
ar
X

iv
:1

60
7.

06
34

3v
2

 [c
s.

D
B

]
29

 J
ul

 2
01

6

Data Scaling in OBDA Benchmarks. The VIG
Approach.

Davide Lanti, Guohui Xiao, and Diego Calvanese

Free University of Bozen-Bolzano, Italy

Abstract. In this paper we describe VIG, a data scaler for benchmarks inthe
context of ontology-based data access (OBDA). Data scalingis a relatively recent
approach, proposed in the database community, that allows for quickly scaling
up an input data instance tos times its size, while preserving certain application-
specific characteristics. The advantage of the approach is that the user is not re-
quired to manually input the characteristics of the data to be produced, making
it particularly suitable for OBDA benchmarks, where the complexity of database
schemas might pose a challenge for manual input (e.g., the NPD benchmark con-
tains 70 tables with some containing more than 60 columns). As opposed to a
traditional data scaler, VIG includes domain information provided by the OBDA
mappings and the ontology in order to produce data. VIG is currently used in the
NPD benchmark, but it is not NPD-specific and can be seeded with any data in-
stance. The distinguishing features of VIG are(1) its simple and clear generation
strategy;(2) its efficiency, as each value is generated in constant time, without
accesses to the disk or to RAM to retrieve previously generated values;(3) and
its generality, as the data is exported in CSV files that can beeasily imported by
any RDBMS system.
VIG is a java implementation licensed under Apache 2.0, and its source code
is available on GitHub (https://github.com/ontop/vig) inthe form of a Maven
project. The code is being maintained since two years by the -ontop- team at
the Free University of Bozen-Bolzano.

1 Introduction

An important research problem in Big Data is how to provide end-users with transparent
access to the data, abstracting from storage details. The paradigm of Ontology-based
Data Access (OBDA) [3] provides an answer to this problem that is very close to the
spirit of the Semantic Web. In OBDA the data stored in a relational database is presented
to the end-users as avirtual RDF graph over which SPARQL queries can be posed. This
solution is realized throughmappingsthat link classes and properties in the ontology to
queries over the database.

Proper benchmarking of query answering systems, such as OBDA systems, requires
scalability analyses taking into account data instances ofincreasing volume. Such in-
stances are often provided by generators of synthetic data.However, such generators are
either complex ad-hoc implementations working for a specific schema, or require con-
siderable manual input by the end-user. The latter problem is exacerbated in the OBDA
setting, where database schemas tend to be particularly bigand complex (e.g., 70 ta-
bles, some with more of 80 columns in [9]). The result of having only few benchmarks

http://arxiv.org/abs/1607.06343v2

2 Davide Lanti, Guohui Xiao, and Diego Calvanese

is that they become increasingly misused over time. For instance, evaluations on OBDA
systems are usually performed on benchmarks originally designed to test triple stores,
although the two systems are totally different and present different bottlenecks [9].

Data scaling [15] is a recent approach that tries to overcomethis problem by au-
tomatically tuning the generation parameters through statistics collected over an initial
data instance. Hence, the same generator can be reused in different contexts, as long
as an initial data instance is available. A measure of quality for the produced data is
defined in terms of results for the available queries, that should besimilar to the one
observed for real data of comparable volume. In the context of OBDA, taking as the
only parameter for generation an initial data instance doesnot produce data of accept-
able quality, since it has to comply with constraints deriving from the structure of the
mappings and the ontology, that in turn derive from the application domain.

In this work we present VIG, a data scaler for OBDA benchmarks. In the VIG sys-
tem, we lift the scaling approach from the instance level to the OBDA level, where
the domain information of ontologies and mappings has to be taken into account as
well. VIG is extremely efficient and suitable to generate huge amounts of data, as tu-
ples are generated in constant time without disk accesses orneed to retrieve previously
generated values. Furthermore, different instances of VIGcan be delegated to different
machines, and parallelization can scale up to the number of columns in the schema,
without communication overhead.

VIG is a Java implementation licensed under Apache 2.0, and its source code is
available on GitHub in the form of a Maven project [10]. The code is maintained by
the Ontop team at the Free University of Bozen-Bolzano, and it comes with extensive
documentation in the form of Wiki pages.

The rest of the paper is structured as follows. In Section 2, we introduce the ba-
sic notions and notation to understand this paper. In Section 3, we define the scaling
problem and discuss important measures on the produced datathat define the quality
of instances in a given OBDA setting. In Section 4, we discussthe VIG algorithm, and
how it ensures that data conforming to the identified measures is produced. Sections 5
and 6 contain related work and conclusions, respectively.

2 Basic Notions and Notation

We assume that the reader has moderate knowledge of OBDA, andrefer for it to the
abundant literature on the subject, like [2]. Moreover, we assume familiarity with basic
notions from probability calculus and statistics.

The W3C standard ontology language in OBDA is OWL 2 QL [11]. For the sake
of conciseness, we consider here its mathematical underpinningDL-LiteR [4]. Table 1
shows a portion of the ontology from the NPD benchmark, whichis the foundation
block of our running example.

The W3C standard query language in OBDA is SPARQL [7], with queries evaluated
under the OWL 2 QL entailment regime [8]. Intuitively, underthis semantics each basic
graph pattern (BGP) can be seen as a single conjunctive query(CQ) without existen-
tially quantified variables. As in our examples we will only refer to SPARQL queries
containing exactly one BGP, we will use the more concise syntax for CQs rather than

Data Scaling in OBDA Benchmarks. The VIG Approach. 3

Table 1: Portion of the ontology for the NPD benchmark. The first three axioms (left to
right) state that the classes “DevelopmentWellbore”, “ExplorationWellbore”, and “Sus-
pendedWellbore” are subclasses of the class “Wellbore”. The fourth axiom states that
the classes “ExplorationWellbore” and “DevelopmentWellbore” are disjoint.

DevelopmentWellbore⊑Wellbore ExplorationWellbore⊑Wellbore
SuspendedWellbore⊑Wellbore ExplorationWellbore⊓ DevelopmentWellbore⊑ ⊥

Table 2: Queries for our running example.
q1(y) ←Wellbore(y),developmentWellboreForField(x, y)
q2(x, n, y) ←Wellbore(x),name(x, n), completionYear(x, y)

the SPARQL syntax. Table 2 contains the queries that we will consider in our running
example.

The mapping component links predicates in the ontology to queries over the under-
lying relational database. To present our techniques, we need to introduce this compo-
nent in a formal way. The standard W3C syntax for mappings is R2RML [5], however
here we use a more concise syntax that is common in the OBDA literature. Formally, a
mapping assertionm is an expression of the formX(f ,x)← conj(y), consisting of a
targetpartX(f ,x), which is an atom over function symbolsf (also calledtemplates)
and variablesx ⊆ y, and asourcepartconj(y), which is a CQ whose output variables
arey. We say thatm defines the predicateX if X is in the target ofm. A basic mapping
is a mapping whose source part contains exactly one atom. Table 3 contains the map-
pings for our running example, as well as a short descriptionof how these mappings are
used in order to create a (virtual) set ofassertions.

For the rest of this paper we fix anOBDA instance(O,M, Σ,D), whereO is an
OWL 2 QL ontology,Σ is a database schema with foreign and primary key dependen-
cies,M is a set of mappings linking predicates inO to queries overΣ, andD is a
database instance that satisfies the dependencies inΣ and the disjointness axioms in
O. We denote bycol(Σ) the set of all columns inΣ. Given a columnC ∈ col(Σ),
we denote byCD the set of values forC in D. Finally, given a termf(x), where
x = (x1, . . . , xp, . . . , xn), we denote the argumentxp at positionp by f(x)|p.

3 Data Scaling for OBDA Benchmarks: VIG Approach

Thedata scaling problemintroduced in [15] is formulated as follows:

Definition 1 (Data Scaling Problem).Given a datasetD, produce a datasetD′ which
is similar toD buts times its size.

The notion ofsimilarity is application-based. Being our goal benchmarking, we
define similarity in terms of query results for the queries athand. In [15], the authors
do not consider such queries to be available to the generator, since their goal is broader
than benchmarking over a pre-defined set of queries. In OBDA benchmarking, instead,
the (SQL) workload for the database can be estimated from themapping component.

4 Davide Lanti, Guohui Xiao, and Diego Calvanese

Table 3: Mappings from the NPD benchmark. Results from the evaluation of the
queries on the source part build predicates in the ontology.For example, each
triple (a, b, c) in a relation for development wellbores corresponds to a
predicateShallowWellbore(w(a)) in the ontology. In the R2RML mappings for
the original NPD benchmark the termw(id) corresponds to the URI template
npd:wellbore/{id}. Columns namedid are primary keys, and the columnfid
in development wellbores is a foreign key for the primary keyfid of the table
fields.
DevelopmentWellbore(w(id)) ← development wellbores(id,name,year,fid)
ExplorationWellbore(w(id)) ← exploration wellbores(id,name,year,state)
SuspendedWellbore(w(id)) ← exploration wellbores(id,name,year,state),

state=’suspended’
Field(f(fid)) ← fields(fid,name)
completionYear(w(id), year) ← development wellbores(id,name,year,fid)
name(w(id), name) ← development wellbores(id,name,year,fid)
completionYear(w(id), year) ← exploration wellbores(id,name,year)
name(w(id), name) ← exploration wellbores(id,name,year)
developmentWellboreForField(w(id), f(fid)) ← development wellbores(id,name,year,fid),

fields(fid,fname)

Therefore, VIG includes the mappings in the analysis, so as to obtain a more realistic
and OBDA-tuned generation.

Concerning the size, similarly to other approaches, VIG scales each table inD by a
factor ofs.

3.1 Similarity Measures for OBDA and Their Rationale

We overview the similarity measures used by VIG, and why theyare important in the
scenario of OBDA benchmarking.

Schema Dependencies.D′ should be a valid instance forΣ. VIG is, to the best of
our knowledge, the only data scaler able to generate in constant time tuples that satisfy
multi-attribute primary keys forweakly-identified entities1. The current implementation
of VIG does not support multi-attribute foreign keys.

Column-based Duplicates and NULL Ratios.They respectively measure the ratio of
duplicates and of nulls in a given column, and are common parameters for the cost es-
timation performed by query planners in databases. By default, VIG maintains them
in D′ to preserve the cost of joining columns in a key-foreign key relationship (e.g.,
the join from the last mapping in our running example). This default behavior, how-
ever, is not applied withfixed-domaincolumns, which are columns whose content
does not depend on the size of the database instance. The column state in the ta-
bleexploration wellbore is fixed-domain, because it partitions the elements of
id into a fixed number of classes2. VIG analyzes the mappings to detect fixed-domain
columns, and additional fixed-domain columns can be manually specified by the user.

1 In a relational database, a weak entity is an entity that cannot be uniquely identified by its
attributes alone.

2 The number of classes in the ontology does not depend on the size of the data instance.

Data Scaling in OBDA Benchmarks. The VIG Approach. 5

To generate values for a fixed-domain column, VIG reuses the values found inD so as
to prevent empty answers for the SQL queries in the mappings.For instance, a value
‘suspended’ must be generated for the columnstate in order to produce objects
for the class SuspendedWellbore.

VIG generates values in columns according to auniform distribution, that is, values
in columns have all the same probability of being repeated. Replication of the distribu-
tions fromD will be included the next releases of VIG.

Size of Columns Clusters, and Disjointness.Query q1 from our running example
returns an empty set of answers, regardless of the considered data instance. This is
because the functionw used to build objects for the class Wellbore does not match with
the functionf used to build objects for Fields. Indeed, fields and wellbores are two
different entities for which a join operation would be meaningless.

On the other hand, a standard OBDA translation ofq2 into SQL produces a union of
CQs containing several joins between the two tablesdevelopment wellbores and
exploration wellbores. This is possible only because the mappings for Well-
bore, name, and completionYear all use thesameunary function symbolw to define
wellbores. Intuitively, every pair of terms over the same function symbol and appearing
on the target of two distinct basic mappings identifies sets of columns for which the
join operation is semantically meaningful3. Generating data that guarantees the correct
cost for these joins is crucial in order to deliver a realistic evaluation. In our example,
the join betweendevelopment wellbore andexploration wellbore over
id is empty underD (because ExplorationWellbore and DevelopmentWellbore are dis-
joint classes). VIG is able to replicate this fact inD′. This implies that VIG can generate
data satisfying disjointness constraints declared over classes whose individuals are con-
structed from a unary template in a basic mapping, ifD satisfies those constraints.

4 The VIG Algorithm

We now show how VIG realizes the measures described in the previous section. The
building block of VIG is apseudo-random number generator, that is a sequence of
integers(si)i∈N defined through a transition functionsk := f(sk−1). The authors in [6]
discuss a particular class of pseudo-random generators based onmultiplicative groups
modulo a prime number. Letn be the number of distinct values to generate. Letg be a
generator for the multiplicative group modulo a prime number p, with p > n. Consider
the sequenceS := 〈gi mod p | i = 1, . . . , p and(gi mod p) ≤ n〉. ThenS is a
permutationof values in the interval[1, . . . , n]. Here we show how this generator is used
in VIG to quickly produce data complying with foreign and primary key constraints.

From now on, lets be a scale factor, and letdist(C,D) denote the number of distinct
non-null values in a columnC in the database instanceD. Let size(T,D) denote the
number of tuples occurring in the tableT in the database instanceD. For each columnc,
VIG creates a set of intervalsints(c) and generates values accordingly.

Initialization Phase. For each tableT , VIG sets the numbersize(T,D′) of tuples to
generate tosize(T,D) ∗ s. Then, VIG calculates the number of non-null distinct values

3 Therefore, for which a join could occur during the evaluation of a user query.

6 Davide Lanti, Guohui Xiao, and Diego Calvanese

that need to be generated for each column, givens andD. That is, for each column
C, if C is not fixed-domain then VIG setsdist(C,D′) := dist(C,D) ∗ s. Otherwise,
dist(C,D′) is set todist(C,D).

Creation of Intervals. WhenC is a numerical column, VIG initializesints(C) by the
interval IC := [min(C,D),min(C,D) + dist(C,D′) − 1] of distinct values to be
generated, wheremin(C,D) denotes the minimum value occurring inCD. Otherwise,
if C is non-numerical,ints(C) is initialized to the intervalIC := [1, dist(C,D′)]. The
elements inints(C) will be transformed into values of the desired datatype by a suitable
injective function in the final generation step.

Primary Keys Satisfaction. Let K = {C1, . . . , Cn} be the primary key of a ta-
ble T . In order to ensure that values generated for each column through the pseudo-
random generator will not lead to duplicate tuples inK, the least common multiple
lcm(dist(C1,D′), . . . , dist(Cn,D′)) must be greater thantuples(T,D′). If this is not
true, then VIG ensures the condition by slightly increasingdist(Ci,D′) for some col-
umnCi in K. Once the condition holds, data can be generated independently for each
column without risk of generating duplicate tuples forK.

Columns Cluster Analysis.In this phase, VIG analyzesM in order to identify columns
that could be joined in a translation to SQL, and groups them together inpre-clusters.
Formally, letX1(f1,x1), . . . , Xm(fm,xm) be the atoms defined by basic mappings
in M. Let F =

⋃
i=1...m {f(x) | f(x) is a term inXi(fi,xi)} be the set of all the

terms occurring in such atoms. A set of columnspc is a pre-clusterif there exists a
functionf and a valid positionp in f such thatpc = {f(x)|p | f(x) ∈ F}.

VIG evaluates onD all combinations of such joins between columns in a pre-cluster
pc, and produces values inD′ so that the selectivities for these joins are maintained. In
order to do so, the intervals for the columns inpc are modified. This modification must
be propagated to all the columns related via a foreign key relationship to some column
in pc. In particular, the modification might propagate up to columns belonging to dif-
ferent pre-clusters, inducing a clash. VIG groups togethersuch pre-clusters in order to
avoid this issue. Formally, letPC denote the set of pre-clusters forM. Two pre-clusters
pc1, pc2 ∈ PC are inmerge relation, denoted aspc1 ! pc2, iff C(pc1) ∩ C(pc2) 6= ∅,
whereC(pc) = {D ∈ col(Σ) | there is aC ∈ pc : D

∗
↔ C}, where

∗
↔ is the reflex-

ive, symmetric, and transitive closure of the single columnforeign key relation between
pairs of columns4. Given a pre-clusterpc, the set of columns{c ∈ pc′ | pc′

∗
!pc} is

called acolumns cluster, where
∗
! is the transitive closure of!. Columns clusters

group together those pre-clusters for which columns cannotbe generated independently.
After identifying columns clusters, VIG analyzes the number of shared elements

between the columns in the cluster, and creates new intervals accordingly. Formally,
consider the columns clustercc. Let H ⊆ cc be a set of columns, and the setKH :=
{C | C ∈ K,H ⊂ K ⊆ cc} of columns in the super-sets ofH . For each suchH , VIG
creates an intervalIH such that|IH | := |

⋂
C∈H CD \

⋂
C∈KH

CD| ∗ s, and addsIH to
ints(C) for all C ∈ H . Boundaries for all intervalsIH are set in a way that they do not
overlap.

4 Remember that VIG does not allow for multi-attribute foreign keys.

Data Scaling in OBDA Benchmarks. The VIG Approach. 7

Foreign Keys Satisfaction.At this point, foreign key columnsD for which there is
no columns clusterpc such thatD ∈ C(pc), have a single interval whose boundaries
have to be aligned to the (single) interval of the parent. Foreign keys relating pairs of
columns in a cluster, instead, are already satisfied by construction of the intervals in the
columns cluster. More work, instead, is necessary for columns belonging toC(cc) \ cc,
for some columns clustercc. VIG encodes the problem of finding intervals for these
columns that satisfy the number of distinct values and the foreign key constraints into a
constraint program(see Table 4), which is solved by an off-the-shelf constraint solver,
e.g., Choco [12].

Table 4: CSP Program for the Choco Solver. In the following,S is the set of intervals
for the columns in the columns clustercc, plus one extra disjoint interval. Each interval
I in a columnC is encoded as a pair of variablesX〈C,I〉, Y〈C,I〉, keeping respectively
the lower and upper limit for the interval.

Create Program Variables:
∀I ∈ S. ∀C ∈ C(cc). X〈C,I〉, Y〈C,I〉 ∈ [I.min, I.max]
Set Boundaries for Known Intervals:
∀I ∈ S. ∀C ∈ C(cc). I ∈ ints(C)⇒ X〈C,I〉 = I.min, Y〈C,I〉 = I.max
Set Boundaries for Known Empty Intervals:
∀I ∈ S. ∀C ∈ cc. I /∈ ints(C)⇒ X〈C,I〉 = Y〈C,I〉

The Y’s should be greater than the X’s:
∀I ∈ S. ∀C ∈ C(cc). X〈C,I〉 ≤ Y〈C,I〉

Foreign Keys (denoted by⊆):
∀I ∈ S. ∀C1 ∈ (C(cc) \ cc). ∀C1 ⊆ C2. X〈C1,I〉 ≥ X〈C2,I〉

∀I ∈ S. ∀C1 ∈ (C(cc) \ cc). ∀C2 ⊆ C1. X〈C2,I〉 ≥ X〈C1,I〉

∀I ∈ S. ∀C1 ∈ (C(cc) \ cc). ∀C1 ⊆ C2. Y〈C1,I〉 ≤ Y〈C2,I〉

∀I ∈ S. ∀C1 ∈ (C(cc) \ cc). ∀C2 ⊆ C1. Y〈C2,I〉 ≤ Y〈C1,I〉

Width of the Intervals:∑
C,I

Y〈C,I〉 −X〈C,I〉 = |C|

Generation.At this point, each column incol(Σ) is associated to a set of intervals. The
elements in the intervals are associated to values in the column datatype, and to values
fromCD in caseC is fixed-domain. VIG uses the pseudo-random number generator to
randomly pick elements from the intervals that are then transformed into database val-
ues. NULL values are generated according to the detected NULLS ratio. Observe that
the generation of a value in a column takes constant time and can happen independently
for each column, thanks to the previous phases in which intervals were calculated.

5 Related Work

UpSizeR [15] replicates two kinds of distributions observed on the values for the key
columns, calledjoint degree distributionandjoint distribution over co-clusters5. How-
ever, this requires several assumptions to be made on theΣ, for instance tables can
have at most two foreign keys, primary keys cannot be multi-attribute, etc. Moreover,
generating values for the foreign keys require reading of previously generated values,

5 The notion of co-cluster has nothing to do with the notion of columns-cluster introduced here.

8 Davide Lanti, Guohui Xiao, and Diego Calvanese

which is not required in VIG. A strictly related approach isRex[1], which provides,
through the use of dictionaries, a better handling of the content for non-key columns.

In terms of similarity measures, the approach closest to VIGis RSGen[14], that also
considers measures likeNULL ratios or number of distinct values. Moreover, values are
generated according to a uniform distribution, as in VIG. However, the approach only
works on numerical data types, and it seems not to support multi-attribute primary keys.

In RDF graph scaling[13], an additional parameter, callednode degree scaling fac-
tor, is provided as input to the scaler. The approach is able to replicate the phenomena
of densificationthat have been observed for certain types of networks. We seethis as a
meaningful extension for VIG, and we are currently studyingthe problem of how this
could be applied in an OBDA context.

Observe that all the approaches above do not consider ontologies nor mappings.
Therefore, many measures important in a context with mappings and ontologies and
discussed here, like selectivities for joins in a co-cluster, class disjointness, or reuse of
values for fixed-domain columns, cannot be handled by any of them.

6 Conclusion and Development Plan

In this work we presented VIG, a data-scaler for OBDA benchmarks. VIG integrates
some of the measures used by database query optimizers and existing data scalers with
OBDA-specific measures, in order to deliver a better data generation in the context of
OBDA benchmarks. VIG is available as a Java maven project on GitHub, and it comes
with extensive documentation in form of wiki pages. VIG is a mature implementation
that is being delivered since two years together with the NPDbenchmark. VIG is li-
censed under Apache 2.0, and is maintained at the Free University of Bozen-Bolzano.
It is extremely efficient and suitable to generate huge amounts of data. In our experi-
ence, VIG can generate hundreds of Gigabytes in just a few hours on a normal laptop.
The current work plan is to enrich the quality of the data produced by adding support for
multi-attribute foreign keys, joint degree and value distributions, and intra-row correla-
tions (e.g., objects from SuspendedWellbore might not havea completionYear). Unfor-
tunately, it can be proved that some of these measures conflict with the current feature
of constant time for generation of tuples. Moreover, many ofthem require access to pre-
viously generated tuples in order to be calculated (e.g., joint-degree distribution [15]).

References

1. Buda, T., Cerqueus, T., Murphy, J., Kristiansen, M.: ReX:Extrapolating relational data in a
representative way. In: Maneth, S. (ed.) Data Science, LNCS, vol. 9147, pp. 95–107 (2015)

2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M.,
Rosati, R.: Ontologies and databases: TheDL-Lite approach. In: Tessaris, S., Franconi, E.
(eds.) RW Tutorial Lectures, LNCS, vol. 5689, pp. 255–356. Springer (2009)

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.: Link-
ing data to ontologies: The description logicDL-Litea. In: Proc. of OWLED. CEUR,
ceur-ws.org, vol. 216 (2006)

4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: TheDL-Lite family. JAR 39(3), 385–429
(2007)

ceur-ws.org

Data Scaling in OBDA Benchmarks. The VIG Approach. 9

5. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. W3C Recom-
mendation, W3C (2012), available athttp://www.w3.org/TR/r2rml/

6. Gray, J., Sundaresan, P., Englert, S., Baclawski, K., Weinberger, P.J.: Quickly generating
billion-record synthetic databases. In: Proc. of ACM SIGMOD. pp. 243–252. ACM (1994)

7. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C Recommendation, W3C (2013),
available athttp://www.w3.org/TR/sparql11-query

8. Kontchakov, R., Rezk, M., Rodriguez-Muro, M., Xiao, G., Zakharyaschev, M.: Answering
SPARQL queries over databases under OWL 2 QL entailment regime. In: Proc. of ISWC.
LNCS, vol. 8796, pp. 552–567. Springer (2014)

9. Lanti, D., Rezk, M., Xiao, G., Calvanese, D.: The NPD benchmark: Reality check for OBDA
systems. In: Proc. of EDBT (2015)

10. Lanti, D., Xiao, G., Calvanese, D.: VIG.https://github.com/ontop/vig (2016)
11. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue,A., Lutz, C.: OWL 2 Web Ontol-

ogy Language profiles (second edition). W3C Recommendation, W3C (Dec 2012), available
athttp://www.w3.org/TR/owl2-profiles/

12. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documenta-
tion. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING
S.A.S. (2015), http://www.choco-solver.org/, available at
http://www.choco-solver.org/

13. Qiao, S.,Özsoyoğlu, Z.M.: RBench: Application-specific RDF benchmarking. In: Proc. of
ACM SIGMOD. pp. 1825–1838 (2015)

14. Shen, E., Antova, L.: Reversing statistics for scalabletest databases generation. In: Proc. of
DBTest. pp. 7:1–7:6 (2013)

15. Tay, Y., Dai, B.T., Wang, D.T., Sun, E.Y., Lin, Y., Lin, Y.: UpSizeR: Synthetically scaling an
empirical relational database. Information Systems 38(8), 1168 – 1183 (2013)

http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/sparql11-query
https://github.com/ontop/vig
http://www.w3.org/TR/owl2-profiles/
http://www.choco-solver.org/
http://www.choco-solver.org/

	Data Scaling in OBDA Benchmarks. The VIG Approach.

