t. \equiv_0. At the next step we somehow refine the previous partitioning by determining pairs of states that are not equivalent w.r.t. \equiv_1 (we recall that if $q_1 \neq q_2$ then $q_1 \neq q_2)$, we proceed in this way until the partitioning cannot be further refined.
At the first step the marks "0" partition the set of states w.r.t. \equiv_0.

$$\{c,f\}, \{a,b,d,e,g,h,i\}$$

The partition w.r.t. \equiv_1 is the following:

$$\{c,f\}, \{a,b,d,e\}, \{g\}, \{h\}$$

Finally, the partition w.r.t. \equiv_2, obtained by considering marks "0", "1", and "2", is

$$\{a\}, \{b\}, \{c\}, \{e\}, \{f\}, \{g\}, \{h\}, \{i\}$$

Therefore the automaton is already minimal.