
June 7, 2001 19:8 WSPC/111-IJCIS 00034

International Journal of Cooperative Information Systems
Vol. 10, No. 3 (2001) 237–271
c© World Scientific Publishing Company

DATA INTEGRATION IN DATA WAREHOUSING

DIEGO CALVANESE∗, GIUSEPPE DE GIACOMO†, MAURIZIO LENZERINI‡, DANIELE
NARDI§ and RICCARDO ROSATI¶

Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

Information integration is one of the most important aspects of a Data Warehouse.
When data passes from the sources of the application-oriented operational environment
to the Data Warehouse, possible inconsistencies and redundancies should be resolved,
so that the warehouse is able to provide an integrated and reconciled view of data of the
organization. We describe a novel approach to data integration in Data Warehousing.
Our approach is based on a conceptual representation of the Data Warehouse applica-
tion domain, and follows the so-called local-as-view paradigm: both source and Data
Warehouse relations are defined as views over the conceptual model. We propose a tech-
nique for declaratively specifying suitable reconciliation correspondences to be used in
order to solve conflicts among data in different sources. The main goal of the method
is to support the design of mediators that materialize the data in the Data Warehouse
relations. Starting from the specification of one such relation as a query over the con-
ceptual model, a rewriting algorithm reformulates the query in terms of both the source
relations and the reconciliation correspondences, thus obtaining a correct specification
of how to load the data in the materialized view.

Keywords: Data Warehousing, data integration, data reconciliation, local-as-view ap-
proach, query rewriting, automated reasoning.

1. Introduction

A Data Warehouse is a set of materialized views over the operational information

sources of an organization, designed to provide support for data analysis and man-

agement’s decisions. Information integration is at the heart of Data Warehousing.1

When data passes from the application-oriented operational environment to the

Data Warehouse, possible inconsistencies and redundancies should be resolved, so

that the Warehouse is able to provide an integrated and reconciled view of data of

the organization.

Generally speaking, information integration is the problem of acquiring data

from a set of sources that are available for the application of interest.2 This problem

∗E-mail: Calvanese@dis.uniroma1.it
†E-mail: Giacomo@dis.uniroma1.it
‡E-mail: Lenzerini@dis.uniroma1.it
§E-mail: Nardi@dis.uniroma1.it
¶E-mail: Rosati@dis.uniroma1.it

237

June 7, 2001 19:8 WSPC/111-IJCIS 00034

238 D. Calvanese et al.

has recently become a central issue in several contexts, including Data Warehousing,

Interoperable and Cooperative Systems, Multi-database systems, and Web Infor-

mation Systems. The typical architecture of an integration system is described in

terms of two types of modules: wrappers and mediators.3,4 The goal of a wrapper

is to access a source, extract the relevant data, and present such data in a specified

format. The role of a mediator is to collect, clean, and combine data produced by

different wrappers (or mediators), so as to meet a specific information need of the

integration system. The specification and the realization of mediators is the core

problem in the design of an integration system.

The constraints that are typical of Data Warehouse applications restrict the

large spectrum of approaches that have been proposed for integration.1,5,6 First,

while the sources are often external to the organization managing the integration

system, in a Data Warehouse they are mostly internal to the organization. Second,

a Data Warehouse should reflect the informational needs of the organization, and

should therefore be defined in terms of a global, corporate view of data. Without

such a global view, there is the risk of concentrating too much on what is in the

sources at the operational level, rather than on what is really needed in order to

perform the required analysis on data.7 Third, such a corporate view should be

provided in terms of representation mechanisms that are able to abstract from the

physical and logical structure of data in the sources. It follows that the need and

requirements for maintaining an integrated, conceptual view of the corporate data

in the organization are stronger than in other contexts. A direct consequence of

this fact is that the data in the sources and in the Data Warehouse should be

defined in terms of the corporate view of data, and not the other way around. In

other words, data integration in Data Warehousing should follow the local-as-view

approach, where each table in a source and in the Data Warehouse is defined as a

view of a global model of the corporate data. On the contrary, the global-as-view

approach requires, for each information need, to specify the corresponding query in

terms of the data at the sources, and is therefore suited when no global view of the

data of the organization is available.

The above considerations motivate the local-as-view approach to information in-

tegration proposed in the context of the DWQ (Data Warehouse Quality) project.8,9

The distinguishing features of the approach are: a rich modeling language, which

extends an Entity-Relationship data model, in order to represent a Conceptual

Data Warehouse Model; reasoning tools associated to the modeling language which

support the Data Warehouse construction, maintenance and evolution.

Most of the work on integration has been concerned with the intensional/schema

level.10 Schema integration is nowadays a well-established discipline, which has

also been addressed within DWQ.11 It will not be discussed further in this paper.

On the other hand, less attention has generally been devoted to the problem of

data integration at the extensional/instance level. Data integration at the instance

level is, nonetheless, crucial in Data Warehousing, where the process of acquiring

data from the sources and making them available within the Data Warehouse is of

paramount importance.

June 7, 2001 19:8 WSPC/111-IJCIS 00034

Data Integration in Data Warehousing 239

As a matter of fact, in the life time of a Data Warehouse the explicit repre-

sentation of relationships between the sources and the materialized data in the

Data Warehouse is useful in several tasks: from the initial loading, where the iden-

tification of the revelavant data within the sources is critical, to the refreshment

process, which may require a dynamic adaptation depending on the availability of

the sources, as well as on their reliability and quality that may change over time.

Moreover, the extraction of data from a primary Data Warehouse for Data Mart

applications, where the primary Warehouse is now regarded as a data source, can

be treated in a similar way. In addition, even though the sources within an En-

terprise are not as dynamic as in other information integration frameworks, they

are nonetheless subject to changes; in particular, creation of new sources and dele-

tion of existing ones must be taken into account. Consequently, the maintenance of

the Data Warehouse requires several upgrades of the data flows towards the Data

Warehouse. In other words, a Data Warehouse, especially in large organizations,

should be regarded as an incremental system, which critically depends upon the

relationships between the sources and the Data Warehouse.

Given a request for new data to be materialized in the Data Warehouse, which

is formulated in terms of the conceptual, global view of the corporate data, (i.e. not

the language of the sources, but of the enterprise), there are several steps that are

required for the acquisition of data from the sources:

(1) Identification of the sources where the relevant information resides. Note that

this task is typical of the local-as-view approach, and requires algorithms that

are generally both sophisticated and costly.4,12,13

(2) Decomposition of the user request into queries to individual sources that are

supposed to return the data of interest.

(3) Interpretation and merging of the data provided by a source. Interpreting data

can be regarded as the task of casting them into a common representation.

Moreover, the data returned by various sources need to be combined to provide

the Data Warehouse with the requested information. The complexity of this

reconciliation step is due to several problems, such as possible mismatches be-

tween data referring to the same real world object, possible errors in the data

stored in the sources, possible inconsistencies between values representing the

properties of the real world objects in different sources.14

In commercial environments for Data Warehouse design and management, the

above tasks are taken care of through ad hoc components.6 In general, such compo-

nents provide the user with the capability of specifying the mapping between the

sources and the Data Warehouse by browsing through a meta-level description of

the relations of the sources. In addition, they generally provide both for automatic

code generators and for the possibility of attaching procedures to accomplish ad hoc

transformations and filtering of the data. Even though there are powerful and ef-

fective environments with the above features, their nature is inherently procedural,

and close to the notion of global-as-view, where the task of relating the sources

with the Data Warehouse is done on a query-by-query basis.

June 7, 2001 19:8 WSPC/111-IJCIS 00034

240 D. Calvanese et al.

Several recent research contributions address the same problem from a more

formal perspective.5,15–21 Generally speaking, these works differ from our pro-

posal since they follow the global-as-view approach. We refer to Sec. 6 for a com-

parison with our work. Research projects concerning the local-as-view approach

have concentrated on the problem of reformulating a query in terms of the source

relations.12,13,22–34 However, none of them addresses both the problem of data rec-

onciliation at the instance level, and the problem of query rewriting with respect

to a conceptual model.

In this paper we present a novel approach to data integration in Data Ware-

housing, that builds upon and extends recent work within DWQ.8,35,36 Compared

with the existing proposals mentioned above, the novelty of our approach stems

from the following features:

• It relies on the Conceptual Model of the corporate data, which is expressed in an

Entity-Relationship formalism.

• It follows the local-as-view paradigm, in the sense that both the sources and the

Data Warehouse relations are defined as views over the Conceptual Model.

• It allows the designer to declaratively specify several types of reconciliation cor-

respondences between data in different schemas (either source schemas or Data

Warehouse schema). Three types of Reconciliation Correspondences are taken

into account, namely Conversion, Matching, and Merging Correspondences.

• It uses such correspondences in order to support the task of specifying the correct

mediators for the loading of the materialized views of the Data Warehouse. For

this purpose, our methodology relies on a query rewriting algorithm, whose role

is to reformulate the query that defines the view to materialize in terms of both

the source relations and the Reconciliation Correspondences. The characteristic

feature of the algorithm is that it takes into account the constraints imposed by

the Conceptual Model, and uses the Reconciliation Correspondences for cleaning,

integrating, and reconciling data coming from different sources.

The paper is organized as follows. In Sec. 2, we summarize the general

architecture we use in our approach to data integration in Data Warehous-

ing. Section 3 illustrates the method we propose to describe the content of

the sources and the Data Warehouse at the logical level. Section 4 is devoted to a

discussion of the meaning and the role of Reconciliation Correspondences. Section 5

describes the query rewriting algorithm at the basis of our approach to the design

of mediators. Section 6 compares our proposal with related work. Finally, Sec. 7

concludes the paper.

2. General Framework

We briefly summarize the general framework at the base of our approach to schema

and data integration. Such a framework has been developed within the ESPRIT

project DWQ, “Foundations of Data Warehouse Quality”.6,9 A Data Warehouse can

June 7, 2001 19:8 WSPC/111-IJCIS 00034

Data Integration in Data Warehousing 241

be seen as a database which maintains an integrated, reconciled and materialized

view of information residing in several data sources. In our approach we explicitly

model the data in the sources and in the Data Warehouse at different levels of

abstraction37,8,38:

• The conceptual level, which contains a conceptual representation of the corporate

data.

• The logical level, which contains a representation in terms of a logical data model

of the sources and of the data materialized in the Data Warehouse.

• The physical level, which contains a specification of the stored data, the wrappers

for the sources, and the mediators for loading the data store.

The relationship between the conceptual and the logical, and between the logical

and the physical level is represented explicitly by specifying mappings between

corresponding objects of the different levels. In the rest of this section, we focus on

the conceptual and logical levels, referring to the abstract architecture depicted in

Fig. 1, the physical level is treated elsewhere.6 In Sec. 5, we will explain in detail

the construction of the specification of the mediators.

2.1. Conceptual level

In the overall Data Warehouse architecture, we explicitly conceive a conceptual level,

which provides a conceptual representation of the data managed by the enterprise,

including a conceptual representation of the data residing in sources, and of the

global concepts and relationships that are of interest to the Data Warehouse appli-

cation. Such a description, for which we use the term Conceptual Model, is indepen-

dent from any system consideration, and is oriented towards the goal of expressing

the semantics of the application. The Conceptual Model corresponds roughly to

� � � � �

� � � � 	
 �

� � �

� � �

 � � � � � � � � �

� � � � � � � � � �
� ! " # $ � ! " # $

% & ' & � ' " $ (

) * + , - . / 0 1

2 / 3 2 * 4 . 5 - 6 7 6 / 8 , 2 - 6 9 - 4 4 , 3 8
4 : ; 1 , 2 - 6 7 6 / 8 , 2 - 6 9 - 4 4 , 3 8
+ - . - < / =

> / 5 0 2 *> 2 : * 9 - ? @ A B C D E@ D F E G H I
J K L M M N K O

P Q R S T U V W W X Y X WW Z [T U V W W X Y X W

\] ^] _] ` a b c d e af g b a h] \] ^] _] ` a b c d e af ^ c ` a

i j k i l m n o p q q l r l q

Fig. 1. Architecture for data integration.

June 7, 2001 19:8 WSPC/111-IJCIS 00034

242 D. Calvanese et al.

the notion of integrated conceptual schema in the traditional approaches to schema

integration, thus providing a consolidated view of the concepts and the relation-

ships that are important to the enterprise, and have been currently analyzed. Such

a view includes a conceptual representation of the portion of data, residing in the

sources, currently taken into account. Hence, our approach is not committed to the

existence of a fully specified Conceptual Model, but rather supports an incremental

definition of such a model. Indeed, the Conceptual Model is subject to changes and

additions as the analysis of the information sources proceeds.

An important aspect of the conceptual representation is the explicit specification

of the set of interdependencies between objects in the sources and objects in the

Data Warehouse. In this respect, data integration can be regarded as the process

of understanding and representing the relationships between data residing in the

information sources and the information contained in the Data Warehouse. Data

reconciliation is also performed at this stage, instead of simply producing a unified

data schema; moreover, such an integration activity is driven by automated reason-

ing tools, which are able to derive and verify several kinds of properties concerning

the conceptual specification of information.

The formalization of information in the Conceptual Model is based on the dis-

tinction between conceptual objects and values. Reflecting such distinction, the Con-

ceptual Model consists of two components:

(1) an enriched Entity-Relationship model, which formalizes the properties of con-

ceptual objects; and

(2) a set of domain assertions, which model the properties of values.

We discuss the two components in the following.

2.1.1. Enriched entity-relationship model

The enriched Entity-Relationship model is formalized in terms of a logic based

formalism, called DLR.37 Such a formalism allows us to capture the Entity-

Relationship (ER) model augmented with several forms of constraints that cannot

be expressed in the standard ER model. Moreover, it provides sophisticated auto-

mated reasoning capabilities, which can be exploited in verifying different properties

of the Conceptual Model.

DLR belongs to the family of Description Logics, introduced and studied in

the field of Knowledge Representation.39,40 Generally speaking, Description Logics

are class-based representation formalism that allow one to express several kinds

of relationships and constraints (e.g. subclass constraints) holding among classes.

Specifically, DLR includes:

• concepts, which are used to represent entity types (or simply entities), i.e. sets of

conceptual objects having common properties;

• n-ary relationships, which are used to represent relationship types (or simply

relationships), i.e. sets of tuples, each of which represents an association between

June 7, 2001 19:8 WSPC/111-IJCIS 00034

Data Integration in Data Warehousing 243

conceptual objects belonging to different entities. The participation of conceptual

objects in relationships models properties corresponding to relations to other

conceptual objects; and

• attributes, which are used to associate to conceptual objects (or tuples of concep-

tual objects) properties expressed by values belonging to one of several domains.

The Conceptual Model for a given application is specified by means of a set of

logical assertions that express interrelationships between concepts, relationships,

and attributes. In particular, the richness of DLR allows for expressing:

• disjointness and covering constraints, and more generally Boolean combinations

between entities and relationships;

• universal and existential qualification of concepts and relationship components;

• participation and functionality constraints, and more complex forms of cardinal-

ity constraints;

• ISA relationships between entities and relationships; and

• definitions (expressing necessary and sufficient conditions) of entities and rela-

tionships in terms of other entities and relationships.

These features make DLR powerful enough to express not only the ER model, but

also other conceptual, semantic, and object-oriented data models. Moreover, DLR
assertions provide a simple and effective declarative mechanism to express the de-

pendencies that hold between entities and relationships in different sources.2,41 The

use of inter-model assertions allows for an incremental approach to the integration

of the conceptual models of the sources and of the enterprise.37,42

One distinguishing feature of DLR is that sound and complete reasoning al-

gorithms are available.43 Exploiting such algorithms, we gain the possibility of

reasoning about the Conceptual Model. In particular, we can automatically verify

the following properties:

• Consistency of the Conceptual Model, i.e. whether there exists a database satis-

fying all constraints expressed in the Conceptual Model.

• Concept (relationship) satisfiability, i.e. whether there exists a database that satis-

fies the Conceptual Model in which a certain entity (relationship) has a nonempty

extension.

• Entity (relationship) subsumption, i.e. whether the extension of an entity

(relationship) is a subset of the extension of another entity (relationship) in every

database satisfying the Conceptual Model.

• Constraint inference, i.e. whether a certain constraint holds for all databases

satisfying the Conceptual Model.

Such reasoning services support the designer in the construction process of the

Conceptual Model: they can be used, for instance, for inferring inclusion between

entities and relationships, and detecting inconsistencies and redundancies.

June 7, 2001 19:8 WSPC/111-IJCIS 00034

244 D. Calvanese et al.

We show how to formalize in DLR a simple ER schema, which we will use as

our running example. A full-fledged example of our methodology can be found in

a case study from the telecommunication domain.44,45

Example 1. The schema shown in Fig. 2 represents persons divided in males

and females and parent-child relationship. The following set of assertions exactly

captures the ER schema in the figure.

Person v (= 1 name) u ∀name.NameString u (= 1ssn) u ∀ssn.SSNString u
(= 1dob) u ∀dob.Date u (= 1 income) u ∀income.Money

Person ≡ Female tMale

Female v ¬Male

CHILD v ($1 : Person) u ($2 : Person)

The first four assertions specify the existence and the domain of the attributes

of Person. The next two assertions specify that persons are partitioned in females

and males. The last assertion specifies the typing of the CHILD relationship.

We could also add constraints not expressible in the ER model, such as intro-

ducing a further entity MotherWith3Sons denoting mothers having at least three

sons:

MotherWith3Sons ≡ Female u (≤ 3[$1](CHILD u ($2 : Male)))

2.1.2. Abstract domains

Rather than considering concrete domains, such as strings, integers, and reals, our

approach is based on the use of abstract domains. Abstract domains may have an un-

derlying concrete domain, but their use allows the designer to distinguish between

the different meanings that values of the concrete domain may have. The prop-

erties and mutual inter-relationships between domains can be specified by means

of domain assertions, each of which is expressed as an inclusion between Boolean

combinations of domains. In particular, domain assertions allow to express an ISA

� � � � � � � �
� � 	
 � � � �
 � � � �

� � � � � � � � � � � �

� � � � � � ! " # $ % & ' (

)

*

+ , - . / 0 1 2 3 4 5

6 , 7 8 9 , : 8 9 ,

Fig. 2. Entity-relationship schema for parent-child relationship.

June 7, 2001 19:8 WSPC/111-IJCIS 00034

Data Integration in Data Warehousing 245

hierarchy between domains. We say that a domain assertion is satisfied if the inclu-

sion between the corresponding Boolean combinations of domain extensions holds.

Example 2. Consider two attributes A1 in a source and A2 in the Data

Warehouse, both representing amounts of money. Rather than specifying that both

attributes have values of type Real, the designer may specify that the domain of

attribute A1 is MoneyInLire while the domain of attribute A2 is MoneyInEuro, which

are both subsets of the domain Money (which possibly has Real as the underlying

concrete domain). The relationship between the three domains can be expressed by

means of the domain assertions:

MoneyInLire v Money

MoneyInEuro v Money u ¬MoneyInLire

In this way, it becomes possible to specify declaratively the difference between

values of the two attributes, and take such knowledge into account for loading data

from the source to the Data Warehouse.

Given a set of domain assertions, the designer may be interested in verifying

several properties, such as:

• Satisfiability of the whole set of domain assertions, i.e. whether it is actually

possible to assign to each domain an extension in such a way that all assertions

are satisfied.

• Domain satisfiability, i.e. whether it is possible to assign to a domain a nonempty

extension, under the condition that all assertions are satisfied.

• Domain subsumption, i.e. whether the extension of one domain is a subset of the

extension of another domain, whenever all domain assertions are satisfied.

The presence of unsatisfiable domains reflects some error in the modeling process,

and requires to remove the unsatisfiable domain or revise the set of domain as-

sertions. Similarly, the presence of equivalent domains may be an indication for

redundancy.

Typically, the designer is interested in automatically checking the above

properties, and more generally, in automatically constructing a domain hierarchy

reflecting the ISA relationships between domains that logically follow from the set

of assertions.

Using DLR we can express and reason over the enriched Entity-Relationship

model together with the domain hierarchy. However, if we are interested in reason-

ing about domains only, we can use a more direct approach. Indeed, by conceiving

each domain as a unary predicate, we can correctly represent a domain assertion

D v D′ by the first-order logic formula ∀x ·D(x) ⊃ D′(x). Since such formula does

not contain any quantifier besides the outermost ∀, it can be captured correctly

by the propositional formula A ⊃ B, where we consider each domain as a propo-

sitional symbol. Therefore we can exploit techniques developed for propositional

June 7, 2001 19:8 WSPC/111-IJCIS 00034

246 D. Calvanese et al.

reasoning46–48 to perform inference on domains, and thus automatically check the

desired properties resulting from the set of assertions.

2.2. Logical level

The logical level provides a description of the logical content of each source, called

the Source Schema, and the logical content of the materialized views constituting

the Data Warehouse, called the Data Warehouse Schema (see Fig. 1). Such schemas

are intended to provide a structural description of the content of both the sources

and the materialized views in the Data Warehouse.

A Source Schema is provided in terms of a set of relations using the relational

model. The link between the logical representation and the conceptual represen-

tation of the source is formally defined by associating each relation with a query

that describes its content in terms of a query over the Conceptual Model. In other

words, the logical content of a source relation is described in terms of a view over the

virtual database represented by the Conceptual Model, adopting the local-as-view

approach. To map physical structures to logical structures we make use of suitable

wrappers, which encapsulate the sources. The wrapper hides how the source actu-

ally stores its data, the data model it adopts, etc. and presents the source as a set of

relations. In particular, we assume that all attributes in the relations are of interest

to the Data Warehouse application (attributes that are not of interest are hidden

by the wrapper). Relation attributes are thus modeled as either entity attributes

or relationship attributes in the Conceptual Model.

The Data Warehouse Schema, which expresses the logical content of the ma-

terialized views constituting the Data Warehouse, is provided in terms of a set of

relations. Similarly to the case of the sources, each relation of the Data Warehouse

Schema is described in terms of a query over the Conceptual Model.

From a technical point of view such queries are unions of conjunctive queries.

More precisely, a query q over the Conceptual Model has the form:

T (~x)← q(~x,~y)

where the head T (~x) defines the schema of the relation in terms of a name T , and

its arity, i.e. the number of columns (number of components of ~x), and the body

q(~x,~y) describes the content of the relation in terms of the Conceptual Model. The

body has the form

conj1(~x,~y1) OR · · ·OR conjm(~x,~ym)

where each conji(~x,~yi) is a conjunction of atoms, and ~x,~yi are all the variables ap-

pearing in the conjunct (we use ~x to denote a tuple of variables x1, . . . , xn, for some

n). Each atom is of the form E(t), R(~t), or A(t, t′), where ~t, t, and t′ are variables

in ~x,~yi or constants, and E, R, and A are respectively entities, relationships, and

attributes appearing in the Conceptual Model.

In the following, we will also consider queries whose body may contain special

predicates that do not appear in the conceptual model.

June 7, 2001 19:8 WSPC/111-IJCIS 00034

Data Integration in Data Warehousing 247

The semantics of queries is as follows. Given a database that satisfies the Con-

ceptual Model, a query

T (~x)← conj1(~x,~y1)OR · · ·ORconjm(~x,~ym)

of arity n is interpreted as the set of n-tuples (d1, . . . , dn), with each di an object

of the database, such that, when substituting each di for xi, the formula

∃~y1 · conj1(~x,~y1)OR · · ·OR∃~ym · conjm(~x,~ym)

evaluates to true.

Suitable inference techniques allow for carrying out the following reasoning ser-

vices on queries by taking into account the Conceptual Model43:

• Query containment. Given two relational queries q1 and q2 (of the same arity n)

over the Conceptual Model, we say that q1 is contained in q2, if the set of tuples

denoted by q1 is contained in the set of tuples denoted by q2 in every database

satisfying the Conceptual Model.

• Query consistency. A relational query q over the Conceptual Model is consistent,

if there exists a database satisfying the Conceptual Model in which the set of

tuples denoted by q is not empty.

• Query disjointness. Two relational queries q1 and q2 (of the same arity) over the

Conceptual Model are disjoint, if the intersection of the set of tuples denoted by

q1 and the set of tuples denoted by q2 is empty, in every database satisfying the

Conceptual Model.

3. Source and Data Warehouse Logical Schema Descriptions

The notion of query over the Conceptual Model is a powerful tool for modeling

the logical level of the Sources and the Data Warehouse. As mentioned above, we

express the relational tables constituting both the Data Warehouse Schema and

Source Schemas in terms of queries over the Conceptual Model, with the following

characteristics:

• Relational tables are composed of tuples of values, which are the only kind of

objects at the logical level. Therefore, each variable in the head of the query

represents a value (not a conceptual object).

• Each variable appearing in the body of the query either denotes a conceptual

object or a value, depending on the atoms in which it appears. Since, in each

database that satisfies the Conceptual Model, conceptual objects and values are

disjoint sets, no query can contain a variable which can be instantiated by both

a conceptual object and a value.

• Each conceptual object is represented by a tuple of values at the logical level.

Thus, a mechanism is needed to express this kind of correspondence between a

tuple of values and the conceptual object it represents. This is taken into account

by the notion of adornment introduced below.

June 7, 2001 19:8 WSPC/111-IJCIS 00034

248 D. Calvanese et al.

3.1. Source schema description

We remind the reader that we assume that each source is encapsulated by a suitable

wrapper, and this wrapper provides a logical view of the data stored in the source

in terms of the relational model, i.e. in the form of a set of relations.

As we said before, the query associated with a source relation provides the glue

between the conceptual and the logical representation. However, to capture in a

precise way the data in the sources, more information is needed in order to describe

the actual structure of the data in the relation. This is done by the adornment

associated to the relation, whose role is to declare the domains of the columns of

the table, and which are the attributes of the table that are used to identify the

objects of the Conceptual Model. In other words, the adornment is used to make

explicit how the objects of the conceptual representation are coded into values of

the logical representation.

An adorned query is an expression of the form

T (~x)← q(~x,~y)|α1, . . . , αn

where α1, . . . , αn constitutes the adornment in which each αi is an annotation on

variables appearing in ~x. In particular:

• For each X ∈ ~x, we have an annotation of the form

X :: V

where V is a domain expression. Such an annotation is used to specify how values

bound to X are represented in the table at the logical level.

• For each tuple of variables ~z ⊆ ~x that is used for identifying in T a conceptual

object Y ∈ ~y mentioned in q(~x,~y), we have an annotation of the form

Identify([~z], Y)

where we have grouped the variables~z into a single argument [~z]. Such annotation

makes explicit that the tuple of values ~z is a representation of the conceptual

object Y .

We illustrate by means of an example how adorned queries are used to specify

the information content of source tables. We use X1, . . . ,Xk :: V as an abbreviation

for X1 :: V, . . . ,Xk :: V .

Example 3. Suppose we store in two sources S1 and S2 parent-child relationships,

according to the Conceptual Model shown in Fig. 2. Source S1 contains the infor-

mation about fathers and their children, in terms of a relational table FATHER1

which stores all such pairs. Similarly, source S2 contains the information about

mothers and their children in terms of a relational table MOTHER2. We assume

that in source S1 persons (both fathers and children) are identified by their name

and date of birth, while in source S2 persons are identified by their social security

June 7, 2001 19:8 WSPC/111-IJCIS 00034

Data Integration in Data Warehousing 249

number. Hence, we can specify the information content of the two tables by the

following adorned queries:

FATHER1(Nf , Df , Nc, Dc)← Male(F),Person(C),CHILD(F,C),

name(F,Nf), dob(F,Df), name(C,Nc), dob(C,Dc)

| NF , NC :: NameString,

Df , Dc :: Data,

Identify([Nf , Df], F), Identify([Nc, Dc], C)

MOTHER2(Sm, Sc) ← Female(M),Person(C),CHILD(M,C),

ssn(M,Sm), ssn(C,Sc)

| Sm, Sc :: SSNString,

Identify([Sm],M), Identify([Sc], C)

Example 4. Referring again to the Conceptual Model shown in Fig. 2, we want

to model two sources storing the information about the income of persons. Source

S1 stores the income per month of males in a table INCOME1, while source S2 stores

the income per year of females in a table INCOME2, and the content of the tables

is specified by the following adorned queries:

INCOME1(Sm, I)← Male(M), ssn(M,Sm), income(M, I)

| Sm :: SSNString,

I :: IncomePerMonth,

Identify([Sm],M)

INCOME2(Sf , I) ← Female(F), ssn(F, Sf), income(F, I)

| Sf :: SSNString,

I :: IncomePerYear,

Identify([Sf], F)

The adorned query associated to a table in a source contains a lot of information

that can be profitably used in analyzing the quality of the Data Warehouse design

process. Indeed, the adorned query precisely formalizes the content of a source table

in terms of a query over the Conceptual Model, the domains of each attribute of

the table, and the attributes used to identify entities at the conceptual level. One

important check that we can carry out over the logical specification of a source

is whether the adorned query associated with a table in a source is consistent or

not. Let Q be an adorned query and let B be its body. The query B is said to be

inconsistent with respect to the Conceptual Model M, if for every database DB

coherent with M, the evaluation of B with respect to DB is empty. An adorned

query Q may be inconsistent with respect to the Conceptual Model M because

the body B of Q is inconsistent with respect to M. Inference techniques allow

us to check for these forms of inconsistency.8 Another reason for inconsistency in

specifying a table may be due to annotations that are incoherent with respect to

what specified inM. In particular, domain expressions used in the adornment can

be inconsistent with respect to the set of domain assertions that are part of the

June 7, 2001 19:8 WSPC/111-IJCIS 00034

250 D. Calvanese et al.

Conceptual Model. Standard propositional reasoning tools46–48 can be adopted to

detect such forms of inconsistency.

3.2. Data Warehouse schema description

Similarly to the case of source relations, the relations to be materialized in the Data

Warehouse are described as adorned queries over the Conceptual model.

Note that the adorned query associated to a table in a source is the result

of a reverse engineering analysis of the source, whereas in this case the adorned

query is a high-level specification of what we want to materialize in the table of

the Data Warehouse, and thus of the mediator for loading such a materialized

view. Since we express the semantics of the Data Warehouse tables in terms of the

Conceptual Model, also the relations in the Data Warehouse are seen as views of

such a Conceptual Model.

Example 3. (Cont). Suppose we want to store in the Data Warehouse all

pairs of male-female with a child in common. The pairs have to be stored in a

table COMMONCHILDDW, identifying each person by its social security number. We

can specify the content of the table w.r.t. the Conceptual Model by the following

adorned query:

COMMONCHILDDW(Sf , Sm)← Male(F), ssn(F, Sf),CHILD(F,C),

Female(M), ssn(M,Sm),CHILD(M,C)

| Sf , Sm :: SSNString,

Identify([Sf], F), Identify([Sm],M)

Example 4. (Cont). Suppose we want to store in the Data Warehouse pairs

of persons with the same income. The pairs, together with the common income

per year, have to be stored in a table SAMEINCOMEDW, identifying each person

by its social security number. We can specify the content of the table w.r.t. the

Conceptual Model by the following adorned query:

SAMEINCOMEDW(S1, S2, I)← Person(P1), ssn(P1, S1), income(P1, I),

Person(P2), ssn(P2, S2), income(P2, I)

| S1, S2 :: SSNString,

I :: IncomePerYear,

Identify([S1], P1), Identify([S2], P2)

The reasoning services provided at the logical level make it possible to automat-

ically generate the correct mediators for the loading. As illustrated in Sec. 5, this

is realized by means of a query rewriting technique which uses query containment

as its basic reasoning service.

The choice of the data to materialize, and how to organize them in relations, is

an important step in the construction of the Data Warehouse. Several aspects have

to be taken into account in making these choices, for example the required storage

June 7, 2001 19:8 WSPC/111-IJCIS 00034

Data Integration in Data Warehousing 251

amount, the cost of loading, refreshment, and query processing, etc. A methodology

for identifying the tables to materialize that is coherent with our framework has

been developed.49

3.3. Schematic differences

The mechanism used in our framework for specifying adorned queries is able to cope

with schematic differences.50 The example below illustrates a case where there are

various schematic differences, both among the sources, and between the sources and

the Conceptual Model.

Example 5. Suppose that the Conceptual Model contains an entity Service with

three attributes, date, type, and price, specifying respectively the date, the type,

and the cost of the service. Suppose that source S1 represents information only on

services of type t1 and t2, by means of two relations: t1 and t2, where t1(D,P) means

that service t1 costs P Italian Lira at date D, and t2(D,P) means that service t2
costs P Italian Lira at date D. Suppose that source S2 represents information only

on services t3 and t4 by means of a relation Serv2, where Serv3,4(D,P3, P4) means

that services t3 and t4 cost P3 and P4 Euro respectively at date D. Finally, suppose

that source S3 represents the information only for a certain date d by means of

another relation Servd. The various relations in the three sources can be specified

by means of the following adorned queries:

t1(D,P)← Service(S), date(S,D), type(S, ‘t1’), price(S, P)

| D :: Date, P :: ItalianLira, Identify([‘t1’, D], S)

t2(D,P)← Service(S), date(S,D), type(S, ‘t2’), price(S, P)

| D :: Date, P :: ItalianLira, Identify([‘t2’, D], S)

Serv3,4(D,P3, P4)← Service(S3), date(S3, D), type(S3, ‘t3’), price(S3, P3),

Service(S4), date(S4, D), type(S4, ‘t3’), price(S4, P4),

| D :: Date, P3 :: Euro, P4 :: Euro,

Identify([‘t3’, D], S3), Identify([‘t4’, D], S4)

Serd(T, P)← Service(S), date(S, ‘d’), type(S, T), price(S, P)

| T :: TypeString, P :: Euro, Identify([T, ‘d’], S)

4. Reconciliation Correspondences

Assume that the decision of which data to materialize has been taken, and has

resulted in the specification of a new Data Warehouse relation T expressed in

terms of an adorned query. One crucial task is to design the mediator for T , i.e. the

program that accesses the sources and loads the correct data into the relation T .

As we said in the Introduction, designing the mediator for T requires first of all to

reformulate the query associated with T in terms of the Source relations. However,

such a reformulation is not sufficient. The task of mediator design is complicated

June 7, 2001 19:8 WSPC/111-IJCIS 00034

252 D. Calvanese et al.

by the possible heterogeneity between the data in the sources. We have already

mentioned the most important ones, namely, mismatches between data referring to

the same real world object, errors in the data stored in the sources, inconsistencies

between values representing the properties of the real world objects in different

sources.

Our idea to cope with this problem is based on the notion of Reconciliation

Correspondence. Indeed, in order to anticipate possible errors, mismatches and

inconsistencies between data in the sources, our approach allows the designer to

declaratively specify the correspondences between data in different schemas (either

source schemas or Data Warehouse schema). Such specification is done through

special assertions, called Reconciliation Correspondences.

Reconciliation Correspondences are defined in terms of relations, similarly to

the case of the relations describing the sources and the Data Warehouse at the

logical level. The difference with source and Data Warehouse relations is that we

conceive Reconciliation Correspondences as non-materialized relations, in the sense

that their extension is computed by an associated program whenever it is needed.

In particular, each Reconciliation Correspondence is specified as an adorned query

with an associated program that is called to compute the extension of the virtual

relation. Note that we do not consider the actual code of the program but just its

input and output parameters.

We distinguish among three types of correspondences, namely Conversion,

Matching, and Merging Correspondences.

4.1. Conversion correspondences

Conversion Correspondences are used to specify that data in one table can be

converted into data of a different table, and how this conversion is performed. They

are used to anticipate various types of data conflicts that may occur in loading data

coming from different sources into the Data Warehouse.

Formally, a Conversion Correspondence has the following form:

convertC([~x], [~x2])← Equiv([~x2], [~x2]), conj(~x1,~x2,~y)

| α1, . . . , αn
through Program(~x1,~x2,~y)

where convertC is the conversion predicate defined by the correspondence; Equiv

is a special predicate whose intended meaning is that ~x1 and ~x2 actually represent

the same dataa; conj is a conjunction of atoms, which specifies the conditions

under which the conversion is applicable; α1, . . . , αn is an adornment of the query;

program denotes a program that performs the conversion. In general, the program

needs to take into account the additional parameters specified in the condition to

actually perform the conversion. The conversion has a direction. In particular, it

aEquiv plays a special role during the construction of the rewriting for the synthesis of the
mediator, as explained in Sec. 5.

June 7, 2001 19:8 WSPC/111-IJCIS 00034

Data Integration in Data Warehousing 253

operates from a tuple of values satisfying the conditions specified for ~x1 in conj and

in the adornment to a tuple of values satisfying the conditions specified for ~x2. This

means that the conversion program receives as input a tuple ~x1, and returns the

corresponding tuple ~x2, possibly using the additional parameters ~y to perform the

conversion. Notice that we will have to take into account that the conversion has

a direction also when we make use of the correspondence for populating the Data

Warehouse.

Example 3. (Cont). Since we know that persons in the Data Warehouse are

identified by their social security number, while in source S1 they are identified by

their name and date of birth, we have to provide a mean to convert the name and

date of birth of a person to his social security number. Let name-dob-to-ssn be a

suitable program that performs the conversion, taking as input name and date of

birth, and returning the social security number. To give a declarative account of

this ability, we provide the following Conversion Correspondence:

convertperson([N,D], [S]) ← Equiv([N,D], [S]),Person(P),

name(P,N), dob(P,D), ssn(P, S)

| N :: NameString, D :: Date, S :: SSNString,

Identify([N,D], P), Identify([S], P)

through name-dob-to-ssn(N,D, S)

The Conversion Correspondence specifies the condition under which a name N and

date of birth D can be converted to a social security number S, by requiring the

existence of a person with name N , date of birth D, and social security number

S. Notice that the predicates in the body of the Conversion Correspondence play

a fundamental role in restricting the applicability of the conversion to the proper

attributes of persons.

In the example above we have used a correspondence that converts between

different representations of the same object. Since a representation may consist of a

tuple of values (e.g. [N,D]) this is a typical situation in which we compare tuples,

possibly of different arity. Our approach requires indeed that, in order to compare

tuples, we have a common underlying object, which is used to make explicit the

relationship between the components of the two tuples. In the case where we do not

have such an underlying object, we still allow to compare single values in different

domains, as shown in the following example.

Example 4. (Cont.) To translate incomes per month to incomes per year we

define the following Conversion Correspondence:

convertincome([Im], [Iy])← Equiv([Im], [Iy])

| Im :: IncomePerMonth, Iy :: IncomePerYear

through income-month-to-year(Im, Iy)

June 7, 2001 19:8 WSPC/111-IJCIS 00034

254 D. Calvanese et al.

4.2. Matching correspondences

Matching Correspondences are used to specify how data in different source tables,

typically referring to different sources, can match. Formally, a Matching Correspon-

dence has the following form:

matchM([~x1], . . . , [~xk])← Equiv([~x1], [~x2]), . . . , Equiv([~xk−1], [~xk]),

conj(~x1, . . . ,~xk,~y)

| α1, . . . , αn
through program(~x1, . . . ,~xk,~y)

where matchM is the matching predicate defined by the correspondence, Equiv

is as before, conj specifies the conditions under which the matching is applicable,

α1, . . . , αn is again an adornment of the query, and program denotes a program that

performs the matching. The program receives as input k tuples of values satisfying

the conditions (and possibly the additional parameters in the condition) and returns

whether the tuples match or not.

Example 3. (Cont.) To compare persons in source S1 with persons in source

S2, we have to provide a mean to compare persons identified by their name

and date of birth with persons identified by their social security number. Let

name-dob-matches-ssn be a suitable program that, given name, date of birth, and

the social security number as input, returns whether they correspond to the same

person or not. To give a declarative account of this program, we provide the fol-

lowing Matching Correspondence:

matchperson([N,D], [S]) ← Equiv([N,D], [S]),Person(P),

name(P,N), dob(P,D), ssn(P, S)

| N :: NameString, D :: Date, S :: SSNString,

Identify([N,D], P), Identify([S], P)

through name-dob-matches-ssn(N,D, S)

Notice that the Matching Correspondence matchperson and the Conversion Cor-

respondence convertperson look the same. However there are fundamental differ-

ences between them. The associated programs behave differently. In particular,

name-dob-to-ssn(N,D, S) is used to generate the social security number S of the

person with name N and date of birth D, whereas name-dob-matches-ssn(N,D, S)

is used to verify that N and D, and S refer to the same person. Consequently,

when the Matching Correspondence and the Conversion Correspondence are used

as atoms in a query Q that specifies how to populate a Data Warehouse table, they

have to be used according to different binding patterns of the variables occurring

in the atoms. In particular, in the Matching Correspondence all variables have to

be bound, and therefore cannot occur in the head of the query Q. Instead, in the

Conversion Correspondence, the variables in the first tuple need to be bound, while

the ones in the second tuple are free. Hence the variables in the second tuple can

occur in the head of Q.

June 7, 2001 19:8 WSPC/111-IJCIS 00034

Data Integration in Data Warehousing 255

4.3. Merging correspondences

Merging Correspondences are used to assert how we can merge data in different

sources into data that populates the Data Warehouse. Formally, a Merging Corre-

spondence has the following form:

margeR([~x1], . . . , [~xk], [~x0]) ← Equiv([~x1], [~x0]), . . . , Equiv([~xk], [~x0]),

conj(~x, . . . ,~xk,~x0,~y)

| α1, . . . , αn
through program(~x1, . . . ,~xk,~x0,~y)

where mergeR is the merging predicate defined by the correspondence, Eqiv is as

before, conj specifies the conditions under which the merging is applicable, and

program is a program that performs the merging. Such correspondence specifies

that the k tuples of values ~x1, . . . ,~xk coming from the sources are merged into

the tuple ~x0 in the Data Warehouse. Therefore, the associated program receives as

input k tuples of values (and possibly the additional parameters in the condition)

and returns a tuple which is the result of the merging. Example 7 below illustrates

the use of a Merging Correspondence.

4.4. Methodological guidelines

The task of specifying suitable Reconciliation Correspondences is a responsibility

of the designer. Once such Reconciliation Correspondences are specified, they are

profitably exploited to automatically generate mediators, as described in Sec. 5.

In the task of specifying Reconciliation Correspondences the system can assist the

designer in various ways.

First of all, since each Reconciliation Correspondence is declaratively specified

as an adorned query, all reasoning tasks available for such queries can be exploited

to check desirable properties of the correspondence. In particular, the system can

check the consistency of queries, rejecting inconsistent ones and giving the designer

useful feedback. Also, the system can automatically detect whether the adorned

queries associated with different correspondences are contained in each other (or

are equivalent). This is an indication for redundancy in the specification. However,

to determine whether a correspondence is actually redundant, one has to consider

also the types of the correspondences and the programs associated with them. For

example, a less general query, thus specifying stricter conditions for applicability,

may still be useful in the case where the associated program takes advantage of the

specialization and operates more efficiently.

In practice, the system automatically asserts several correspondences by default,

thus simplifying the task of the designer.

• Several of the Reconciliation Correspondences that must be specified will have

a very simple form, since they will correspond simply to equality. In particu-

lar, for each domain D in the Conceptual Model, the following Reconciliation

June 7, 2001 19:8 WSPC/111-IJCIS 00034

256 D. Calvanese et al.

Correspondences are asserted by default:

convertD([X], [Y]) ← Equiv([X], [Y])

|X,Y :: D

through identity(X,Y)

matchD([X], [Y]) ← Equiv([X], [Y])

| X,Y :: D

through none

mergeD([X], [Y], [Z])← Equiv([X], [Z]), Equiv([Y], [Z])

| X,Y, Z :: D

through identity(X,Y, Z)

where identity is the program that computes the identity function for values of

domain D, and the matching correspondence has no associated program. When

the designer provides an Reconciliation Correspondence referring to a domain D,

then the automatic generation of the default correspondences for D is inhibited.

• Similarly, for each annotation of the form Identify([X1, . . . ,Xk],X) appearing

in the adornment of a query q defining a source or Data Warehouse table T , and

such that X1 :: D1, . . . ,Xk :: Dk are the annotations in q specifying the domains

associated with X1, . . . ,Xk, the following Reconciliation Correspondences are

asserted by default:

convertD1,...,Dk([~x], [~y])← Equiv([X1], [Y1]), . . . , Equiv([Xk], [Yk])

| X1, Y1 :: D1, . . . ,Xk, Yk :: Dk

through identity([~x], [~y])

matchD1,...,Dk([~x], [~y])← Equiv([X1], [Y1]), . . . , Equiv([Xk], [Yk])

| X1, Y1 :: D1, . . . ,Xk, Yk :: Dk

through none

mergeD1,...,Dk([~x], [~y], [~z])← Equiv([X1], [Z1]), Equiv([Y1], [Z1]), . . . ,

Equiv([Xk], [Yk]), Equiv([Yk], [Zk])

| X1, Y1, Z1 :: D1, . . . ,Xk, Yk, Zk :: Dk

through identity([~x], [~y], [~z])

where ~x abbreviates X1, . . . ,Xk, ~y abbreviates Y1, . . . , Yk, and ~z abbreviates

Z1, . . . , Zk.

• For each Conversion Correspondence converti asserted by the designer, the sys-

tem automatically asserts the Matching Correspondence

matchi([~x1], [~x2]) ← converti([~x1], [~y]), Equiv(~x2,~y)

through identity(~x2,~y)

Observe that a new tuple ~y in the body of the correspondence is necessary to

respect the binding pattern for converti. The program associated with converti
instantiates ~y, and Identity compares the obtained value with ~x2.

June 7, 2001 19:8 WSPC/111-IJCIS 00034

Data Integration in Data Warehousing 257

• For each Conversion Correspondence converti asserted by the designer and for

each Matching Correspondence matchj asserted by the designer or by default,

the system automatically asserts the Merging Correspondence

mergei,j([~x1], [~x2], [~x0])← matchi([~x1], [~x2]), convertj(~x1,~x0)

through none

Example 3. (Cont). For the domain SSNString the system automatically asserts,

e.g. the Conversion Correspondence

convertSSNString([S1], [S2])← Equiv([S1], [S2])

| S1, S2 :: SSNString

through identity(S1, S2)

Similarly, since the adornment of the query defining the table FATHER1 contains the

annotations Identify([Nf , Df], F), Nf :: NameString, and Df :: Date, the system

automatically asserts, e.g. the Matching Correspondence

matchNameString,Date([N1, D1], [N2, D2]) ← Equiv([N1], [N2]), Equiv([D1], [D2])

| N1, N2 :: NameString, D1, D2 :: Date

through none

In addition, the designer may use already specified Reconciliation Correspon-

dences to define new ones.

Example 6. The designer may want to define a Matching Correspondence be-

tween two tuples by using two already defined Conversion Correspondences, which

convert to a common representation, and then by comparing the converted values. In

this case, she could provide the following definition of the Matching Correspondence:

matchX,Y ([~x], [~y])← convertX,Z([~x], [~z1]), convertY,Z([~y], [~z2]), Equiv([~z1], [~z2])

through identity([~z1], [~z2])

Observe that, in this case, the program associated with the Matching Correspon-

dence is used only to check whether the converted values are identical.

Similarly, the designer could define a Merging Correspondence by reusing ap-

propriate Conversion or Matching Correspondences that exploit a common repre-

sentation, as shown in the following example.

Example 7. Suppose we want to merge prices in Italian Lira and Deutsche Mark

into prices in US Dollars, and we have programs that allowed us to define the Con-

version Correspondences convertL,E from Italian Lira to Euro, convertM,E from

Deutsche Mark to Euro, and convertE,D from Euro to US Dollar. Then we can

obtain the desired Merging Correspondence as follows:

mergeL,M,D([L], [M], [D])← convertL,E([L], [E1]), convertM,E([M], [E2]),

Equiv([E1], [E2]), convertE,D([E1], [D])

through identity([E1], [E2])

June 7, 2001 19:8 WSPC/111-IJCIS 00034

258 D. Calvanese et al.

5. Specification of Mediators

As we said before, our goal is to provide support for the design of the mediator

for T , i.e. the program that accesses the sources and loads the correct data into

the relation T . In general, the design of mediators requires a sophisticated analysis

of the data, which aims at specifying, for every relation in the Data Warehouse

Schema, how the tuples of the relation should be constructed from a suitable set of

tuples extracted from the sources. Mediator design is typically performed by hand

and is a costly step in the overall Data Warehouse design process. The framework

presented here is also based on a detailed analysis of the data and of the information

needs. However, the knowledge acquired by such an analysis is explicitly expressed

in the description of source and Data Warehouse relations, and in the Reconciliation

Correspondences. Hence, such a knowledge can be profitably exploited to support

the design of the mediators associated to the Data Warehouse relations.

Suppose we have decided to materialize a new relation T in the Data Warehouse,

and let q be the adorned query associated to T . Our technique requires to proceed

as follows.

(1) We determine how the data in T can be obtained from the data stored in already

defined Data Warehouse relations, the data stored in source relations, and the

data returned by the programs that perform conversion, matching, and merging

associated to the Reconciliation Correspondences. This is done by looking for

a rewriting of q in terms of the available adorned queries, i.e. a new query q′

contained in q whose atoms refer to (i) the already available Data Warehouse

relations, (ii) the source relations, (iii) the available conversion, matching, and

merging predicates.

(2) We specify how to deal with tuples computed by the rewriting and possibly

representing the same information. Typically we will have to combine tuples

coming from different sources to obtain the tuples to store in the Data Ware-

house relations.

The resulting query, which will be a disjunction of conjunctive queries, is the

specification for the design of the mediator associated to T . The above steps are

discussed in more detail below.

5.1. Construction of the rewriting

The computation of the rewriting is the most critical step of our method. Compared

with other approaches, our query rewriting algorithm is complicated by the fact that

we must consider both the constraints imposed by the Conceptual Model, and the

Reconciliation Correspondences.

We describe now a rewriting algorithm suitable for our framework, that takes

into account the above observation. First of all, we assume that the designer can

specify an upper bound on the size of the conjunctive queries that can be used

to compose the automatically generated query defining the mediator. Such an

June 7, 2001 19:8 WSPC/111-IJCIS 00034

Data Integration in Data Warehousing 259

assumption is justified by considering that the size of the query directly affects

the cost of materializing the Data Warehouse relation, and such a cost has to be

limited due to several factors, e.g. the available time windows for loading and re-

freshment of the Data Warehouse.

The rewriting algorithm is based on generating candidate rewritings that are

conjunctive queries limited in size by the bound specified by the designer, and

verifying for each candidate rewriting

• whether the binding patterns for the correspondence predicates are respected;

and

• whether the rewriting is contained in the original query.

Each candidate rewriting that satisfies the conditions above contributes as a dis-

junct to the rewriting.

Checking whether the binding patterns are respected can be done in a standard

way.4,22 On the other hand, verifying whether the rewriting is contained in the

original query requires more attention, since we have to take into proper account the

need of exploiting Reconciliation Correspondences in comparing different attribute

values.

First of all, we have to pre-process the original adorned query as follows:

(1) By introducing explicit equality atoms, we re-express the query (and the

adornment) in such a way that all variables in the body and the head (excluding

the adornment) are distinct. Then we replace each equality atom X = Y be-

tween variablesX and Y denoting attribute values with Equiv([X], [Y]). In this

way we reflect the fact that we want to compare attribute values modulo repre-

sentation in the relations. Notice that the case of an equality atom between two

variables, one denoting an object and one denoting a value, can be excluded,

since in this case the query would be inconsistent w.r.t. the Conceptual Model.

(2) We add to the query the atoms resulting from the adornment, considering each

annotation as an atom: X :: V is considered as the atom V (X), and Identify

is considered as a binary predicate that will be treated in a special way.

Also when constructing the candidate rewriting, we have to take into account

that the only way to compare attributes is through Reconciliation Correspondences.

Therefore we require that in a candidate rewriting all variables are distinct, with

the exception of those used in Reconciliation Correspondences, which may coincide

with other variables. Notice that this is not a limitation, since the system provides

by default the obvious Reconciliation Correspondences for equality.

We expand each atom in the candidate rewriting with the body of the query

defining the predicate in the atom, including the adornment as specified above. We

have to take into account that atoms whose predicate is a correspondence predicate

defined in terms of other correspondences, have to be expanded recursively, until

all correspondence predicates have been substituted. We call the resulting query

the pre-expansion of the candidate rewriting.

June 7, 2001 19:8 WSPC/111-IJCIS 00034

260 D. Calvanese et al.

Then we add to the pre-expansion additional atoms derived by combining Equiv

and Identify predicates as follows:

(1) We add the symmetric and transitive closure of the Equiv atoms in the

pre-expansion, i.e. we recursively add for each Equiv([~x], [~y]) its symmetric

Equiv([~y], [~x]), and for each pair Equiv([~x], [~y]) and Equiv([~y], [~z]) the tran-

sitive composition Equiv([~x], [~z]). This reflects the fact that Equiv represents

equality modulo representation in different relations.

(2) We add Equiv([X], [X]) for each variable X denoting an attribute value. This

is necessary to take into account that in the expanded query we have substi-

tuted equality atoms between variables denoting attribute values with Equiv

atoms. Note that for tuples ~x we do not need to consider atoms of the form

Equiv([~x], [~x]).

(3) We introduce equality atoms between variables denoting conceptual objects

(not values) by adding X = Y whenever we have either Identify([~x],X) and

Identify([~x], Y), or Identify([~x],X), Identify([~y], Y) and Equiv([~x], [~y]). In-

deed, Equiv reflects equality modulo representation, and Identify maps rep-

resentations to the conceptual objects.

(4) We propagate Identify through Equiv, by adding Identify([~x1],X) when-

ever all variables in ~x appear in the head and we have Equiv([~x1], [~x2]) and

Identify([~x2],X). This reflects the fact that ~x1 and ~x2 are two different repre-

sentations of the same conceptual object X.

We call the resulting query the expansion of the candidate rewriting.

Then, to decide whether the candidate rewriting is correct and hence can con-

tribute to the final rewriting, we check if its expansion is contained in the pre-

processed query, taking into account the Conceptual Model.43

The rewriting of the original query is the union of all correct candidate rewrit-

ings. It can be shown that such a rewriting is maximal (w.r.t. query containment)

within the class of rewritings that are unions of conjunctive queries that respect

the bound specified by the designer. This rewriting can be refined by using query

containment to eliminate those correct candidate rewritings that are contained in

others.

Observe that the query rewriting algorithm relies on the assumption that an

upper bound for the length of the conjunctive query is defined: hence, it is possible

that, by increasing the bound, one obtains a better rewriting.b

The computational complexity of the rewriting algorithm is dominated by the

complexity of the containment test, which can be done in 2EXPTIME43 w.r.t. the

size of the queries. However, one has to take into account that the size of queries

can be neglected w.r.t. the size of data at the sources and at the Data Warehouse,

and therefore the above bound does not represent a severe problem in practice.

bEven without a bound on the length of the conjuncts in the rewriting, unions of conjunctive
queries cannot exactly capture the original query in general. Indeed, to do so one would need to
consider rewritings expressed in a query language that is at least NP-hard in data complexity.51

June 7, 2001 19:8 WSPC/111-IJCIS 00034

Data Integration in Data Warehousing 261

Example 3. (Cont). We would like to obtain a specification in terms of a rewrit-

ing of the mediator that populates the relation COMMONCHILDDW. First, in the

query defining COMMONCHILDDW, we eliminate common variables denoting at-

tribute values by introducing Equiv atoms. We add the atoms resulting from the

adornment, obtaining the pre-processed query:

COMMONCHILDDW(Sf , Sm)← Male(F), ssn(F, S1f),CHILD(F,C),

Female(M), ssn(M,S1m),CHILD(M,C),

Equiv([Sf], [S1f]), Equiv([Sm], [S1m]),

SSNString(Sf),SSNString(Sm),

Identify[Sf], Identify([Sm],M)

Now, to obtain a rewriting of the above query we can exploit the queries associated

to the relations FATHER1 in source S1 and MOTHER2 in source S2, taking into

account that persons are represented differently in the two sources. Indeed, consider

the following candidate rewriting:

R(Sf , Sm)← FATHER1(Nf , Df , Nc, Dc),MOTHER2(S2m, Sc),

matchperson([Nc, Dc], Sc),

convertperson([Nf , Df], Sf), convertSSNString([S2m], [Sm])

To check that R is a correct rewriting, we first substitute each atom in the body of

the query by its definition, considering also the adornments, obtaining:

R(Sf , Sm)← Male(F1),Person(C1),CHILD(F1, C1),

name(F1, Nf), dob(F1, Df), name(C1, Nc), dob(C1, Dc),

NameString(Nf),NameString(Nc),Date(Df),Date(Dc),

Identify([Nf , Df], F1), Identify([Nc, Dc], C1),

Female(M2),Person(C2),CHILD(M2, C2),

ssn(M2, S2m), ssn(C2, Sc),

SSNString(S2c),SSNString(Sc),

Identify([S2m],M2), Identify([Sc], C2),

Equiv([Nc, Dc], Sc]),

Person(P2), name(P3, Nc), dob(P3, Dc), ssn(P3, Sc),

NameString(Nc),Date(Dc),SSNString(Sc),

Identify([Nc, Dc], P3), Identify([Sc], P3),

Equiv([Nf , Df], [Sf]),

Person(P4), name(P4, Nf), dob(P4, Df), ssn(P4, Sf),

NameString(Nf),Date(Df),SSNString(Sf),

Identify([Nf , Df], P4), Identify([Sf], P4),

Equiv([S2m], [Sm]),SSNString(S2m),SSNString(Sm)

Then we add to the body of the query the following atoms resulting from propa-

gating identify and Equiv

F1 = P4, C1 = C2, C1 = P3, Identify([Sm],M2), Identify([Sf], F1)

June 7, 2001 19:8 WSPC/111-IJCIS 00034

262 D. Calvanese et al.

plus an atom Equiv([X], [X]), for each variable X denoting an attribute value.

It is easy to check that the expanded candidate rewriting is indeed contained in

the preprocessed query, which shows that the candidate rewriting is correct.

Example 4. (Cont). To obtain a specification of the mediator that populates the

relation SAMEINCOMEDW, we can pre-process the query defining such a relation

obtaining:

SAMEINCOMEDW(S1, S2, I) ← Person(P1), ssn(P1, S3), income(P1, I1),

Person(P2), ssn(P2, S4), income(P2, I2),

Equiv([S1], [S3]), Equiv([S2], [S4]), Equiv([I1], I2]),

SSNString(S1),SSNString(S2), IncomePerYear(I),

Identify([S1], P1), Identify([S2], P2)

A candidate rewriting in terms of the queries defining INCOME1 in source S1 and

INCOME2 in source S2 is:

R1(S1, S2, I)← INCOME1(Sm, Im), INCOME2(Sy , Iy),

matchincome([Im], [Iy]),

convertIncomePerYear([IY], [I]),

convertSSNString([Sm], [S1]), convertSSNString([Sy], [S2])

where matchincome is the Matching Correspondence automatically generated from

convertincome, and the other Conversion Correspondences are automatically gener-

ated for the proper domains. We can again check that the expansion of the rewriting

is contained in the pre-processed query, by taking into account that the schema,

which the queries refers to, implies that Male and Female are sub-entities of Person.

The above correct candidate rewriting corresponds to perform the join between

relations INCOME1 and INCOME2. Considering also the other possible joins between

the two relations we obtain the following rewriting R:

R1(S1, S2, I)← INCOME1(Sm, Im), INCOME2(Sy, Iy),

matchincome([Im], [Iy]),

convertIncomePerYear([Iy], [I]),

convertSSNString([Sm], [S1]), convertSSNString([Sy], S2])

OR

INCOME2(Sy, Iy), INCOME1(Sm, Im),

matchincome([Im], [Iy]),

convertIncomePerYear([Iy], [I]),

convertSSNString([Sm], [S1]), convertSSNString([Sy], [S2])

OR

INCOME1(Sm, Im), INCOME1(S1m, I1m),

matchIncomePerYear([Im], [I1m]),

convertincome([Im], [I]),

convertSSNString([Sm], [S1]), convertSSNString([S1m], [S2])

June 7, 2001 19:8 WSPC/111-IJCIS 00034

Data Integration in Data Warehousing 263

OR

INCOME2(Sy , Iy), INCOME2(S1y, I1y),

matchIncomePerYear([Iy], [I1y]),

convertIncomePerYear([Iy], [I]),

convertSSNString([Sy], [S1]), convertSSNString([S1y], [S2])

Observe that it may happen that no rewriting for the query exists. One reason

for this may be that the available relations do not contain enough information to

populate the relation defined by the query. In this case a further analysis of the

source is required. It may also be the case that the relations do in fact contain

the information needed, but the available reconciliation programs are not able to

convert the data in a representation suitable to answer the query. Formally, this is

reflected in the fact that appropriate Reconciliation Correspondences are missing. In

this case our rewriting algorithm can be used by the designer to acquire indications

on which are the required Reconciliation Correspondences, and hence the associated

programs that must be added to generate the mediator.

5.2. Combining tuples coming from different sources

Since the rewriting constructed as specified above is in general a disjunction, we

must address the problem of combining the results of several queries. A similar

problem arises in other approaches,14 where the result of approximate joins may

require a specification of a construction operation. In order to properly define the

result of the query, we introduce the notion of combine-clause. In particular, if the

query r computed by the rewriting is constituted by more than one disjunct, then

the algorithm associates to r a suitable set of so-called merging clauses, taking into

account that the answers to the different disjuncts of the query may contain tuples

that represent the same real world entity or the same value. A combine-clause is an

expression of the form

combine tuple-spec1 and · · · and tuple-specn

such that combination-condition

into tuple-spec1 and · · · and tuple-spectm

where tuple-speci denotes a tuple returned by the ith disjunct of r, combination-

condition specifies how to combine the various tuples denoted by tuple-spec1,. . . ,

tuple-specn, and tuple-spect1 ,. . . , tuple-spectm denote the tuples resulting from the

combination that are inserted in the relation defined by the query.

We observe that the rewriting algorithm is able to generate one combine-clause

template for each pair of disjuncts that are not disjoint. Starting from such tem-

plates, the designer may either specify the such that and the into parts, depending

on the intended semantics, or change the templates in order to specify a different

combination plan (for example for combining three disjuncts, rather than three

pairs of disjuncts).

June 7, 2001 19:8 WSPC/111-IJCIS 00034

264 D. Calvanese et al.

5.3. Refining the rewriting

As already mentioned, the rewriting returned by the algorithm can be refined by

eliminating certain conjuncts from the union of conjunctive queries according to

suitable criteria for populating Data Warehouse relations. In particular, such crite-

ria may be determined by factors that affect the quality of the data in the source

relations and in the Data Warehouse, such as completeness, accuracy, confidence,

freshness, etc. In practice, a convenient way to characterize such quality factors is

by providing ad hoc information in a meta-repository.52–54

While the goal of the present work is to provide a language to represent trans-

formations, thus not requiring an explicit introduction of meta-level descriptions,

there are certain aspects of the data integration process that can take advantage

of a meta-information approach. More specifically, together with the actual data

stored in the source, the wrapper can provide metadata, both at relation-level and

at tuple-level, which can be suitably exploited in refining the rewriting. As an ex-

ample, consider the case where a materialized Data Warehouse is available. The

materialized view can be described as any other source, being always preferred

with respect to other sources because of its higher accuracy and confidence.

6. Related Work

In this section, we address related approaches, pointing out the novel features of

the approach presented in this paper.

To put the approach presented in this paper in perspective with the literature, a

couple of preliminary remarks are in order. The work on information integration has

rapidly evolved in recent years from the target of multiple heterogenous databases to

the more general framework comprising information sources available from the Web

or through the intranets (HTML, XML and textual data). While in principle the

proposed approach could be applied also to these semistructured and unstructured

kind of sources, provided that suitable wrappers are available, we have not dealt

with this kind of sources, assuming that each source is wrapped into relational data.

More specifically, we do not address or propose a new (semistructured) data model

as done by others.20,55

The second remark concerns the need for distinguishing the conceptual level,

where the semantics of data are captured, from the logical level, where the actual

structure of the relational database is described in Ref. 42. In this way, the request

for data is formalized at the conceptual level, namely without referring to the actual

representation and format of the data objects involved in the query (except for the

result tuples). This capability, which has been emphasized in the DWQ project, both

to meet the requirements of the target application environments and to exploit the

capabilities of knowledge representation languages, is generally not provided, also

in the declarative approaches characterized below.

Various software architectures and system organizations have been proposed to

deal with the heterogeneity of the sources and the process for integrating the data.6

June 7, 2001 19:8 WSPC/111-IJCIS 00034

Data Integration in Data Warehousing 265

In particular, we refer to mediated architectures,3 which have been very successful in

separating the aspects that are specific of each source from the integration process

consisting in reconciling and combining the information extracted from different

sources.4

Several other elements for classification of the approaches to information inte-

gration and, more specifically, mediated query systems, can be considered.56

The first feature for classification is whether the data are materialized in a

“universal” database or Data Warehouse, or else the data are kept in the sources,

in which case the approach is called virtual. Our approach to information integration

can be applied to acquire the data from the sources, as we have assumed in the

examples presented in the paper. However, it can also be applied to handle data

requests issued to the Data Warehouse (to populate Data Marts or Secondary Data

Warehouses). In this case, the materialized views can be treated as an additional

source, that is generally preferred in case it can fulfill the request.

In the introduction we have mentioned another feature for classifying the pro-

posed approaches to data integration: global-as-view versus local-as-view. In partic-

ular, we have argued that typical data integration constraints in a Data Warehouse

context lead to consider the local-as-view as more appropriate, given the need to

provide the Data Warehouse with an enterprise integrated view of the data. In

fact, the local-as-view approach is another distinguishing feature of the present

work, since the local-as-view is not pursued by the majority of the proposals for

information integration, whose focus is in providing answers to specific information

needs, without explicit introduction of an enterprise view of the data also in a Data

Warehouse framework.16–17

One feature that we consider especially significant is whether the relationship

between the Data Warehouse and the data sources is procedurally defined, namely

specific to each query, or else the system can provide for mediators for arbitrary

queries. We have called the latter approach declarative, since, as we have shown in

the paper, mediators can be generated by the system from the specification.

An example of the procedural approach can be found in a recent methodology for

extracting, comparing and matching data and objects located in different sources.20

The proposed methodology is based on the Object Exchange Model, which requires

the explicit semantic labeling of the objects, to support object exchange, and em-

phasizes the need for a tight interaction between the system and the user. However,

the method remains of procedural nature, since it requires the user to build and

maintain the relationship between the sources and the Data Warehouse on a query-

by-query basis. The same remark applies also to the subsequent work,57 where a

rule-based language for Mediator Specification is proposed, but each rule defining

a mediator specifically refers to the sources to be used to materialize the data.

The approach to information integration developed in the H2O project5,18,19

provides a wide spectrum of solutions from the fully materialized to the hybrid, to

the fully virtual ones, while still providing a global-as-view approach. Integration in

H20 is also based on a object-model, but aims at a more declarative specification of

June 7, 2001 19:8 WSPC/111-IJCIS 00034

266 D. Calvanese et al.

data integration. This is achieved through the Integration Specification Language

(ISL) which allows one to specify portions of the source schemas, the criteria for

matching objects from different source classes and the specification of the classes

to be associated with a mediator. The system can generate mediators from the

specification by implementing the specified matching criteria. The specification of

mediators, as well as the mediator generation process, is centered on the notion

of object matching, requiring the definition of specific matching criteria for all the

sources. The need for explicitly providing the matching criteria makes the addition

of a new source a non-trivial task, since it requires an adaptation of the matching

criteria for all the mediators that can access the new source.

Another recent approach is the rule-based one.58 This approach is actually pur-

sued both in dealing with complex transformations due to diversity in the data

model, such as for example HTML and OODB,55 and to schema matching.59 In

the former case, the goal of the rule specification is to generate a customized instan-

tiation of general purpose translation tools. In the latter case, the idea is that the

system automatically finds the matching between two schemas, based on a set of

rules that specify how to perform the matching. As in previously cited approaches,

the rules provide a pattern specifying the sources where the data to be gathered

can be found.

Approaches more declarative in nature have also been proposed.60 Suitable data

structures for reconciling different representations of the same data are represented

in a context theory, which is used by the system to transform the queries for gather-

ing the data from the various sources. In such a declarative approach, the user is not

directly concerned with the identification and resolution of semantic conflicts when

formulating the requests for data. Rather, once the specification of the sources is

available, conflicts are detected by the system, and conversion and filtering are auto-

matically enforced. However, the method still follows the global-as-view approach,

and the context theory is used as a description of reconciled data structures, rather

than as the conceptual model of the corporate data.

Compared with the above cited approaches, the present work shows several in-

teresting features. Mediator generation is accomplished by first rewriting the query

in terms of the sources, and then providing for the necessary transformations and

merging of the data. A tight connection between the process for identifying data

sources, and the definition of the actual extraction procedure is very relevant from

a practical viewpoint, since integration cannot be realized without considering both

aspects at the same time. Secondly, the specification can be provided incrementally

with respect to the addition of new sources, since it is not centered on the criteria

for matching the objects in each source, but it aims at providing description of

relationships between the sources and the enterprise model.

Finally, we mention two recent works that are specific to conflict resolution

and data cleaning, two aspects that are related to data integration but are not

specifically addressed by the present work.

Recently, a method for resolving conflicts that arise when integrating data com-

ing from different sources has been proposed.61 The approach, developed within the

June 7, 2001 19:8 WSPC/111-IJCIS 00034

Data Integration in Data Warehousing 267

framework of the AURORA system, is based on a declarative specification of the

relationship between source schemas and a global schema, by means of so-called

registrations. Moreover, a set of attributes, called plug-in identifiers, is used for

object-matching. Integration is accomplished in two steps: first, all the matching

tuples are collected; afterwards, the conflicts are either solved with a specific con-

flict resolution function or by means of the conflict tolerant query model which can

provide answers with different levels of confidence. While this approach focuses on

the notion of tolerance to define the transformations and optimize them, it does

not address the identification and selection of the sources that are relevant for a

given query.

Finally, the overall process of data integration has also been analyzed from a

data cleaning perspective.14 In particular, a distinction is made between the so-

called object identity problem,62 which amounts to finding matching tuples in the

presence of various kinds of errors and anomalous data, and the verification and

merging of the resulting tuples. Since the emphasis is on data cleaning rather than

on schematic differences, the specification of the sources that must be used to

construct a specific table is done in and ad hoc way. On the other hand, we do

not deal with techniques for finding and verifying the matches, which could be

embodied in our framework as well.

7. Conclusions

We have described a new approach to data integration in Data Warehousing. The

approach is based on the availability of a Conceptual Model of the corporate data,

and on the idea of declaratively specifying several types of reconciliation correspon-

dences between data in different sources. Such correspondences are used by a query

rewriting algorithm that supports the task of designing the correct mediators for

the loading of the materialized views of the Data Warehouse.

The proposed framework for Data Integration has been implemented within a

tool delivered by the DWQ project.6,9 The overall tool supports the Data Ware-

house design process according to the DWQ methodology.42 In all phases of the

design process, the tool allows for the insertion, retrieval, and update of the meta-

data relevant for the design. The tool makes use of Concept Base63 as the central

repository. The query and update functionalities of Concept Base are used to fa-

cilitate access to the information in the repository. The tool has been developed

under Solaris as a Java client of the Concept Base system, and has been used in a

case study carried out in cooperation with Telecom Italia.44

The work reported in this paper concentrates on the integration of sources in

Data Warehousing. Although not addressing all aspects of loading and updating

the Data Warehouse, it provides a principled approach to one of the key aspects of

information integration, namely supporting all the tasks that require access to the

sources. The approach is suited for a range of scenarios from virtual warehouses to

materialized ones.

June 7, 2001 19:8 WSPC/111-IJCIS 00034

268 D. Calvanese et al.

Regarding the realm of the proposed approach, the following aspects deserve

further investigation and we plan to address them in future work.

Our methodology does not provide support as how to realize the actual pro-

grams matching objects in different sources. Note, however, that techniques for this

task14,64 can be easily integrated with our approach.

The query derived by our rewriting algorithm is a complex query, where usual

database operations are interleaved with programs performing reconciliation oper-

ations. Optimizing such a query is a very interesting and important aspect, that we

have not addressed in this paper.14

In our approach we have concentrated on sources that are expressed in the

relational model, and that contain elementary data. It is interesting to extend the

framework to more complex scenarios, such as semistructured sources and sources

with aggregate data. Basic results for query rewriting in semistructured data have

been obtained recently.32

Acknowledgments

This work was supported in part by the ESPRIT LTR Project No. 22469 DWQ

(Foundations of Data Warehouse Quality). We thank all participants of the DWQ

project, who have contributed to the basic ideas reported in this paper, and Tele-

com Italia for the support in validating the approach. Also, we are grateful to

Antonio Baffigo and Domenico Lembo for their work on the development of the

data integration tool.

References

1. W. H. Inmon, Building the Data Warehouse, 2nd end. (John Wiley & Sons, 1996).
2. R. Hull, Managing semantic heterogeneity in databases: A theoretical perspective,

Proc. PODS’97, 1997.
3. G. Wiederhold, Mediators in the architecture of future information systems, IEEE

Comput. 25, 3 (1992) 38–49.
4. J. D. Ullman, Information integration using logical views, Proc. ICDT’97, LNCS

(Springer-Verlag, 1997) 19–40.
5. R. Hull and G. Zhou, A framework for supporting data integration using the materi-

alized and virtual approaches, Proc. ACM SIGMOD (1996) 481–492.
6. M. Jarke, M. Lenzerini, Y. Vassiliou and P. Vassiliadis (eds.), Fundamentals ofData

Warehouses (Springer-Verlag, 1999).
7. B. Devlin, Data Warehouse: From Architecture to Implementation (Addison Wesley

Publ. Co., Reading, MA, 1997).
8. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi and R. Rosati, Source inte-

gration in data warehousing, Proc. DEXA’98 (IEEE Computer Society Press, 1998)
192–197.

9. The Data Warehouse Quality Project http://www.dbnet.ece.ntua.gr/∼dwq/, 1999.
10. C. Batini, M. Lenzerini and S. B. Navathe, A comparative analysis of methodologies

for database schema integration, ACM Computing Surveys 18, 4 (1986) 323–364.
11. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi and R. Rosati, Source integra-

tion in data warehousing, Technical Report DWQ-UNIROMA-002, DWQ Consortium,
October 1997.

June 7, 2001 19:8 WSPC/111-IJCIS 00034

Data Integration in Data Warehousing 269

12. A. Y. Levy, A. O. Mendelzon, Y. Sagiv and D. Srivastava, Answering queries using
views, Proc. PODS’95 (1995) 95–104.

13. S. Abiteboul and O. Duschka, Complexity of answering queries using materialized
views, Proc. PODS’98 (1998) 254–265.

14. H. Galhardas, D. Florescu, D. Shasha and E. Simon, An extensible framework for
data cleaning, Technical Report 3742, INRIA, Rocquencourt, 1999.

15. J. Hammer, H. Garcia-Molina, J. Widom, W. Labio and Y. Zhuge, The Stanford data
warehousing project, IEEE Bull. Data Eng. 18, 2 (1995) 41–48.

16. J. Widom, Special issue on materialized views and data warehousing, IEEE Bull.
Data Eng. 18, 2, 1995.

17. A. Gupta and I. S. Mumick, Maintenance of materialized views: Problems, techniques
and applications, IEEE Bull. Data Eng. 18, 2 (1995) 3–18.

18. G. Zhou, R. Hull and R. King, Generating data integration mediators that use mate-
rializations, J. Intell. Inf. Syst. 6 (1996) 199–221.

19. G. Zhou, R. Hull, R. King and J.-C. Franchitti, Using object matching and material-
ization to integrate heterogeneous databases, Proc. CoopIS’95 (1995) 4–18.

20. Y. Papakonstantinou, H. Garcia-Molina and J. Widom, Object exchange across het-
erogeneous information sources, Proc. ICDE’95 (1995) 251–260.

21. C. H. Goh, S. Bressan, S. E. Madnick and M. D. Siegel, Context interchange: New
features and formalisms for the intelligent integration of information, ACM Trans.
Inf. Sys. 17, 3 (1999) 270–293.

22. A. Rajaraman, Y. Sagiv and J. D. Ullman, Answering queries using templates with
binding patterns, Proc. PODS’95, 1995.

23. D. Srivastava, S. Dar, H. V. Jagadish and A. Levy, Answering queries with aggregation
using views, Proc. VLDB’96 (1996) 318–329.

24. F. N. Afrati, M. Gergatsoulis and T. Kavalieros, Answering queries using materialized
views with disjunction, Proc. ICDT’99, Lecture Notes in Computer Science (Springer-
Verlag, 1999) 435–452.

25. O. M. Duschka and M. R. Genesereth, Answering recursive queries using views, Proc.
PODS’97 (1997) 109–116.

26. C. Beeri, A. Y. Levy and M.-C. Rousset, Rewriting queries using views in description
logics, Proc. PODS’97 (1997) 99–108.

27. J. Gryz, Query folding with inclusion dependencies, Proc. ICDE’98 (1998) 126–133.
28. O. M. Duschka and A. Y. Levy, Recursive plans for information gathering, Proc.

IJCAI’97 (1997) 778–784.
29. S. Cohen, W. Nutt and A. Serebrenik, Rewriting aggregate queries using views, Proc.

PODS’99 (1999) 155–166.
30. S. Grumbach, M. Rafanelli and L. Tininini, Querying aggregate data, Proc. PODS’99

(1999) 174–184.
31. G. Grahne and A. O. Mendelzon, Tableau techniques for querying information

sources through global schemas, Proc. ICDT’99, Lectures Notes in Computer Science
(Springer-Verlag, 1999) 332–347.

32. D. Calvanese, G. De Giacomo, M. Lenzerini and M. Y. Vardi, Rewriting of regular
expressions and regular path queries, Proc. PODS’99 (1999) 194–204.

33. D. Calvanese, G. De Giacomo, M. Lenzerini and M. Y. Vardi, Answering regular path
queries using views, Proc. ICDE 2000 (2000) 389–398.

34. D. Calvanese, G. De Giacomo, M. Lenzerini and M. Y. Vardi, Query processing using
views for regular path queries with inverse, Proc. PODS 2000 (2000) 58–66.

35. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi and R. Rosati. A principled
approach to data integration and reconciliation in data warehousing, Proc. DMDW’99,

June 7, 2001 19:8 WSPC/111-IJCIS 00034

270 D. Calvanese et al.

CEUR Electronic Workshop Proceedings.
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-19/, 1999.

36. D. Calvanese, G. De Giacomo and R. Rosati, Data integration and reconciliation in
data warehousing: Conceptual modeling and reasoning support, Network Inf. Sys. 2
(1999) 4.

37. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi and R. Rosati, Description
logic framework for information integration, Proc. KR’98 (1998) 2–13.

38. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi and R. Rosati, Schema and data
integration methodology for DWQ, Technical Report DWQ-UNIROMA-004, DWQ
Consortium, September 1998.

39. A. Borgida, Description logics in data management, IEEE Trans. Knowledge Data
Eng. 7, 5 (1995) 671–682.

40. F. M. Donini, M. Lenzerini, D. Nardi and A. Schaerf, Reasoning in description logics,
ed. G. Brewka, Principles of Knowledge Representation, Studies in Logic, Language
and Information (CSLI Publications, 1996) 193–238.

41. T. Catarci and M. Lenzerini, Representing and using interschema knowledge in coop-
erative information systems, J. Intell. Cooperative Inf. Sys. 2, 4 (1993) 375–398.

42. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi and R. Rosati, Information
integration: Conceptual modeling and reasoning support, Proc. CoopIS’98 (1998) 280–
291.

43. D. Calvanese, G. De Giacomo and M. Lenzerini, On the decidability of query con-
tainment under constraints, Proc. PODS’98 (1998) 149–158.

44. S. M. Trisolini, M. Lenzerini and D. Nardi, Data integration and warehousing in
Telecom Italia, Proc. ACM SIGMOD (1999) 538–539.

45. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi and R. Rosati, Use of the
reconciliation tool at Telecom Italia, Technical Report DWQ-UNIROMA-007, DWQ
Consortium, October 1999.

46. R. Bayardo and R. Schrag, Using CSP look-back techniques to solve real-world SAT
instances, Proc. AAAI’97 (AAAI Press/The MIT Press, 1997) 203–208.

47. H. Zhang, SATO: An efficient propositional prover, Proc. CADE’97, Lectures Notes
in Computer Science, 1997.

48. J. Crawford and L. Auton, Experimental results on the crossover point in random
3SAT, Artificial Intelligence 81, 1&2 (1996) 31–57.

49. D. Theodoratos, S. Ligoudistianos and T. Sellis, Designing the global Data Warehouse
with SPJ views, Proc. CAiSE’99 (1999).

50. A. Sheth and V. Kashyap, So far (schematically) yet so near (semantically) Proc.
IFIP DS-5 Conf. Semantics Interoperable Database Sys. (Elsevier, 1992).

51. D. Calvanese, G. De Giacomo, M. Lenzerini and M. Y. Vardi, View-based query
processing and constraint satisfaction, Proc. LICS 2000 (2000) 361–371.

52. P. A. Bernstein and T. Bergstraesser, Meta-data support for data transformations
using microsoft repository, IEEE Bull. Data Eng. 22, 1 (1999) 9–14.

53. S. Heiler, W.-C. Lee and G. Mitchell, Repository support for metadata-based legacy
migration, IEEE Bull. Data Eng. 22, 1 (1999) 37–42.

54. J. M. Hellerstein, M. Stonebraker and R. Caccia, Independent, open enterprose data
integration, IEEE Bull. Data Eng. 22, 1 (1999) 43–49.

55. S. Abiteboul, S. Cluet and T. Milo, Correspondence and translation for heterogeneous
data, Proc. ICDT’97 (1997) 351–363.

56. R. Domenig and K. R. Dittrich, An overview and classification of mediated query
systems, SIGMOD Record 28, 3 (1999) 63–72.

57. Y. Papakonstantinou, H. Garcia-Molina and J. D. Ullman, MedMaker: A mediation

June 7, 2001 19:8 WSPC/111-IJCIS 00034

Data Integration in Data Warehousing 271

system based on declarative specifications, ed. S. Y. W. Su, Proc. ICDE’96 (1996)
132–141.

58. S. Abiteboul, S. Cluet, T. Milo, P. Mogilevsky, J. Simeéon and S. Zohar, Tools for
data translation and integration, IEEE Bull. Data Eng. 22, 1 (1999) 3–8.

59. S. Cluet, C. Delobel, J. Simeéon and K. Smaga, Your mediators need data conversion!,
Proc. VLDB’98 (1999) 279–290.

60. C. H. Goh, S. E. Madnick and M. Siegel, Context interchange: Overcoming the chal-
lenges of large-scale interoperable database systems in a dynamic environment, Proc.
CIKM’94 (1994) 337–346.

61. L. L. Yang and M. T. Ozsu, Conflict tolerant queries in AURORA, Proc. CoopIS’99
(1999) 279–290.

62. W. W. Cohen, Some practical observations on the integration of web information,
Proc. WebDB’99 (1999) 55–60.

63. M. Jarke, R. Gallersdoerfer, M. Jeusfeld, M. Staudt and S. Eherer, Conceptbase —
A deductive object manager for meta databases, J. Intell. Inf. Sys. 4 (1995) 2.

64. Z. Kedad and E. Métais, Dealing with semantic heterogeneity during data integration,
ER99, Lecture Notes in Computer Science, 1728 (Springer-Verlag, 1999) 325–339.

