arXiv:1607.06343v2 [cs.DB] 29 Jul 2016

Data Scaling in OBDA Benchmarks. The VIG
Approach.

Davide Lanti, Guohui Xiao, and Diego Calvanese

Free University of Bozen-Bolzano, Italy

Abstract. In this paper we describe VIG, a data scaler for benchmarkkan
context of ontology-based data access (OBDA). Data scaliagelatively recent
approach, proposed in the database community, that allosguiickly scaling
up an input data instance tdimes its size, while preserving certain application-
specific characteristics. The advantage of the approadtaighe user is not re-
quired to manually input the characteristics of the dataggimduced, making
it particularly suitable for OBDA benchmarks, where the pbemity of database
schemas might pose a challenge for manual input (e.g., titebé¢RAchmark con-
tains 70 tables with some containing more than 60 columns)opposed to a
traditional data scaler, VIG includes domain informatiooyided by the OBDA
mappings and the ontology in order to produce data. VIG ittty used in the
NPD benchmark, but it is not NPD-specific and can be seedddamiy data in-
stance. The distinguishing features of VIG étgits simple and clear generation
strategy;(2) its efficiency, as each value is generated in constant tinteput
accesses to the disk or to RAM to retrieve previously gerdratluesy3) and
its generality, as the data is exported in CSV files that caedsdy imported by
any RDBMS system.

VIG is a java implementation licensed under Apache 2.0, amdadurce code
is available on GitHub (https://github.com/ontop/vig) tiee form of a Maven
project. The code is being maintained since two years by ¢h&op- team at
the Free University of Bozen-Bolzano.

1 Introduction

Animportantresearch problem in Big Data is how to providg-esers with transparent
access to the data, abstracting from storage details. Tiaeligen of Ontology-based
Data Access (OBDA)[3] provides an answer to this problen ihaery close to the
spirit of the Semantic Web. In OBDA the data stored in a retsl database is presented
to the end-users asvatual RDF graph over which SPARQL queries can be posed. This
solution is realized througmappingghat link classes and properties in the ontology to
queries over the database.

Proper benchmarking of query answering systems, such a®@p&ems, requires
scalability analyses taking into account data instancesaréasing volume. Such in-
stances are often provided by generators of syntheticdataever, such generators are
either complex ad-hoc implementations working for a spesi¢hema, or require con-
siderable manual input by the end-user. The latter probsegracerbated in the OBDA
setting, where database schemas tend to be particularigrisigcomplex (e.g., 70 ta-
bles, some with more of 80 columns [[9]). The result of hguamly few benchmarks

http://arxiv.org/abs/1607.06343v2

2 Davide Lanti, Guohui Xiao, and Diego Calvanese

is that they become increasingly misused over time. Foaints, evaluations on OBDA
systems are usually performed on benchmarks originalligded to test triple stores,
although the two systems are totally different and presiferdnt bottlenecks [9].

Data scalingl[15] is a recent approach that tries to overciiiseproblem by au-
tomatically tuning the generation parameters througlissitzg collected over an initial
data instance. Hence, the same generator can be reuseéenmentifcontexts, as long
as an initial data instance is available. A measure of quédit the produced data is
defined in terms of results for the available queries, thatighbesimilar to the one
observed for real data of comparable volume. In the conte@RDA, taking as the
only parameter for generation an initial data instance do¢produce data of accept-
able quality, since it has to comply with constraints derivfrom the structure of the
mappings and the ontology, that in turn derive from the ajapibn domain.

In this work we present VIG, a data scaler for OBDA benchmarkshe VIG sys-
tem, we lift the scaling approach from the instance levelh® ®BDA level, where
the domain information of ontologies and mappings has tocakert into account as
well. VIG is extremely efficient and suitable to generate dnaghounts of data, as tu-
ples are generated in constant time without disk accesseseakto retrieve previously
generated values. Furthermore, different instances ofda®Gbe delegated to different
machines, and parallelization can scale up to the numbeolafrns in the schema,
without communication overhead.

VIG is a Java implementation licensed under Apache 2.0, endoiurce code is
available on GitHub in the form of a Maven project [10]. Thaleds maintained by
the Ontop team at the Free University of Bozen-Bolzano, andmes with extensive
documentation in the form of Wiki pages.

The rest of the paper is structured as follows. In Sedfion&jntroduce the ba-
sic notions and notation to understand this paper. In Se@jave define the scaling
problem and discuss important measures on the producedhdatdefine the quality
of instances in a given OBDA setting. In Sectidn 4, we dis¢hesVIG algorithm, and
how it ensures that data conforming to the identified measisrproduced. Sectiof$ 5
and® contain related work and conclusions, respectively.

2 Basic Notions and Notation

We assume that the reader has moderate knowledge of OBDAgéardfor it to the
abundant literature on the subject, liké [2]. Moreover, wsuane familiarity with basic
notions from probability calculus and statistics.

The W3C standard ontology language in OBDA is OWL 2 QLI[11]r Bee sake
of conciseness, we consider here its mathematical undengiDL-Liter [4]. Table[1
shows a portion of the ontology from the NPD benchmark, whgcthe foundation
block of our running example.

The W3C standard query language in OBDA is SPARQL [7], witbrigs evaluated
under the OWL 2 QL entailment regimniég [8]. Intuitively, undleis semantics each basic
graph pattern (BGP) can be seen as a single conjunctive §G&Yywithout existen-
tially quantified variablesAs in our examples we will only refer to SPARQL queries
containing exactly one BGP, we will use the more conciseasyfdr CQs rather than

Data Scaling in OBDA Benchmarks. The VIG Approach. 3

Table 1: Portion of the ontology for the NPD benchmark. Thet fliree axioms (left to
right) state that the classes “DevelopmentWellbore”, “BrgtionWellbore”, and “Sus-
pendedWellbore” are subclasses of the class “Wellboreé. folrth axiom states that
the classes “ExplorationWellbore” and “Development\WetHd' are disjoint.

DevelopmentWellboré& Wellbore ExplorationWellboré& Wellbore
SuspendedWellborie: Wellbore ExplorationWellbore1 DevelopmentWellboré- L

Table 2: Queries for our running example.

q1(y) < Wellbore(y), developmentWellboreForField(z, y)
g2(z,n,y) < Wellbore(z), name(x, n), completionYear(z, y)

the SPARQL syntax. Tabld 2 contains the queries that we wilk@er in our running
example.

The mapping component links predicates in the ontology &rigs over the under-
lying relational database. To present our techniques, wd t@introduce this compo-
nent in a formal way. The standard W3C syntax for mapping2RMRL [5], however
here we use a more concise syntax that is common in the OBBratitre. Formally, a
mapping assertiom is an expression of the ford (f,) < conj(y), consisting of a
targetpart X (f,), which is an atom over function symbafs(also calledemplate}
and variablez C y, and asourcepartconj(y), which is a CQ whose output variables
arey. We say tham defines the predicat¥ if X is in the target ofn. A basic mapping
is a mapping whose source part contains exactly one atonte [Batontains the map-
pings for our running example, as well as a short descriffdrow these mappings are
used in order to create a (virtual) setasfsertions

For the rest of this paper we fix @BDA instancg O, M, X, D), whereQ is an
OWL 2 QL ontology,Y is a database schema with foreign and primary key dependen-
cies, M is a set of mappings linking predicates@to queries over”, andD is a
database instance that satisfies the dependenciEsaind the disjointness axioms in
O. We denote byol(X) the set of all columns iX. Given a columnC' € col(X),
we denote byCP the set of values fo€” in D. Finally, given a termf(x), where
x=(x1,...,%p,...,Tn), We denote the argumeny at positionp by f(z)|,.

3 Data Scaling for OBDA Benchmarks: VIG Approach

Thedata scaling problenmtroduced in[[15] is formulated as follows:

Definition 1 (Data Scaling Problem).Given a dataseD, produce a datasé®’ which
is similarto D but s times its size.

The notion ofsimilarity is application-based. Being our goal benchmarking, we
define similarity in terms of query results for the querieband. In [15], the authors
do not consider such queries to be available to the genesatoe their goal is broader
than benchmarking over a pre-defined set of queries. In OB&#bmarking, instead,
the (SQL) workload for the database can be estimated frorm#ggping component.

4 Davide Lanti, Guohui Xiao, and Diego Calvanese

Table 3: Mappings from the NPD benchmark. Results from theduation of the
queries on the source part build predicates in the ontolégy. example, each
triple (a,b,c) in a relation for devel opnent wel | bores corresponds to a
predicate ShallowWellbore(w(a)) in the ontology. In the R2RML mappings for
the original NPD benchmark the terma(id) corresponds to the URI template
npd: wel | bor e/ {i d}. Columns namedd are primary keys, and the colunfin d

in devel opnent wel | bor es is a foreign key for the primary kelyi d of the table
fields.

DevelopmentWellbore(w(id)) < devel opment wel | bores(id, name, year, fid)

ExplorationWellbore(w(id)) <—expl orationwel | bores(id, nanme, year, state)

SuspendedWellbore(w(id)) < expl orationwel | bores(id, name, year, state),
st at e=’ suspended’

Field(f(fid)) «~fields(fid, name)

completionYear(w(id), year) < devel opnent wel | bores(i d, nane, year, fid)

name(w(id), name) < devel opnent wel | bores(i d, nane, year, fi d)

completionYear(w(id), year) < expl orationwel | bores(id, nane, year)

name(w(id), name) < expl orationwel | bores(id, nane, year)

developmentWellboreForField(w(id), f(fid)) < devel opnent .wel | bores(i d, nanme, year, fid),
fields(fid,fname)

Therefore, VIG includes the mappings in the analysis, s@ abtain a more realistic
and OBDA-tuned generation.

Concerning the size, similarly to other approaches, VIGesoaach table i® by a
factor of s.

3.1 Similarity Measures for OBDA and Their Rationale

We overview the similarity measures used by VIG, and why t@yimportant in the
scenario of OBDA benchmarking.

Schema Dependencies)’ should be a valid instance fot. VIG is, to the best of
our knowledge, the only data scaler able to generate in antisine tuples that satisfy
multi-attribute primary keys foweakly-identified entitils The current implementation
of VIG does not support multi-attribute foreign keys.

Column-based Duplicates and NULL RatiosThey respectively measure the ratio of
duplicates and of nulls in a given column, and are commonmpeters for the cost es-
timation performed by query planners in databases. By #tefdlG maintains them

in D’ to preserve the cost of joining columns in a key-foreign kelationship (e.g.,
the join from the last mapping in our running example). Thefadilt behavior, how-
ever, is not applied witHixed-domaincolumns, which are columns whose content
does not depend on the size of the database instance. Tharcstuat e in the ta-
bleexpl or ati onwel | bor e is fixed-domain, because it partitions the elements of
i d into a fixed number of clas$svIG analyzes the mappings to detect fixed-domain
columns, and additional fixed-domain columns can be mayspkcified by the user.

11n a relational database, a weak entity is an entity that aaba uniquely identified by its
attributes alone.
2 The number of classes in the ontology does not depend onzé@kihe data instance.

Data Scaling in OBDA Benchmarks. The VIG Approach. 5

To generate values for a fixed-domain column, VIG reusesaheeg found irD so as
to prevent empty answers for the SQL queries in the mappkgsinstance, a value
‘suspended’ must be generated for the colunsh at e in order to produce objects
for the class SuspendedWellbore.

VIG generates values in columns according ton&orm distribution that is, values
in columns have all the same probability of being repeategliBation of the distribu-
tions fromD will be included the next releases of VIG.

Size of Columns Clusters, and DisjointnessQuery ¢; from our running example
returns an empty set of answers, regardless of the condidiata instance. This is
because the functiam used to build objects for the class Wellbore does not mattin wi
the functionf used to build objects for Fields. Indeed, fields and wellbaree two
different entities for which a join operation would be meagiess.

On the other hand, a standard OBDA translatiog,ahto SQL produces a union of
CQs containing several joins between the two tabksel opnent _wel | bor es and
expl orati on_.wel | bores. This is possible only because the mappings for Well-
bore, name, and completionYear all use faeneunary function symbolv to define
wellbores. Intuitively, every pair of terms over the samediion symbol and appearing
on the target of two distinct basic mappings identifies sétsotumns for which the
join operation is semantically meaningiuGenerating data that guarantees the correct
cost for these joins is crucial in order to deliver a readigaluation. In our example,
the join betweerdevel opnment wel | bor e andexpl or ati on.wel | bor e over
i dis empty unde® (because ExplorationWellbore and DevelopmentWellbcrelea-
joint classes). VIG is able to replicate this fact. This implies that VIG can generate
data satisfying disjointness constraints declared oessels whose individuals are con-
structed from a unary template in a basic mappin®, gatisfies those constraints.

4 The VIG Algorithm

We now show how VIG realizes the measures described in thégu®section. The
building block of VIG is apseudo-random number generattihat is a sequence of
integers(s;);cn defined through a transition functiep := f(si—1). The authors ir [6]
discuss a particular class of pseudo-random generatoes! lmesnultiplicative groups
modulo a prime numbetetn be the number of distinct values to generate.4 bt a
generator for the multiplicative group modulo a prime numbevith p > n. Consider
the sequencé := (¢’ mod p | i = 1,...,pand(g’ mod p) < n). ThenS is a
permutatiorof values in the intervdl, . . . , n]. Here we show how this generator is used
in VIG to quickly produce data complying with foreign andmpary key constraints.

From now on, let be a scale factor, and léist(C, D) denote the number of distinct
non-null values in a column' in the database instan@2 Let size(T', D) denote the
number of tuples occurring in the takdein the database instan€e For each columan,
VIG creates a set of intervaists(c) and generates values accordingly.

Initialization Phase. For each tabld’, VIG sets the numbetize(T, D’) of tuples to
generate taize(T, D) s. Then, VIG calculates the number of non-null distinct value

% Therefore, for which a join could occur during the evaluatid a user query.

6 Davide Lanti, Guohui Xiao, and Diego Calvanese

that need to be generated for each column, givamdD. That is, for each column
C, if C is not fixed-domain then VIG setlist(C, D) := dist(C, D) * s. Otherwise,
dist(C, D) is set tadist(C, D).

Creation of Intervals. WhenC' is a numerical column, VIG initializemts(C) by the
interval I := [min(C, D), min(C,D) + dist(C,D’) — 1] of distinct values to be
generated, wherevin(C, D) denotes the minimum value occurringGff’. Otherwise,
if C'is non-numericalints(C) is initialized to the interval := [1, dist(C, D’)]. The
elements innts(C) will be transformed into values of the desired datatype hyitabkle
injective function in the final generation step.

Primary Keys Satisfaction. Let K = {C},...,C,} be the primary key of a ta-
ble T'. In order to ensure that values generated for each colunmughrthe pseudo-
random generator will not lead to duplicate tuplesiin the least common multiple
lem(dist(Cy,D’),...,dist(Cy, D)) must be greater tharuples(7T, D’). If this is not
true, then VIG ensures the condition by slightly increasiixgy(C;, D’) for some col-
umn(C; in K. Once the condition holds, data can be generated indeptinétemeach
column without risk of generating duplicate tuples for

Columns Cluster Analysis.In this phase, VIG analyze®! in order to identify columns
that could be joined in a translation to SQL, and groups thagether inpre-clusters
Formally, letX;(f1, 1), ..., Xm(fm, mx) be the atoms defined by basic mappings
in M. LetF = U,_, ,,{f(x)]| f(x)isaterminX;(f;,x;)} be the set of all the
terms occurring in such atoms. A set of colunmsis a pre-clusterif there exists a
function f and a valid positiom in f such thapc = {f(x)|, | f(x) € F}.

VIG evaluates orD all combinations of such joins between columns in a pretetus
pc, and produces values Y so that the selectivities for these joins are maintained. In
order to do so, the intervals for the columnginare modified. This modification must
be propagated to all the columns related via a foreign ketiogiship to some column
in pc. In particular, the modification might propagate up to cahsnbelonging to dif-
ferent pre-clusters, inducing a clash. VIG groups togesheh pre-clusters in order to
avoid this issue. Formally, I62C denote the set of pre-clusters fdt. Two pre-clusters
pcy, pey, € PC are inmerge relationdenoted agc; «w pey, iff C(pey) NCpey) # 0,
whereC(pc) = {D € col(X) | thereisaC € pc : D & C}, wheress is the reflex-
ive, symmetric, and transitive closure of the single coldoreign key relation between
pairs of columrf Given a pre-clustepe, the set of columnge € pc’ | pc/«pc} is
called acolumns clusterwhere«*~ is the transitive closure of-. Columns clusters
group together those pre-clusters for which columns cammgenerated independently.

After identifying columns clusters, VIG analyzes the nhumbgshared elements
between the columns in the cluster, and creates new ingeacalordingly. Formally,
consider the columns cluster. Let H C c¢c be a set of columns, and the $éf; :=
{C|C e K,H C K C cc} of columns in the super-sets éf. For each sucli/, VIG
creates an intervdly such thatly| := | ey CP \Neex,, CF |+ s, and adddy to
ints(C) for all C € H. Boundaries for all intervalgy are set in a way that they do not
overlap.

4 Remember that VIG does not allow for multi-attribute forelgys.

Data Scaling in OBDA Benchmarks. The VIG Approach. 7

Foreign Keys Satisfaction.At this point, foreign key column® for which there is
no columns clustepc such thatD € C(pc), have a single interval whose boundaries
have to be aligned to the (single) interval of the parentelgpr keys relating pairs of
columns in a cluster, instead, are already satisfied by nart&in of the intervals in the
columns cluster. More work, instead, is necessary for cakibelonging t& (cc) \ cc,

for some columns clustek. VIG encodes the problem of finding intervals for these
columns that satisfy the number of distinct values and theido key constraints into a
constraint progran{see Tablél4), which is solved by an off-the-shelf constrsaiver,
e.g., Choco[12].

Table 4: CSP Program for the Choco Solver. In the followisigs the set of intervals
for the columns in the columns cluster plus one extra disjoint interval. Each interval
I'in a columnC' is encoded as a pair of variabl&s¢ 1y, Y(c, 1), keeping respectively
the lower and upper limit for the interval.

Create Program Variables:

VI € S.VC € C(ce). X(c,1y, Y(c,1y € [I.min, I.max]

Set Boundaries for Known Intervals:

VI € S.VC € C(cc). I € ints(C) = X (¢ 1y = I.min,Y(c 1y = [.mazx
Set Boundaries for Known Empty Intervals:

VI e S.VC € cc. I ¢ ints(C) = X(C,I) = Y(CYU

The Y’s should be greater than the X’s:

VI e S.VC € C(CC). X(C,I) < Y(C',I)

Foreign Keys (denoted by):

VI € S.VC1 € (C(cc) \ ¢c).VC1 C C2. X(oy .1y = X(cy,1)
VI € S.VC1 € (C(cc) \ ¢c). VO2 C C1. X(0y,1y > X(0y.1)
VI € 8.VC1 € (C(cc) \ ¢c).VC1 C C2. Yioy 1y < Yiey, 1)
VI € 8.¥VC1 € (C(cc) \ ¢c).VC2 C C1. Yioy, 1y < Yicy,1)
Width of the Intervals:

YooY n —Xen =IC|

Generation.At this point, each column inol(X) is associated to a set of intervals. The
elements in the intervals are associated to values in thergotlatatype, and to values
from C? in caseC is fixed-domain. VIG uses the pseudo-random number gemédeato
randomly pick elements from the intervals that are thenstfiamed into database val-
ues. NULL values are generated according to the detectedISUatio. Observe that
the generation of a value in a column takes constant time amtiappen independently
for each column, thanks to the previous phases in whichvialemwere calculated.

5 Related Work

UpSizeR [15] replicates two kinds of distributions obsehem the values for the key
columns, callegoint degree distributiorandjoint distribution over co-clustelfs How-
ever, this requires several assumptions to be made oHer instance tables can
have at most two foreign keys, primary keys cannot be mtiitibaite, etc. Moreover,
generating values for the foreign keys require reading evipusly generated values,

5 The notion of co-cluster has nothing to do with the notionafimns-cluster introduced here.

8 Davide Lanti, Guohui Xiao, and Diego Calvanese

which is not required in VIG. A strictly related approachRex[1], which provides,
through the use of dictionaries, a better handling of theaerttrfor non-key columns.

In terms of similarity measures, the approach closest toi¥ R5Gerjl4], that also
considers measures liR&JLL ratios or number of distinct values. Moreover, values are
generated according to a uniform distribution, as in VIGwsdwer, the approach only
works on numerical data types, and it seems not to suppoti-attribute primary keys.

In RDF graph scalingl3], an additional parameter, calladde degree scaling fac-
tor, is provided as input to the scaler. The approach is ablepiacete the phenomena
of densificatiorthat have been observed for certain types of networks. Wehgeas a
meaningful extension for VIG, and we are currently studytimg problem of how this
could be applied in an OBDA context.

Observe that all the approaches above do not consider gigslaor mappings.
Therefore, many measures important in a context with maspamd ontologies and
discussed here, like selectivities for joins in a co-clystiass disjointness, or reuse of
values for fixed-domain columns, cannot be handled by anlyesht

6 Conclusion and Development Plan

In this work we presented VIG, a data-scaler for OBDA benatksaVIG integrates
some of the measures used by database query optimizersiatidgedata scalers with
OBDA-specific measures, in order to deliver a better dat&gdion in the context of
OBDA benchmarks. VIG is available as a Java maven projectitiu®B, and it comes
with extensive documentation in form of wiki pages. VIG is atare implementation
that is being delivered since two years together with the NieBchmark. VIG is li-
censed under Apache 2.0, and is maintained at the Free Wityvef Bozen-Bolzano.
It is extremely efficient and suitable to generate huge artsoofhdata. In our experi-
ence, VIG can generate hundreds of Gigabytes in just a fewshmua normal laptop.
The current work plan is to enrich the quality of the data jpicet by adding support for
multi-attribute foreign keys, joint degree and value dligttions, and intra-row correla-
tions (e.g., objects from SuspendedWellbore might not eas@mpletionYear). Unfor-
tunately, it can be proved that some of these measures damiflicthe current feature
of constant time for generation of tuples. Moreover, martyhefn require access to pre-
viously generated tuples in order to be calculated (e.mt-flegree distributiori [15]).

References

1. Buda, T., Cerqueus, T., Murphy, J., Kristiansen, M.: REXtrapolating relational data in a
representative way. In: Maneth, S. (ed.) Data Science, LNGIS9147, pp. 95-107 (2015)

2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, Mgd®, A., Rodriguez-Muro, M.,
Rosati, R.: Ontologies and databases: ThelLite approach. In: Tessaris, S., Franconi, E.
(eds.) RW Tutorial Lectures, LNCS, vol. 5689, pp. 255-35&irger (2009)

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, Mgd?, A., Rosati, R.: Link-
ing data to ontologies: The description logil -Lite,. In: Proc. of OWLED. CEUR,
ceur-ws. or g, vol. 216 (2006)

4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, Msa&i, R.: Tractable reasoning
and efficient query answering in description logics: THeL.ite family. JAR 39(3), 385-429
(2007)

ceur-ws.org

10.
11.

12.

13.

14.

15.

Data Scaling in OBDA Benchmarks. The VIG Approach. 9

. Das, S., Sundara, S., Cyganiak, R.: R2ZRML: RDB to RDF maplainguage. W3C Recom-

mendation, W3C (2012), availablefatt p: 7/ www. W3. org/ TR r2rm /

. Gray, J., Sundaresan, P., Englert, S., Baclawski, K.nidégger, P.J.: Quickly generating

billion-record synthetic databases. In: Proc. of ACM SIGBI@p. 243—-252. ACM (1994)

. Harris, S., Seaborne, A.: SPARQL 1.1 query language. WatbRmendation, W3C (2013),

available ahttp: /7 www. W3. or g/ TR/ spar gl 11- query

. Kontchakov, R., Rezk, M., Rodriguez-Muro, M., Xiao, Gakharyaschev, M.: Answering

SPARQL queries over databases under OWL 2 QL entailmenteedin: Proc. of ISWC.
LNCS, vol. 8796, pp. 552-567. Springer (2014)

. Lanti, D., Rezk, M., Xiao, G., Calvanese, D.: The NPD benatk: Reality check for OBDA

systems. In: Proc. of EDBT (2015)

Lanti, D., Xiao, G., Calvanese, D.: VIBt t ps: // gi t hub. coni ont op/ vi g/(2016)
Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Foko#e,Lutz, C.: OWL 2 Web Ontol-
ogy Language profiles (second edition). W3C Recommendafit®C (Dec 2012), available
athttp: //ww. w3. or g/ TR/ oW 2- profil es/

Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documenta
tion. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING
S.AS. (2015), http://ww. choco-sol ver. org/}, available at

http://ww. choco- sol ver. or g/

Qiao, S.0Ozsoyoglu, Z.M.: RBench: Application-specific RDF beneking. In: Proc. of
ACM SIGMOD. pp. 1825-1838 (2015)

Shen, E., Antova, L.: Reversing statistics for scaléddé databases generation. In: Proc. of
DBTest. pp. 7:1-7:6 (2013)

Tay, Y., Dai, B.T., Wang, D.T., Sun, E.Y,, Lin, Y., Lin,.~NXUpSizeR: Synthetically scaling an
empirical relational database. Information Systems 38(838 — 1183 (2013)

http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/sparql11-query
https://github.com/ontop/vig
http://www.w3.org/TR/owl2-profiles/
http://www.choco-solver.org/
http://www.choco-solver.org/

	Data Scaling in OBDA Benchmarks. The VIG Approach.

