Verification of Relational Multiagent Systems with Data Types
(Extended Version)

Diego Calvanese Marco Montali
Free University of Bozen-Bolzano
Piazza Domenicani 3, 39100 Bolzano, Italy
(calvanese,montali}@inf.unibz.it

Giorgio Delzanno
University of Genova
Via Dodecaneso 35, 16146 Genova, Italy
giorgio.delzanno@unige.it

Abstract

We study the extension of relational multiagent systems (RMASs), where agents manipulate full-fledged relational databases, with data types and facets equipped with domain-specific, rigid relations (such as total orders). Specifically, we focus on design-time verification of RMASs against rich first-order temporal properties expressed in a variant of first-order μ-calculus with quantification across states. We build on previous decidability results under the “state-bounded” assumption, i.e., in each single state only a bounded number of data objects is stored in the agent databases, while unboundedly many can be encountered over time. We recast this condition, showing decidability in presence of dense, linear orders, and facets defined on top of them. Our approach is based on the construction of a finite-state, sound and complete abstraction of the original system, in which dense linear orders are reformulated as non-rigid relations working on the active domain of the system only. We also show undecidability when including a data type equipped with the successor relation.

1 Introduction

We study relational multiagent systems (RMASs), taking inspiration from the recently defined framework of data-aware commitment-based multiagent systems (DACMASs) (Chopra and Singh 2013; Montali, Calvanese, and De Giacomo 2014). Broadly speaking, an RMAS is constituted by agents that maintain data in an internal full-fledged relational database, and apply proactive and reactive rules to update their own data, and exchange messages with other agents. Messages have an associated payload, which is used to move data from one agent to another. Notably, when updating their internal database, agents may also inject fresh data into the system, by invoking external services. This abstraction serves as a metaphor for any kind of interaction with the external world, such as invocation of web services, or interaction with humans.

From the data perspective, previous research has mainly focused on a single, countably infinite data domain, whose elements can only be compared for equality and inequality. This assumption is highly restrictive, since data types used in applications are typically equipped with domain-specific, rigid relations (such as total orders, and might be specialized through the use of facets (ISO/IEC 11404:2007 2007; Saykovic and Calvanese 2012).

The focus of this work is on design-time verification of RMASs against rich first-order temporal properties, allowing for quantification across states. By considering only a countably infinite domain with equality, it has been shown in (Belardinelli, Lomuscio, and Patrizi 2012; Bagheri Hariri et al. 2013; Montali, Calvanese, and De Giacomo 2014) that decidability of verification holds for variants of first-order temporal logics under the assumption that the system is “state-bounded”, i.e., unboundedly many data objects can be encountered over time, provided that in each single state only a bounded number of them is stored in the agent databases (Bagheri Hariri et al. 2014). We recast this condition by considering different options for the data types. Specifically, by exploiting an encoding of two-counter machines, we show that decidability of verification even of propositional reachability properties is lost when one of the data types is equipped with the successor relation. Our main technical result is showing decidability for a variant of first-order μ-calculus in presence of dense, linear orders, and facets defined on top of them. In this case, we provide an explicit technique to construct a finite-state, sound and complete abstraction of the original system, in which dense linear orders are reformulated as non-rigid relations working on the active domain of the system only. Notably, this allows us to model and verify state-bounded RMASs that include coordination mechanisms such as ticket-based mutual exclusion protocols.

2 Relational Multiagent Systems

RMASs are data-aware multiagent systems constituted by agents that exchange and update data. Beside generic agents, an RMAS is equipped with a so-called institutional agent, which exists from the initial system state, and can be contacted by the other agents as a sort of “white-page” agent, i.e., to: (i) get information about the system as a whole; (ii) obtain names of other agents so as to establish an interaction with them; and (iii) create and remove agents.

At a surface level, RMASs and DACMASs share many aspects. There are however two key differences in the way they model data. On the one hand, while DACMASs consider only a single, abstract data domain equipped with equality
only, in RMASs data are typed and enriched with domain-specific relations. This deeply impacts the modeling power of the system (see Section 3). On the other hand, while agents in DACMASs operate with incomplete knowledge about the data, and use a description logic ontology as a semantic interface for queries, RMASs employ standard relational technology for storage and querying services. This is done to simplify the treatment and isolate the core issues that arise when incorporating data types and facets, but we believe our results can be transferred to DACMASs as well.

An RMAS \(X \) is a tuple \(\langle T, F, \Delta_{0,F}, S, M, G, I \rangle \), where:

1. \(T \) is a finite set of data types;
2. \(F \) is a finite set of facets over \(T \);
3. \(\Delta_{0,F} \) is the initial data domain of \(X \);
4. \(S \) is a finite set of \(F \)-typed service calls;
5. \(M \) is a finite set of \(F \)-typed relations denoting messages with payload;
6. \(G \) is a finite set of \(F \)-typed agent specifications; and
7. \(I \) is the \(F \)-typed specification of the institutional agent.

2.1 Data Types and Their Facets

Data types and facets provide the backbone for modeling real-world objects manipulated by the RMAS agents. A data type \(T \) is a pair \(\langle \Delta_T, R_T \rangle \), where \(\Delta_T \) is an infinite set of objects, and \(R_T \) is a set of relation schemas. Each relation schema \(R/n \in R_T \) with name \(R \) and arity \(n \) is associated with an \(n \)-ary predicate \(R^T \subseteq \Delta_T^n \). Given a set \(\mathcal{T} \) of data types, we denote by \(R_T \) all domain-specific relations mentioned in \(\mathcal{T} \). Similarly, \(\Delta_T \) groups all the (pairwise disjoint) data domains of the data types in \(\mathcal{T} \). The interaction between data types is orthogonal to our work and is left for the future.

Example 2.1. We consider the following, well-known data domains, whose relations retain the usual meaning:

- Dense total orders such as \(\langle \mathbb{Q}, \{ <, = \} \rangle \) and \(\langle \mathbb{R}, \{ <, = \} \rangle \).
- Total orders with successor, like: \(\langle \mathbb{Z}, \{ <, =, \text{succ} \} \rangle \).

We assume that every RMAS has two special datatypes: (i) \(\langle \mathbb{A}, \{ = \} \rangle \) for agent names that, as in mobile calculi, behave as pure names [Nedelham 1989, Montanari and Pistore 2005] and can only be tested for (in)equality, (ii) \(\langle \mathbb{B}, \{ = \} \rangle \) for agent specification names (see Section 2.4).

Facets are introduced to restrict data types. A facet \(F \) is a pair \(\langle T, \varphi(x) \rangle \) where \(T = \langle \Delta_T, R_T \rangle \) is a data type, and \(\varphi(x) \) is a monadic formula built as:

\[
\varphi(x) := \text{true} \mid P(i) \mid \neg \varphi(x) \mid \varphi_1(x) \lor \varphi_2(x)
\]

where \(P(i) \) is a relation whose schema belongs to \(R_T \), and whose \(i \) are either variable \(x \) or data objects in \(\Delta_T \). We use the standard abbreviations false and \(\varphi_1(x) \land \varphi_2(x) \).

Given a set \(F \) of facets, we use \(R_F \) and \(\Delta_F \) as a shortcut for \(R_T \) and \(\Delta_T \) respectively, where \(T \) is the set of data types on which facets in \(F \) are defined.

Given a facet \(F = \langle T, \varphi(x) \rangle \) with \(T = \langle \Delta_T, R_T \rangle \), a data object \(d \) belongs to \(F \) if: (i) \(d \in \Delta_T \); (ii) \(\varphi(x) \) holds in \(F \) under substitution \([x/d] \), written \(F, [x/d] \models \varphi(x) \). In turn, given substitution \(\sigma = [x/d] \), relation \(F, \sigma \models \varphi(x) \) is inductively defined as follows:

\[
F, \sigma \models \varphi(x) \quad \text{if } F, \sigma \models R(i) \sigma \quad \text{if } R(i) \sigma \text{ is true in } T
\]

\[
F, \sigma \models \neg \varphi(x) \quad \text{if } F, \sigma \models \varphi(x) \quad \text{if } F, \sigma \not\models \varphi(x)
\]

Notice that a base facet that simply ranges over all data objects of a data type can be encoded with true as its facet formula. In particular, we use \(AF = \langle (\mathbb{A}, \{ = \}), \text{true} \rangle \) and \(BF = \langle (\mathbb{B}, \{ = \}), \text{true} \rangle \) to refer to two base facets for agent and specification names respectively.

Example 2.2. An Enumeration \(\{ a_1, \ldots, a_n \} \) over string values can be modeled as facet \(\langle (\mathbb{S}, \{ = \}), \bigvee_{i \in \{1, \ldots, n\}} x = a_i \rangle \). This also accounts for the type of boolean, which can be captured by \(Bool = \langle (\mathbb{B}, \{ = \}), x = "t" \lor x = "f" \rangle \).

Example 2.3. \(\langle (\mathbb{R}, \{ >, = \}), (x \not> 0 \land 18 \not< x) \lor x > 65 \rangle \) denotes ages of junior or senior people.

Facets are used as relation types. Given a set \(F \) of facets, an \(F \)-typed relation schema \(R \) is a pair \((R/n, F_R) \), where \(R/n \) is a relation schema with name \(R \) and arity \(n \), and \(F_R \) is an \(n \)-tuple \((F_1, \ldots, F_n) \) of facets in \(F \).

An \(F \)-typed database schema \(D \) is a finite set of \(F \)-typed relation schemas, such that no two typed relations in \(D \) share the same name.

In the following, we denote the \(i \)-th component of \(R \) as \(R[i] \), and write \(TYPE_D(R[i]) \) to indicate the type associated by \(D \) to \(R[i] \). We also denote the tuple of types associated by \(D \) to all components of \(R \) as \(TYPE_D(R) \). To simplify readability, we also seldomly use notation \(T(F_1, \ldots, F_n) \) as a shortcut for \(T = \langle R/n, (F_1, \ldots, F_n) \rangle \).

Obviously, since relations are typed, it is important to define when their tuples agree with their facets. Let \(R = \langle R/n, F_R \rangle \) be a relation schema. We say that a fact \(\langle o_1, \ldots, o_n \rangle \) conforms to \(T \) if for every \(i \in \{1, \ldots, n\} \), we have that \(o_i \) belongs to \(F_i \). Let \(F \) be a set of facets, and \(D \) be an \(F \)-typed database schema. A database instance \(I \) conforms to \(D \) if every tuple \(\langle o_1, \ldots, o_n \rangle \in I \) conforms to its corresponding relation schema \(R = \langle R/n, F_R \rangle \).

2.2 Initial Data Domain

Giving a data type \(T = \langle \Delta_T, R_T \rangle \), we isolate a finite subset \(\Delta_{0,T} \subset \Delta_T \) of initial data objects for \(T \). This subset explicitly enumerates those data objects that can be used in the initial states of the agent specifications (cf. Section 2.4), plus specific “control data objects” that are explicitly mentioned in the agent specifications themselves, and consequently contribute to determine the possible executions.

We extend this notion to cover also those objects used in the definition of facets. Giving a facet \(F = \langle T, \varphi(x) \rangle \) with \(T = \langle \Delta_T, R_T \rangle \), the set of initial data objects for \(F \) is a finite subset of \(\Delta_T \) that contains all data objects explicitly mentioned in \(\varphi(x) \). The initial data domain of an RMAS with set \(F \) of facets, written \(\Delta_{0,F} \), is then defined as the (disjoint) union of initial data objects for each facet in \(F \).

2.3 Typed Service Calls

Typed service calls provide an abstract mechanism for agents to incorporate new data objects when updating their
own databases. As argued in Bagheri Hariri et al. 2013; Montali, Calvanese, and De Giacomo 2014; Bagheri Hariri et al. 2014], this is crucial to make the system “open” to the external world, and accounts for a variety of interaction modes, such as interaction with services or humans. We exploit this mechanism to model in particular the agent ability to inject new data according to internal decisions taken by the agent itself, but still external to its specification.

Given a set F of facets, an F-typed service T is a triple $\langle f/n, F^i, F^o \rangle$, where (i) f/n is a function schema with name f and arity n; (ii) F^i is an n-tuple $\{F_1, \ldots, F_n\}$ of facets in F representing the input types of the service call; (iii) F^o is a facet in F representing the output facet of the service call. As for typed relations, in S there are no two typed services that share the same name. Intuitively, when invoked with a tuple of ground data objects belonging to their input facets, the service non-deterministically returns a data object that belongs to the output facet.

Example 2.4. Service $\text{getPrice} = \langle \text{getPrice}/0, \{SF\}, PF \rangle$ gets a string in $SF = \langle \{S, \{=\}\}, \text{true} \rangle$ referring to a product, and returns a rational price $PF = \langle \{Q, \{<,=\} \}, x > 0 \rangle$.

Example 2.5. Given facet $AF = \langle \{A, \{=\}\}, \text{true} \rangle$, service $\text{getN} = \langle \text{getN}/0, \emptyset, AF \rangle$ returns agent names.

2.4 Agent Specifications

In RMAs, agent specifications consist of three main components. The first is the data component, whose intensional part is a typed database schema with constraints; every agent adopting the same specification starts with the same initial extensional data, but during the execution it autonomously evolves by interacting with other agents and services. The second is a proactive behavior, constituted by a set of ECA-like update rules that determine which messages can be emitted by the agent, together with their actual payload and target agent. The third is a reactive behavior, constituted by ECA-like update rules that determine how the agent updates its own data when a certain message with payload is received from or sent to another agent.

Given a set F of facets with initial data domain $\Delta_{0,F}$, an F-typed agent specification is a tuple $\langle n, D, \Gamma, D_0, C, A, U \rangle$, where:

1. $n \in \mathbb{B} \cap \Delta_{0,F}$ is the specification name, which is assumed to be also part of the initial data domain.
2. D is an F-typed database schema. We assume that the schema is always equipped with a special unary relation $MyName$, whose unique component is typed with AF, and that is used to keep track of the global name associated to the agent in the system.
3. Γ is a finite set of database constraints over D, i.e., of domain-independent first-order formulae over D and R_{F}, using only constants from $\Delta_{0,F}$.
4. D_0 is the initial agent state, i.e., a database instance that conforms to D, satisfies all constraints in Γ, and uses only constants from D_0.
5. C is a set of communicative rules, defined below.

6. A and U are sets of update actions and update rules, defined below.

When clear from the context, we use the name of a component with superscript the name of the specification to extract that component from the specification tuple. For example, D^ρ denotes the database schema above.

Communicative rules. These rules are used to determine which messages with payload are enabled to be sent by the agent to other agents, depending on the current configuration of the agent database. When multiple ground messages with payload are enabled, the agent nondeterministically chooses one of them, according to an internal, black-box policy.

A communicative rule is a rule of the form

$$Q(t, \bar{x}) \text{ enables } M(\bar{x}) \text{ to } t$$

where: (i) Q is a domain-independent FO query over D and R_F, whose terms are variables t and \bar{x}, as well as data objects in $\Delta_{0,F}$; (ii) $M(\bar{x})$ is a message, i.e., a typed relation whose schema belongs to M.

Let F be a set facets, D a F-typed database schema, D a database instance that conforms to D, and $Q(x_1, \ldots, x_n)$ a FO query over D and R_F that uses only constants in $\Delta_{0,F}$. The answer $\text{ans}(Q, D)$ to Q over D is the set of assignments θ from the free variables \bar{x} of Q to data objects in $\Delta_{0,F}$, such that $D \models Q\theta$. We treat $Q\theta$ as a boolean query, and we say $\text{ans}(Q\theta, D) \equiv \text{true}$ if and only if $D \models Q\theta$.

In the following, we use the special query $\text{LIVE}_{T}(\bar{x})$ as a shortcut for the query that returns all data objects in the current active domain that belong to data type T. Given schema D, such a query can be easily expressed as the union of conjunctive queries checking whether \bar{x} belongs to a component of some relation in D, such that the component has type T.

In this respect, notice that any query can be relativized to the active domain through LIVE atoms.

We also make use to the anonymous variable “. . .” to signify an existentially quantified variable not used elsewhere.

Update actions. These are parametric actions used to update the agent current database instance, possibly injecting new data objects by interacting with typed services.

An update action is a pair $(\sigma, \alpha_{\text{spec}})$, where: (i) σ is the action schema, i.e., a typed relation accounting for the action name and for the number of action parameters, together with their types; (ii) α_{spec} is the action specification and has the form $\alpha(\bar{p}) : \{e_1, \ldots, e_n\}$, where the $\{e_1, \ldots, e_n\}$ are update effects. Each update effects has the form

$$Q(\bar{p}, \bar{x}) \leadsto \text{add } A, \text{ del } D$$

where (i) Q is a domain-independent FO query over D and R_F, whose terms are parameters \bar{p}, variables \bar{x}, and data objects in $\Delta_{0,F}$; (ii) A is a set of “add” facts over D that include as terms: free variables \bar{x} of Q, parameters \bar{p} and terms $f(\bar{x}, \bar{p})$, with \bar{f} in S; (iii) D is a set of “delete” facts that include as terms free variables \bar{x} and parameters \bar{p}.

An update action is applied by grounding its parameters \bar{p} with data objects \bar{d}. This results in partially grounding each of its effects. The effects are then applied in parallel over the agent database, as follows. For each partially grounded effect $Q(\bar{d}, \bar{x}) \leadsto \text{add } A, \text{ del } D$, $Q(\bar{d}, \bar{x})$ is evaluated over the
current database and for each obtained answer θ, the fully
ground facts $A\theta$ (resp., $D\theta$) are obtained. All the ground
facts in $D\theta$ are deleted from the agent database. Facts in $A\theta$,
instead, could contain (ground) typed service calls. In this
case, every service call is issued, obtaining back a (possibly
fresh) data object belonging to the output facet of the ser-
vice. The instantiated facts in $A\theta$ obtained by replacing the
ground service calls with the corresponding results are then
added to the current database, giving priority to additions.

Update rules. These are conditional, ECA-like rules used by
the agent to invoke an update action on its own data when a
message with payload is exchanged with another agent.

An update rule is a rule of the form

- (on-send) on $M(\vec{x})$ to t if $Q(\vec{y}_1)$ then $\alpha(\vec{y}_2)$, with $\vec{y}_1 \cup
\vec{y}_2 \subseteq \vec{x} \cup \{t\}$, or
- (on-receive) on $M(\vec{x})$ from s if $Q(\vec{y}_1)$ then $\alpha(\vec{y}_2)$, with
$\vec{y}_1 \cup \vec{y}_2 \subseteq \vec{x} \cup \{s\}$,

where: (i) $M(\vec{x})$ is a message, i.e., a typed relation whose
schema belongs to M; (ii) Q is a FO query over D, whose
terms are variables \vec{y}_1 and data objects in Δ_0,\vec{x}; (iii) α is an
update action in A, whose parameters are bound to variables
\vec{y}_2.

Institutional Agent Specification. In an RMAS, an in-
stitutional agent is dedicated to the management of the
system as a whole. Differently from DACMASs
(Montali, Calvanese, and De Giacomo 2014), we do not as-
nsume here that the institutional agent has full visibility of
the messages exchanged by all agents acting into the sys-
tem. It is simply an agent that is always active in the system
and whose name, inst in the following, is known by every
other agent. Still, we assume that the institutional agent has
special duties, such as in particular handling the creation of
agents and their removal from the system, and maintainance
of agent-related information, like the set of names for active
agents, together with their specifications.

Technically, the institutional agent specification I
is a standard agent specification named \ispec, par-
tially grounded as follows. To keep track of agents and
their specifications, D_i contains three dedicated typed
relations: (i) $\langle Agent/1, \{AF\} \rangle$, to store agent
names; (ii) $\langle Spec/1, \{BF\} \rangle$, to store specification names;
(iii) $\langle has\spec/2, \{AF, BF\} \rangle$, to store the relationship be-
tween agents and their specifications. Given these special
relations, inst can also play the role of agent
registry, supporting agents in finding names of other
agents to communicate with. Additional system-level
relations, such as agent roles, duties, commitments
(Montali, Calvanese, and De Giacomo 2014), can be in-
serted into D_{inst} depending on the specific domain un-
der study. To properly enforce that $has\spec/2$ relates
agent to specification names, foreign keys can be added to
Γ_{\ispec}. Futhermore, we properly initialize D_{inst} as follows:
(i) $Agent(\text{inst}) \in D_{\ispec}^0$; (ii) $Spec(\text{inst}) \in D_{\ispec}^0$ for every
agent specification that is part of the RMAS, i.e., for speci-
fication name \ispec and all specification names mentioned in
Γ; (iii) $has\spec(\text{inst}, \text{inst}\spec) \in D_{\ispec}^0$. Obviously, inst
may have other initial data, and specific rules and actions. Of
particular interest is the possibility for inst of dynamically
creating and removing other agents. This can be encoded
by readapting (Montali, Calvanese, and De Giacomo 2014).

Agent creation/removal. Two actions are employed by the
institutional agent to insert or remove an agent into/from the
system. Their respective action schemas are $\text{NEWAG}(BF)$
and $\text{REMAg}(AF)$. As for creation, inst employs the ser-
vice call introduced in Example 2.3.5 to introduce a name into
the Agent relation, attaching to it the specification name
passed as input. However, some additional modeling effort is
needed so as to ensure that the introduced name is indeed
new:

$$\begin{align*}
\text{NEWAG}(s) : & \quad \text{true} \leadsto \text{add} \{\text{FreshAg}(\text{getN}(s)), \\text{Agent}(\text{getN}(s)) \} \\
& \quad \text{Agent}(a) \leadsto \text{add} \{\text{OldAg}(a)\}
\end{align*}$$

Intuitively, apart from adding the new agent and attaching
the corresponding specification, the action updates the two
accessory agent relations OldAd and FreshAg, which are
assumed to be part of D_{\ispec}, ensuring that in the next state
OldAd contains the set of agent names that were present in
the immediately preceding state, and that FreshAg contains
the newly injected name. Freshness can then be guaranteed
by adding a dedicated constraint to Γ_{\ispec}:

$$\forall a. \text{OldAg}(a) \land \text{FreshAg}(a) \rightarrow \text{false}$$

Removal of an agent is instead simply modelled as:

$$\text{REMAg}(a) : \quad \{\text{hasSpec}(a, s) \leadsto \text{del} \{\text{Agent}(a), \text{hasSpec}(a, s)\}\}$$

Update rules that employ these special actions obviously
depend on the domain, by including specific on-send and on-
receive rules in I.

2.5 Well-Formed Specifications

In an RMAS, every piece of information is typed. This im-
mediately calls for a suitable notion of well-formedness that
checks the compatibility of types in all agent specifications.

Intuitively, an RMAS \mathcal{X} is well-formed if: (1) every query
appearing in \mathcal{X} consistently use variables, that is, if a vari-
able appears multiple components, they all have the same
data type; (2) every proactive rule instantiates the message
payload with compatible data objects, and the destination
agent with an agent name; (3) every reactive rule correctly
relates the data types of the message payload with those of
the query and of the update action; (4) each action effect
uses parameters in a compatible way with the action type;
(5) each action effect instantiates the facts in the head in a
compatible way with their types; (6) each service call cor-
rectly binds its inputs and output.

We now formalize this intuition. Let \mathcal{F} be a set facets,
and D be a \mathcal{F}-typed database schema. Let Q be a FO query
over D and $R_\mathcal{F}$ that uses only constants in Δ_0,\mathcal{F}. We say
that Q is D-compatible if: (i) whenever a data object from
Δ_0,\mathcal{F} appears in component $R[i]$ inside Q, then it belongs to
TYPE_D(R[i]); (ii) whenever the same variable x appears in
two components R_1[i_1] and R_2[i_2], then TYPE_D(R_1[i_1]) =
TYPE_D(R_2[i_2]).

By definition of compatibility, each free variable of a D-
compatible query is associated to a single facet/data type.
This allows us to characterize the “output types” of a query,
that is, the types associated to its free variables (and hence
also the types of its answer components). Given an F-typed
database schema D and a well-formed FO query Q(⃗x) over D
and R_F that uses only constants in ∆₀,F, the output-
type of xᵢ ∈ ⃗x according to Q, written OUT-TYPE_Q(xᵢ),
is the unique data type in F to which xᵢ is associated by Q,
where T is the set of data types on which F is defined.
We extend the notion of output-type to a tuple
of variables ⃗x = ⟨x₁,...,x_k⟩ ⊆ ⃗x with 1 ≤ i ≤ k ≤ n,
writing OUT-TYPE_Q(⃗x) as a shortcut for the tu-
ples ⟨OUT-TYPE_Q(x₁),...,OUT-TYPE_Q(x_k)⟩. We also write
OUT-TYPE(Q), as a shortcut for OUT-TYPE_Q(⃗x). Notice
that, when applied to an atomic query, this notion corre-
sponds exactly to the typing of the corresponding relation,
according to its schema.

Given an RMAS X = ⟨T,F,Δ₀,F,S,M,G,I⟩ and an agent
specification N = ⟨n,D,Γ,D₀,C,A,U⟩ in G ∪ {I},
we say that:

• C is well-formed if each of its communicative
rules Q(t,⃗x) enables M(⃗x) for t such that
(i) OUT-TYPE_Q(t) = A (i.e., Q binds t to an agent
name), and (ii) OUT-TYPE_Q(⃗x) = TYPE_M(M) (i.e., the
payload is instantiated by Q in a compatible way with
the types of message M).

• A is well-formed if each of its actions is well-formed. We
say in turn that action (⃗x,α_spec) is well-formed if every
effect Q(⃗x) ∼ ⊢ add A, del D in α_spec is such that:
– Q is D-compatible.
– Whenever a parameter p is mentioned in Q, the type
which p is assigned by OUT-TYPE_Q is the same to
which p is assigned by ⃗x.
– For every n-ary typed relation R ∈ D, every fact F of
R appearing in D, and for each i ∈ {1,...,n}: (i) if the
i-th position of F contains a data object, then such data
object belongs to the domain of TYPE_D(R[i]); (ii) if the
i-th position of F contains a variable y ∈ ⃗x, then
OUT-TYPE_Q(y) = TYPE_D(R[i]).
– For every n-ary typed relation R ∈ D, every fact F of
R appearing in A, and for each i ∈ {1,...,n}: (i) if the
i-th position of F contains a data object, then such data
object belongs to the domain of TYPE_D(R[i]); (ii) if the
i-th position of F contains a variable y ∈ ⃗x, then
OUT-TYPE_Q(y) = TYPE_D(R[i]); (iii) if the i-th posi-
tion of F contains a k-ary service call f(⃗y) with ⃗y ⊆ ⃗x and
{f/k,F_{fin},F_{out}} ∈ S, then OUT-TYPE_Q(⃗y) =
F_{fin} and F_{out} = TYPE_D(R[i]).

• U is well-formed if all its update rules are well-
formed. We discuss the case of on-send rules -
the definition of well-formedness is identical for on-
receive rules. An on-send rule in U of the form
on M(⃗x) to t if Q(⃗y₁) then α(⃗y₂), with ⃗y₁ ∪ ⃗y₂ ⊆ ⃗x∪{t},
is well-formed if the following conditions hold: (i) if
t ∈ ⃗y₁, then OUT-TYPE_Q(t) = A; (ii) if t appears in
the i-th component of α, then ⃗x assigns type A to its
i-th parameter; (iii) for each variable x ∈ ⃗x ∩ ⃗y₂, such that
x appears in the i-th component of M, we have that
TYPE_M(M[i]) = OUT-TYPE_Q(x); (iv) for each variable
x ∈ ⃗x ∩ ⃗y₂, such that x appears in the i-th component of
M and in the j-th component of α, we have that ⃗x assigns
TYPE_M(M[i]) to its j-th parameter.

• N itself is well-formed if C, A and U are all well-formed.
Finally, we say that the entire RMAS X is well-formed if all
agents specifications in G ∪ {I} are well-formed.

It is easy to see that checking whether an RMAS is well-
formed requires linear time in the size of the specification.
From now on, we always assume that RMASs are well-
formed. It is important to notice that well-formedness does
not guarantee that the restrictions imposed by facets are al-
ways satisfied, but only that the agent specification consis-
tently uses data types. Consistency with facets is managed at
runtime, by dynamically handling facet violations (cf. Sec-
Section 3).

3 Modeling with RMAS

We briefly show how RMASs can be easily accommo-
date complex data-aware interaction protocols, leverag-
ging on data types. We take inspiration from ticket-based
mutual exclusion protocols (Bultan, Gerber, and Pugh 1999;
Baier and Katoen 2008). This can be used, in our setting, to
guarantee the possibility for an agent to engage in a com-
plex, critical interaction with the institutional agent.

Another interesting example, namely how to model
a form of contract net protocol in RMASs, is provided in
Section 3.2. The interested reader can also refer to
Montali, Calvanese, and De Giacomo (2014) for
commitment-based interactions.

From now on, we assume that interaction in RMAS is
synchronous. This assumption is without loss of generality,
since message queues for asynchronous communication can
be modelled as special typed relations in the agent databases:

Theorem 3.1. Asynchronous RMASs based on message
queues can be simulated by synchronous RMASs.

Proof. We consider a form of reliable, asynchronous com-
munication based on message buffers. In particular, the
model works as follows:

• Messages sent by an agent to itself are processed immedi-
aply (in fact, there is no effective communication in this
case).

• Whenever a sender agent emits a message with payload
targeting another agent, the message is atomically in-
serted into a message buffer attached to the target agent.

• The target agent asynchronously reacts to the message
by extracting it from the buffer (this could happen much
later).

• We consider two variations of this general model: one in
which the buffer is ordered (i.e., it is a queue), and one
in which the buffer is just a set of messages. Both models
are interesting, because they reflect different assumptions
on the asynchronous communication model. In fact, the
first guarantees that the order in which messages are processed by the target follows the order in which messages where emitted. We call this communication model asynchronous, ordered (AO for short), and use acronym AO-RMAS for an RMAS adopting the AO communication model. Contrarilywise, the second model accommodates the situation in which the order in which messages are received (i.e., processed) by a target agent does not necessarily reflect the order in which such messages were emitted. We call this communication model asynchronous, disordered (AD for short), and use acronym AD-RMAS for an RMAS adopting the AD communication model.

We prove that these asynchronous communication models can be both accommodated by a synchronous RMAS that employs accessary data structures in the agent schemas, specifically tailored to buffer messages and decouple the emission of a message from its processing by the target agent.

Given an AD-RMAS/AO-RMAS \(\mathcal{X} = (T, F, Δ_0, x, S, M, G, I) \), we convert it into a standard, synchronous RMAS \(\mathcal{X}' = (T, F, Δ_0, x, S, M_s, G_s, I_s) \), where \(M_s \) and \(S \) just extend \(M \) and \(S \) with an additional message/service as illustrated below, and where each agent specification \(N = (n, D, Γ, D_0, C, A, Ω) \) in \(G \cup \{ I \} \) becomes a corresponding agent specification \(N_s = (n, D_s, Γ_s, D_0, C_s, A_s, Ω_s) \) in \(G_s \cup \{ I_s \} \), according to the translation mechanism illustrated in the following (notice that we are interested here in the correctness of the encoding, not in its efficient implementation; effective ways of realizing the translation can be provided by using this encoding as a basis).

Let us first focus on the database schema of the agent specification. We set \(D_s = D \cup \{ MBuffer, NewM, OldM \} \), where \(MBuffer \) is a global buffer tracking incoming messages that have been received by the agent but still needs to be (asynchronously) processed, while \(NewM \) and \(OldM \) are unary accessary relations used to manage the generation of new identifiers for messages to be enqueued. The management of such identifiers closely resembles name management as discussed for the institutional agent.

Specifically, \(MBuffer \) contains a numeric primary key, and internalizes the payload schemas of all message relations in \(M \), plus an additional component to track the sender agent, and a boolean component indicating whether the payload has a valid content. A tuple in \(MBuffer \) contains a message identifier and sets exactly one of such boolean components to true, leaving the others false. This indicates what is the type of the buffered message, and that the corresponding payload/sender components contain the actual message payload and sender agents, whereas all other payload/sender components contain meaningless values. For this latter aspect, we assume, without loss of generality, that all data types are equipped with an undefined data object.

Technically, we fix an ordering over \(M \), that is, a bijection \(msg : \{1, \ldots, |M|\} \rightarrow M \) and fix the function \(index = msg^{-1} \). We set the arity of \(MBuffer \) to \(1 + \sum_{i=1}^{|M|} (2 + a_i) \), where \(a_i \) is the arity of relation \(msg(i) \). We make use of the following three specific types: (i) the \(\text{Bool} \) facet (cf. Example 2.2), (ii) the \(\text{RF} \) facet, defined as \(\{\langle \mathbb{R}, \{=, < \}, \text{true} \} \), and (iii) the facet \(\text{AF} \) for agent names. Specifically, we type component \(MBuffer[1] \) (the relation primary key) with \(\text{RF} \). For each \(i \in \{1, \ldots, |M|\} \), we type component \(MBuffer[2] + \sum_{j=1}^{|\text{msg}(i)} (2 + a_j) \) with \(\text{Bool} \), and component \(MBuffer[3 + \sum_{j=1}^{|\text{msg}(i)} (2 + a_j) + k] \) to be the same as the type of component \(\text{msg}(i)[k] \).

Unary relations \(\text{NewM} \) and \(\text{OldM} \) are respectively used to store newly created or already existing message identifiers. Their unique component is consequently typed with \(\text{RF} \).

Let us now consider the database constraints. We set \(Γ_s = Γ \cup \{ Φ_{\text{msgId}} \} \), where \(Φ_{\text{msgId}} \) is a constraint ensuring that new message identifiers do not clash with already existing identifiers, and whose specific shape depend on whether the original RMAS is asynchronous ordered or unordered. In particular:

- if \(\mathcal{X} \) is an AD-RMAS, then \(Φ_{\text{newMsg}} \) is
 \[
 ∀ id_n, id_o. \text{NewM}(id_o) \land \text{OldM}(id_o) \rightarrow id_o \neq id_n
 \]
 (where \(id_o \neq id_n \) is an abbreviation for \(\neg (id_o = id_n) \)).
- if \(\mathcal{X} \) is an AO-RMAS, then \(Φ_{\text{newMsg}} \) is
 \[
 ∀ id_n, id_o. \text{NewM}(id_n) \land \text{OldM}(id_o) \rightarrow id_o < id_n
 \]

In fact, for an ordered RMAS, a newly created message must be enqueued after all pending messages that were enqueued before.

We now focus on the behavior of \(N_s \), that is, on how the rules of \(N \) are translated into corresponding rules in \(N_s \) so as to simulate the asynchronous communication model on top of a synchronous communication model. Since asynchronous communication requires to decouple the emission of a message from the reaction of the target agent, \(Ω_s \) only maintains the on-send rules of \(Ω \), replacing the on-receive rules with other on-receive rules. This new on-receive rules are organized in two groups. The first group of rules is just used to insert message received from other agents into the buffer. In particular, for each \(i \in \{1, \ldots, |M|\}, Ω_s \) contains a rule of the form

\[
\text{on } M_i(\bar{x}) \text{ from } s \text{ if } \neg \text{MyName}(s) \text{ then } \text{BUFFER}_M(\bar{x}, s)
\]

where \(M_i \) is the name of relation \(\text{msg}(i) \), and \(\text{BUFFER}_M \) is a specific update action in \(A_s \), dedicated to insert the payload and sender agent of a message \(M_i \) into the buffer. In particular, \(\text{BUFFER}_M(\bar{x}, s) \) is defined as:

\[
\begin{align*}
\text{OldM}(m) & \leadsto \text{del}(\text{OldM}(m)) \\
\text{NewM}(m) & \leadsto \text{del}(\text{NewM}(m)) \\
\text{true} & \leadsto \text{add}\left\{ \begin{array}{l}
\text{NewM}(\text{getRN}()), \\
\text{MBuffer}(\text{getRN}(), \ldots, \text{“t”}, p, \bar{x}, \ldots)
\end{array} \right\}
\end{align*}
\]

\[
\text{MBuffer}(m, \ldots, \bar{x}) \leadsto \text{add}(\text{OldM}(m))
\]
where \(\text{getRN} \) is a service that returns a \(RF \) data object, and in the addition of the tuple \(\text{MBuffer}(\text{getRN}(), \ldots, "t", p, x, \ldots) \), attributes "\(t \)" and \(p \), \(x \) are inserted in those positions corresponding to the boolean component, sender agent component, and payload components dedicated to \(\text{msg}(i) \), while all the other boolean components are set to "\(\text{false} \)" and all remaining components are set to undefined.

The processing of a buffered message is triggered by a special communicative rule that is contained in \(C_s \) together with all the original rules in \(C \). The purpose of the communicative rule is to extract a message from the buffer, triggering the agent to process it whenever the original specification contained on-receive rules dedicated to this. This is done by self-sending a message \(\text{nextM} \) specifically:

- If \(X \) is an AD-RMAS, the message extraction rule is:

\[
\text{MyName}(a) \\
\land \ M\text{Buffer}(m, \ldots, ___. __) \text{ enables } \text{nextM}(m) \rightarrow a
\]

Indeed, for a disordered RMAS, the order in which messages are received is non-deterministic. This rule mimics such a nondeterminism, since the agent nondeterministically picks one of the buffered messages.

- If \(X \) is an AO-RMAS, the message extraction rule is:

\[
\text{MyName}(a) \land M\text{Buffer}(m, \ldots, ___. __) \\
\land \neg(\exists m_2. M\text{Buffer}(m_2, \ldots, ___. __) \land m_2 < m) \\
\text{enables } \text{nextM}(m) \rightarrow a
\]

Indeed, for an ordered RMAS, messages are deterministically received according to the order in which they have been sent. This rule mimics such a determinism by following a FIFO policy, picking the first message in the queue. Recall that, for AO-RMAS, whenever a new message is inserted into the queue, its primary key is greater than the primary keys of already enqueued messages.

The last dimension to be covered is the agent reaction to a message to be processed. This is done by suitably reformulating the original on-receive rules present in \(U \). Specifically, for each on-receive rule

\[
\text{on } M(\vec{x}) \text{ from } s \text{ if } Q(\vec{y}_1) \text{ then } a(\vec{y}_2)
\]

in \(U \), with \(\vec{y}_1 \cup \vec{y}_2 \subseteq \vec{x} \cup \{s\} \), \(U_s \) contains a corresponding on-receive rule (which, by construction of \(X_s \), is triggered only by the agent itself)

\[
\text{on } \text{nextM}(m) \text{ from } a \\
\text{if } \text{MyName}(a) \land \Phi_M(m, \vec{y}_1, \vec{y}_2) \land Q(\vec{y}_1) \text{ then } a(m, \vec{y}_2)
\]

where \(\Phi_M(m, s, \vec{x}) \) is a query that: (i) checks whether the identifier \(m \) points to a tuple in the buffer that actually refers to a message of type \(M \) (this can be done by checking whether the boolean component in position \(\text{index}(M) \) is set to "\(t \)"); (ii) if so, extracts the sender of message \(m \) and its payload \(\vec{x} \). Technically, the query is simply formulated as:

\[
\Phi_M(m, s, \vec{x}) = M\text{Buffer}(m, \ldots, "t", s, \vec{x}, \ldots) \\
\text{index}(M)\text{-th component}
\]

A final, additional update rule that always triggers when a \(\text{nextM} \) message is received is needed to properly update the buffer, by removing the processed message:

\[
\text{on } \text{nextM}(m) \text{ from } a \text{ if } \text{MyName}(a) \text{ then } \text{removeM}(m)
\]

where:

\[
\text{removeM}(m) : \{ M\text{Buffer}(m, \vec{x}) \rightarrow \text{del} \{ M\text{Buffer}(m, \vec{x}) \} \}
\]

By putting everything together, if we project away the accessibility relations \(M\text{Buffer}, \text{OldM} \) and \(N\text{ewM} \), we obtain that the asynchronous execution semantics of \(X \) under both the ordered and disordered assumption exactly corresponds to that of \(X_s \) under the standard synchronous semantics, as precisely defined in Figure 1.

The proof of Theorem 3.1 already gives a glimpse about the modelling power of RMASs equipped with ordered types. We next discuss how these features can be exploited to easily capture mutual exclusion protocols based on tickets.

3.1 Ticket-Based Mutual Exclusion Protocols

The idea behind ticket-based mutual exclusion protocols is that, when a process wants to access a critical section, it must get a ticket, and wait until its turn arrives. We model tickets using the base facet \(RF = \langle \mathbb{R}, \{<, =\} \rangle \), true for real numbers, and exploit the domain-specific relation \(< \) to compare agent tickets. In our formulation, the critical section consists of a (possibly complex) interaction with the inst, excluding the possibility for other agents to concurrently engage in the same kind of interaction with inst.

We focus on the realization of inst, in such a way that mutual exclusion is guaranteed no matter how the other agents behave. First of all, inst gives top priority to handle ticket requests by the agents. A ticket request is issued by another agent using a 0-ary message ASK\text{TICKET}. Agent inst reacts by invoking a ticket generation action, provided that the sender agent is not already owner of a ticket, and the Assigned relation is empty (see below):

\[
\text{on ASK\text{TICKET}()} \text{ from } a \\
\text{if } \neg \text{HasTicket}(a, __) \land \neg \text{Assigned}(__, __) \text{ then } \text{GEN\text{TICKET}(a)}
\]

Action GEN\text{TICKET} takes as input an agent name, and uses a typed service \(\text{getTicket} = \{ \text{getTicket}\!/0, \emptyset, RF \} \) to get a numerical ticket. The result is stored in the temporary relation Assigned, tracing that the ticket has been assigned but the corresponding agent still needs to be informed.

\[
\text{GEN\text{TICKET}(a)} : \{ \text{true } \rightarrow \text{add} \{ \text{Assigned}(a, \text{getTicket}()) \} \}
\]

To guarantee that every agent will have the possibility of engaging the critical interaction with inst, every time a ticket is assigned to an agent, inst must ensure that such agent will be served after those already possessing a ticket. This is enforced through the following database constraint, which leverages on the domain-specific relation \(> \) for tickets:

\[
\forall t_{\text{new}}, t. \text{Assigned}(<t_{\text{new}}) \land \text{HasTicket}(__, t) \rightarrow t_{\text{new}} > t
\]

An assigned ticket must be sent to the requestor agent:

\[
\text{Assigned}(t, a) \text{ enables } \text{GIVE\text{TICKET}(t) to } a
\]

to which inst itself reacts by moving the tuple from the temporary relation Assigned to hasTicket:

\[
\text{on GIVE\text{TICKET}(t) to } a \text{ if } \text{true} \text{ then } \text{BIND\text{TICKET}(a, t)}
\]

\[
\text{BIND\text{TICKET}(a, t)} : \{ \text{true } \rightarrow \text{del} \{ \text{Assigned}(a, t) \} \} \\
\text{true } \rightarrow \text{add} \{ \text{hasTicket}(a, t) \}
\]

The proof of Theorem 3.1 already gives a glimpse about the modelling power of RMASs equipped with ordered types. We next discuss how these features can be exploited to easily capture mutual exclusion protocols based on tickets.
Now, let CMAG be a critical message. To engage in the critical interaction with inst triggered by message CMAG, the agent provides the payload and the ticket. Agent inst positively react to the request provided that the ticket indeed corresponds to the agent, and that the ticket is now to be served (i.e., it is smaller than any other ticket):

![Critical Message Pattern](image)

This pattern can be replicated for any other critical interaction. Additional, state relations can be added to discipline the orderings among critical message exchanges.

3.2 Contract Net

We show how the classical contract net protocol (Smith 1980) can be easily accommodated in our framework. This can be considered as an example of a “price-based” protocol, and therefore indirectly shows how different kinds of auctions could be modelled as well, as, e.g., done in (Belardinelli 2014).

An RMAS that incorporates the contract net protocol contains two agent specifications (that can be obviously enriched and extended on a per-domain basis): the specification of an initiator agent, and the specification of a participant agent. The first specification is embodied by an agent that is interested in delegating the execution of a task to another agent, so as to achieve a desired goal. The second specification is embodied by agents that have the capabilities and the interest in executing the task, provided that they get back a reward.

The system employs the following FIPA-like messages:

- **cfp(SF)** (from the initiator to participants) – a call-for-proposal related to the execution of the provided task (for simplicity, we use strings to represent tasks, and we assume that the task name is used also as a conversation identifier);

- **propose(SF, PF)** (from a participant to the initiator), with PF as in Example 2.3 – a proposal to execute the task indicated in the first parameter, for the price indicated in the second parameter;

- **reject(SF)** (from the initiator to a participant) – rejection of all proposals for the specified task;

- **accept(SF, PF)** (from the initiator to a participant) – acceptance of a proposal;

- **inform(SF)** (from a participant to the initiator) – notification that the task has been executed.

- **failure(SF)** (from a participant to the initiator) – notification that the task execution failed.

Let us focus on the realization of the protocol from the point of view of inst, which acts as the initiator. We first introduce the relations used by inst to run the protocol:

- **Agent(AF)** lists the (names of) agents known to the initiator agent; if the initiator agent is inst, then it already holds all agents present in the system, otherwise the initiator agent can engage in a preliminary interaction with inst and/or other agents to collect such names.

- **Task(SF, StateF)** lists the task names that the initiator agent is interested to assign, i.e., those that can become the subject of an instance of the contract net protocol.

- **Contacted(AF, SF, PF)** lists those agents that have been already contacted for a given task.

- **PropPrice(AF, SF, PF)** lists those agents that answered to a proposal with a certain price.

- **AssignedTo(AF, SF, PF)** lists those tasks that have been assigned to an agent for a given price.

We have now all the ingredients to model the behavioral rules of the initiator agent. First of all, the initiator agent can issue a call-for-proposal for any task in the “todo” state, directed towards an eligible agent. This is captured by the communicative rule:

![Communicative Rule](image)

where \(\Phi_{suit}(a, t) \) is a boolean query that checks whether \(a \) is a suitable agent for executing \(t \), and that does so by possibly involving additional relations maintained by the initiator agent for this specific purpose. An agent is considered eligible if it is suitable and has not been already contacted for the selected task.

The initiator agent reacts to this message by indicating that agent \(a \) has been contacted for task \(t \):

![Initiator Reaction](image)

where

![Initiator Reaction](image)

When a proposer agent sends back a proposal, the initiator agent stores it into the **PropPrice** relation:

![Initiator Reaction](image)

where

![Initiator Reaction](image)

Notice that this formalization seamlessly enables the same agent to make different proposals for the same task, but can be easily modified so as to account for the situation where only one proposal per agent can be accepted.

The presence of at least one registered proposal enables the initiator to assign the task to some agent, provided that such an agent made the best proposal, i.e., that with the lowest price. Notice that the initiator is free to choose when to accept, and can decide to contact further agents before actually selecting the best proposal.

![Proposal Acceptance](image)

When the initiator decides to actually accept the best offer, it reacts by tracking to which agent the task has been assigned (and with which price), taking also care of properly updating the task state, as well as to clean the **PropPrice** relation. This is done through two different rules. The task assignment is handled by rule:

![Task Assignment](image)

when

![Task Assignment](image)
where \(\text{MARK}_{\text{ASSIGNED}}(a, t, p) : \)
\[
\{ \text{true} \} \mapsto \text{add}\ \{ \{ \text{AssignedTo}(a, t, p) \} \}
\{ \text{PropPrice}(a, t, p_a) \} \mapsto \text{del}\ \{ \{ \text{PropPrice}(a, t, p_a) \} \}
\]
The task state update is instead managed by rule
\[
\text{on } \text{accept}(t, p) \text{ to } a \text{ if true then SETSTATE}(t, \text{“assigned”})
\]
where SETSTATE\((t, \text{state})\) is a generic state-update action formalized as follows:
\[
\{ \text{Task}(t, \text{oldstate}) \} \mapsto \text{del}\ \{ \{ \text{Task}(t, \text{oldstate}) \} \}
\{ \text{add}\ \{ \{ \text{Task}(t, \text{state}) \} \} \}
\]
The acceptance of an offer enables the initiator to send a rejection to all the agents that made an offer but were not selected:
\[
\text{PropPrice}(a, t, _) \land \neg (\text{AssignedTo}(a, t, _)) \]
\[
\text{enables reject}(t) \text{ to } a
\]
To track that a rejection has been sent, the initiator reacts to the rejection message by removing all proposals registered for the corresponding agent and task:
\[
\text{on } \text{reject}(t) \text{ to } a \text{ if true then REMPROPS}(a, t)
\]
where REMPROPS\((a, t)\) :
\[
\{ \text{PropPrice}(a, t, p) \} \mapsto \text{del}\ \{ \{ \text{PropPrice}(a, t, p) \} \}
\]
Finally, an assigned task is marked as “done” whenever the corresponding agent informs the initiator that the task has been executed, or brought back to the “todo” state if the agent signals a failure. These two cases are respectively handled by the two on-receive rules
\[
\text{on } \text{inform}(t) \text{ from } a
\]
\[
\text{if } \text{AssignedTo}(a, t, _) \text{ then SETSTATE}(t, \text{“done”})
\]
and
\[
\text{on } \text{inform}(t) \text{ from } a
\]
\[
\text{if } \text{AssignedTo}(a, t, _) \text{ then SETSTATE}(t, \text{“todo”})
\]
which reuse the action SETSTATE as defined above. The case of a failure allows the initiator agent to restart a contract net protocol for the non-executed task.

4 Verification

We now focus on the verification of RMAs against rich first-order temporal properties. The execution semantics of RMAS \(X = \{ T, F, \Delta_0, \Sigma, M, G, I \} \) is captured by a rela-
tional transition system \(T_X = \{ \Delta_T, D_X, \Sigma, s_0, db, \rightarrow \} \), where: (i) \(D_X \) is the union of typed schemas in the specifications of \(G \) and \(I \); (ii) \(\Sigma \) is a possibly infinite sets of states; (iii) \(s_0 \in \Sigma \) is the initial state; (iv) \(db \) is a function that, given a state \(s \in \Sigma \) and the name \(n \) of an agent active in \(s \), returns the database of \(n \) in state \(s \), written \(s.db(n) \), which must be \(D_{\text{spec}_n} \)-conformant, where \(\text{spec}_n \) is the name of the specification adopted by \(n \). (v) \(\rightarrow \subseteq \Sigma \times \Sigma \) is a transition relation between states.

The full \(T_X \) construction starting from the initial state is given in Figure[1]. We report the main steps in the following. The initial state \(s_0 \) is constructed by assigning \(s_0.db(\text{inst}) \) to the initial database instance \(D^\text{spec}_0 \) of \(I \), and the initial database of each agent mentioned in \(D^\text{spec}_0 \) taking from its specification. The construction then proceeds by mutual induction over \(\Sigma \) and \(\rightarrow \), repeating the following steps forever:

1. A state \(s \) is picked from \(\Sigma \).
2. An active agent \(a \) is nondeterministically picked selecting its name from \(s.db(\text{inst}) \).
3. The communicative rules of \(a \) are evaluated, extracting all enabled messages with their ground payloads and destination agents.
4. An enabled messages is nonde-
terministically picked.
5. The on-send/on-receive rules of the two involved agents are triggered, fetching all actions to be applied.
6. The actions are applied over the respective databases.
7. If there are service calls involved, they are nondeterministically substituted with resulting data objects, consistently with the service output facets.
8. Each agent updates its own database provided that the database resulting from the parallel application of the actions is compatible with the schema and satisfies all constraints.
9. Otherwise the old database is maintained, so as to model a sort of “transaction rollback”.

(8) If one of the involved agents is inst and the update leads to the introduction of a new agent into the system, it database is initialized in accordance to its specification.

(9) The global state so obtained is declared to be successor of the state picked at step 1.

Interestingly, \(T_X \) is in general infinite-branching, because of the substitution of service calls with their results, and infinite runs, because of the storage of such data objects in time.

The \(\mu L_p^\Delta \) Verification Logic.

To specify sophisticated properties over RMAs we employ the \(\mu L_p^\Delta \) logic. This logic combines the salient features of those introduced in [Bagheri Hariri et al. 2013] and [Montali, Calvanese, and De Giacomo 2014]. \(\mu L_p^\Delta \) supports the full \(\mu \)-calculus to predicate over the system dynamics. Recall that the \(\mu \)-calculus is virtually the most expressive temporal logics: it subsumes LTL and CTL*. To query possibly different agent databases, \(\mu L_p^\Delta \) adopts FO queries extended with location arguments (Montali, Calvanese, and De Giacomo 2014), which are dynamically bound to agents. Furthermore, to track the temporal evolution of data objects, \(\mu L_p^\Delta \) adopts a controlled form of FO quantification across time: quantification is limited to those objects that persist in the system:

\[
\Phi ::= \mathsf{Q}_k \mid \neg \Phi \mid \Phi_1 \land \Phi_2 \mid \exists x. \mathsf{LIVE}_T(x) \land \Phi \mid Z \mid \mu Z. \Phi \mid \\
\text{\(\Lambda \in \{1,...,n\} \) LIVE}_T(x_i) \land (\langle \rangle \Phi) \mid \text{\(\Lambda \in \{1,...,n\} \) LIVE}_T(x_i) \land (\neg)\Phi
\]

where \(\mathsf{Q}_k \) is a (possibly open) FO query with location arguments, in which the only constants that may appear are those in \(\Delta_0 \).

The semantics of \(\mu L_p^\Delta \) is defined over a relational transition system similarly to the semantics of \(\mu L_p \) in [Bagheri Hariri et al. 2013]. The most peculiar aspect is
Figure 1: Procedure for constructing a transition system describing the execution semantics of an RMAS; given a set \(F \) of facts, \(\text{CALLS}(F) \) returns the ground service calls contained in \(F \).
constituted by \(Q_\ell \), which allows one to dynamically inspect the databases maintained by active agents. In particular, \(Q_\ell \) is a standard (typed) \(\mathcal{FO} \) query, whose atoms have the form \(R(\vec{x})@a \), where \(R \) is a (typed) relation, and \(a \) denotes an agent name. The evaluation of the atomic query \(R(\vec{x})@a \) over a relational transition system \(\mathcal{T} \) with substitution \(\theta \) returns those states \(s \) of \(\mathcal{T} \) such that:

- \(a\theta \) is an active agent in \(s \), that is, \(\text{Agent}(a\theta) \in s.db(\text{inst}) \);
- the atomic query \(R(\vec{x})\theta \) evaluates to true in the database instance that agent \(a\theta \) has in state \(s \), i.e., \(\text{ans}(R(\vec{x})\theta, s.db(a\theta)) \equiv \text{true} \).

Example 4.1. Consider the protocol in Section 3, assuming \(R \) uses a unary typed relation \(\text{inst} \) to store the agent that is currently in the critical interaction. Given:

\[
\text{First}(a) = \exists t. \text{hasTicket}@\text{inst}(a, t) \wedge \\
\neg \exists t'. \text{hasTicket}@\text{inst}(a', t') \wedge a' \neq a \wedge t < t,
\]

\[
\nu Z. (\text{ya} @ \text{Agent}@\text{inst}(a) \wedge \text{First}(a) \rightarrow \\
\mu Y. (\text{inCritical}@\text{inst}(a) \wedge (\text{Agent}@\text{inst}(a) \wedge \neg Y)) \wedge \neg Z)
\]

models that when an agent is “first”, there will be a run in which it persists into the system until it enters the critical interaction.

5 Decidability of Verification

We now study different aspects of the following verification problem: given a closed \(\mu \ell_{\mathcal{R}}^p \) property \(\Phi \) and an RMAS \(\mathcal{X} \), check whether \(\Phi \) holds over the relational transition system \(\mathcal{Y}_\mathcal{X} \), written \(\mathcal{Y}_\mathcal{X} \models \Phi \). Unsurprisingly, this problem in general is undecidable. In a recent series of works, verification of data-aware dynamic systems has been studied under the notion of state-boundedness (Bagheri Hariri et al. 2014), which, in the context of RMASs, can be phrased as follows. An RMAS \(\mathcal{X} \) is state-bounded if, for every state \(s \) of \(\mathcal{X} \), the number of data objects stored in each agent database does not exceed a pre-defined bound.

As shown in previous work, state-boundedness still allows one to model systems that encounter infinitely many different data objects (and, possibly, even agents) along their runs, provided that they do not accumulate in the same state. In our setting, this means that infinitely many different agents can interact, provided that at each time point only a bounded number of them is active (Montali, Calvanese, and De Giacomo 2014). Similarly, from Theorem 5.1 we obtain that when an RMAS is state-bounded, asynchronous communication can be modelled only by putting a threshold on the size of each message queue.

(Montali, Calvanese, and De Giacomo 2014) have shown that verification of state-bounded DACMASs is decidable. We study now how data types impact on this.

Compilation of Facets.

Facets can be eliminated, getting a shallow-typed RMAS, i.e., one using base facets only.

Theorem 5.1. For every RMAS \(\mathcal{X} \), there exists a corresponding shallow-typed RMAS \(\mathcal{X}^\perp \) such that, for every \(\mu \ell_p \) property \(\Phi \), we have \(\mathcal{Y}_\mathcal{X} \models \Phi \) if and only if \(\mathcal{Y}_\mathcal{X}^\perp \models \Phi \).

Proof. Let \(\mathcal{X} = (T, F, D_0.F, S, M, G, I) \). We construct \(\mathcal{X}^\perp = (T, \tilde{T}, D_0.F, \tilde{S}, \tilde{M}, \tilde{G}, \tilde{I}) \) as follows:

- \(\tilde{T} \) is the set of base facets constructed starting from the types in \(\mathcal{T} \).
- \(\tilde{S} \) and \(\tilde{M} \) are obtained from \(S \) and \(M \) by substituting the facet attached to each component with the corresponding base facet: whenever a component is originally typed with facet \((T, \varphi(x)) \in \mathcal{F} \), the corresponding component is typed with the base facet \((\tilde{T}, \varphi(x)) \in \tilde{F} \).
- \(\tilde{S} \) and \(\tilde{M} \) are obtained from \(S \) and \(M \) by substituting the facet attached to each component with the corresponding base facet: whenever a component is originally typed with facet \((T, \varphi(x)) \in \mathcal{F} \), the corresponding component is typed with the base facet \((T, \text{true}) \in \tilde{F} \).
- Each agent specification \(\mathcal{N} = (n, D, \Gamma, D_0, C, A, U) \) in \(G \cup \{ I \} \) becomes a corresponding agent specification \(\tilde{\mathcal{N}} = (n, D, \tilde{\Gamma}, D_0, \tilde{C}, \tilde{A}, \tilde{U}) \) in \(G \cup \{ \tilde{I} \} \). The database schema \(\tilde{D} \) transforms \(D \) similarly to how \(\tilde{S} \) and \(\tilde{M} \) transform \(S \) and \(M \): for every \(n \)-ary typed relation \(\tilde{R} \in \tilde{D} \), a corresponding \(n \)-ary relation \(\tilde{\mathcal{R}} \) is included in \(\tilde{D} \), such that, for every \(i \in \{1, \ldots, n\} \), \(\text{TYPE}_\mathcal{D} (\tilde{R}[i]) = (T, \text{true}) \) if and only if \(\text{TYPE}_\mathcal{D} (R[i]) = (T, \varphi(x)) \). In addition, for every typed service call \(\tilde{\mathcal{F}}((T_1, \varphi_1(x_1)), \ldots, (T_n, \varphi_n(x_n))) \) in \(\tilde{S}, \tilde{D} \) contains a relation \(\tilde{\text{Input}}_\mathcal{F}((T_1, \varphi_1(x_1)), \ldots, (T_n, \varphi_n(x_n))) \), whose use is explained below.

The other elements of \(\tilde{\mathcal{N}} \) ensure that the type checks of \(\mathcal{N} \) are properly recreated in the form of special queries and constraints. In particular:

- For every communicative rule \(\text{}Q(t, \vec{x}) \text{ enables } M(\vec{x}) \text{ to } t' \text{ in } C \), with \(|\vec{x}| = n, \tilde{C} \) contains the corresponding rule

\[
Q(t, \vec{x}) \land \\
\bigwedge_{i \in \{1, \ldots, n\}} (T_i, \varphi_i(x_i) = \text{TYPE}_\mathcal{M} (M[i])
\]

This guarantees that the filter criterion applied on lines 45-47 of Figure 1 is properly reconstructed, so that \(\mathcal{X} \) and \(\mathcal{X}^\perp \) produce the same sets of enabled messages.

- A similar approach is applied to the update rules in \(U \), incorporating into each condition the facet expressions of the facets attached to the corresponding action components in such a way that the filter criterion applied on lines 15 and 17 of Figure 1 is properly reconstructed. This ensures that \(\mathcal{X} \) and \(\mathcal{X}^\perp \) produce the same sets of instantiated actions.

- Actions \(A \) need to be translated by ensuring that the types of relations in \(D \) and those of the service call input/outputs in \(S \) are properly checked. The typing of relation components is guaranteed by augmenting the set \(\Gamma \) of constraints. Specifically, beside all the original constraints in \(\Gamma \), for each \(n \)-ary typed relation \(\tilde{R} \in \tilde{D} \) and every \(i \in \{1, \ldots, n\} \), we insert into \(\tilde{\Gamma} \) a dedicated constraint

\[
\forall x_i, R(_ , ... , x_i , ... , _) \rightarrow \varphi_i(x_i)
\]

where \(\varphi_i \) is the facet formula of \(\text{TYPE}_\mathcal{D} (R[i]) \). This technique guarantees that \(\mathcal{X} \) and \(\mathcal{X}^\perp \) equivalently evaluate the conditions on lines 24 and 26 of Figure 1.
always satisfies the conformance test of \mathcal{X} as a test on the satisfaction of database constraints, expressed in the second conjunct of lines 24 and 26. Finally, the tests expressed on lines 21 and 22 of Figure 1 which respectively check whether the service calls involved in an action application have inputs and outputs conforming to their respective facets, is reformulated using the technique illustrated in the following. For every action $\alpha \in \mathcal{A}$, \mathcal{X} contains an action α', constructed by properly manipulating the set of facts in the add-set. Specifically, for each effect $"Q(\bar{p}, \bar{x}) \rightarrow \text{add } A, \text{del } D^n"$ in the specification of α, α' contains a corresponding effect $"Q(\bar{p}, \bar{x}) \rightarrow \text{add } A', \text{del } D^n"$, where:

$$A' = A \cup \{\text{Input}_f(\bar{x})| F \in A \text{ and } f(\bar{x}) \text{ appears in } F\}$$

Intuitively, A' adds a fact for relation Input_f/n and a fact for relation $\text{Output}_f/1$ for every n-ary service call f appearing in A, in such a way that the context of these two facts respectively correspond to the input and output of f. Since it is not important that such facts are persisted in the agent database, but it is only important that they are present after the action is applied, the specification of each action in \mathcal{X} also contains the following effects:

$$\{\text{Input}_f(\bar{x}) \rightarrow \text{del} \{\text{Input}_f(\bar{x})\} | \bar{T}_i \in S\}$$

The conformance with the service input facets can then be reformulated similarly to the case of relations in \mathcal{D}, that is, by further augmenting the set $\hat{\Gamma}$ of constraints. Specifically, for each n-ary service call $\bar{f} = (f/n, F^{in}, F^{out})$ in S, we insert two dedicated constraints in $\hat{\Gamma}$:

1. by denoting with φ_i the facet formula of the i-th component of F^{in},

$$\forall x_1, \ldots, x_n. \text{Input}_f(x_1, \ldots, x_n) \rightarrow \bigwedge_{i \in \{1, \ldots, n\}} \varphi_i(x_i)$$

2. by denoting with ψ the facet formula of F^{out},

$$\forall x. \text{Output}_f(x) \rightarrow \psi(x)$$

This mechanism lifts the checks applied for \mathcal{X} on lines 21 and 22 of Figure 1 (which is trivially true for $\hat{\mathcal{X}}$) as additional constraint checks on lines 24 and 26 where the satisfaction of database constraints is tested.

The translation mechanism ensures that the execution semantics of $\hat{\mathcal{X}}$ suitably reconstitute that of \mathcal{X}, i.e., if we project away the accessory relations used for the service call inputs, we have that $\check{Y}_{\hat{\mathcal{X}}}$ is equivalent to $\check{Y}_{\mathcal{X}}$.

As a consequence of Theorem 5.1, we have that, for shallow-typed RMASs, the transition system construction can be simplified as shown in the BUILD-TS-SHALLOW procedure of Figure 2.

5.1 RMASs with the Successor Relation

We now show that including at least one data type with the successor relation compromises decidability:

Theorem 5.2. Verification of a propositional reachability property over state-bounded, shallow-typed RMASs that use a single data type equipped with the successor relation is undecidable, even when the RMAS contains a single agent that uses unary relations only.

Proof. The proof is by reduction from the halting problem of two-counter machines. A **counter** is a memory register that stores a (non-negative) integer. Notice that the proof works in the same way even if we substitute \mathbb{Z} with \mathbb{Q} or \mathbb{R}, provided that they are equipped with the successor relation.

Given two positive integers $n, m \in \mathbb{N}^+$, an m-counter machine \mathcal{E} with counters c_1, \ldots, c_m is a program constituted by a (numbered) sequence of n instructions:

$$1 : \text{CMD}_1; \; \; 2 : \text{CMD}_2; \; \ldots \; n : \text{HALT}$$

where the n-th instruction indicates that \mathcal{E} halts, while for every $k \in \{1, \ldots, n-1\}$, instruction $k : \text{CMD}_k$ has one of the two following forms:

- *(increment command)* for counter i $\text{CMD}_k = \text{INC}(i, k')$, with $i \in \{1, \ldots, m\}$ and $k' \in \{1, \ldots, n\}$, which increases the counter c_i of one unit, and then jumps to instruction number k':

$$k : c_i := c_i + 1; \; \text{GOTO} \; k';$$

- *(conditional decrement command)* for counter i $\text{CMD}_k = \text{CDEC}(i, k', k'')$, with $i \in \{1, \ldots, m\}$ and $k', k'' \in \{1, \ldots, n\}$, which tests whether the value of counter i is zero. If so, it jumps to instruction k''; otherwise, it decreases counter i of one unit, and then jumps to instruction k'':

$$k : \text{if } c_i == 0 \; \text{then \; GOTO} \; k'; \; \text{else} \; \{c_i := c_i - 1; \; \text{GOTO} \; k''\}$$

An *input* for an m-counter machine is an m-tuple of values (d_1, \ldots, d_m) (such that $d_i \in \mathbb{N}$), used to initialize its counters. Given an m-counter machine \mathcal{E} and an input I of size m, we say that \mathcal{E} **halts on input** I if the execution of \mathcal{E} with counter initial values set by I eventually reaches the last, HALT command.

It is well-known that checking whether a 2-counter machine halts on a given input is undecidable [Minsky 1967], and that undecidability still holds when checking whether the 2-counter machine halts on input $(0, 0)$.

We show how to encode a 2-counter machine into a state-bounded, shallow-typed RMAS containing a single agent specification that work over unary relations only. Specifically, given a 2-counter machine \mathcal{E} with n instructions, we construct RMAS $\mathcal{X}_\mathcal{E}$ = $(\{AT, ZT\}, \{AF, ZF\}, \{0, \ldots, k\}, \{\text{Input}\}, \emptyset, I_\mathcal{E})$, where $k = \max(2, n)$, and:

- $AT = (\langle a, (\{\} \rangle$ is the agent type (just used to keep track of the instance name), $ZT = (\langle Z, (\langle <, =, \text{succ} \rangle \rangle$ is the integer type (but, as specified above, \mathbb{Z} can be seamlessly substituted by \mathbb{Q} or \mathbb{R}).
Figure 2: Simplification of BUILD-TS dealing with shallow-typed RMASs

- AF and ZF are the base facets defined starting from AT and ZT respectively.
- input = $\langle \text{input}/0, \langle \rangle, ZF \rangle$ is a 0-ary service that returns integer values.
- go is a message sent by inst to itself so as to trigger the processing of the next instruction.
- I_C is a specification for the institutional agent that mimics the program of C.

Specifically, $I_C = \langle \text{instspec}, D_C, \Gamma_C, D_{\text{inst}}, \mathcal{C}_C, \mathcal{A}_C, \mathcal{U}_C \rangle$, where:

- $D_C = \left\{ C_1(ZF), C_2(ZF), C_3(ZF), C_4(ZF), \frac{\text{PC}(ZF)}{ZF}, \frac{C_4(ZF)}{ZF}, \frac{\text{Op}(ZF)}{ZF}, \frac{\text{Target}(ZF)}{ZF}, \frac{\text{Halted()}}{ZF} \right\}$

- C_1 and C_2 store the program counter (i.e., the number of the instruction to be processed).
- $C_3(ZF)$ indicates the nature of the operator to be applied (0 means increment, while 1 means decrement).
- $Target$ indicates the target counter, that is, the counter to which the operation must be applied (1 means the first counter, 2 the second).
- $Halted$ is a proposition indicating that the agent finished the execution (i.e., reached the last instruction of C).

- \mathcal{C}_C contains constraints that encode the semantics of operations. In particular:
 - In the case of increment, the target counter must have a
current value that is successor of the previous value:
\[Op(0) \land Target(1) \]
\[\rightarrow (\forall x, PC(x) \land C(x, x_p) \rightarrow succ(x, x_p)) \]
\[Op(0) \land Target(2) \]
\[\rightarrow (\forall x, x, C_2(x) \land C_2(x) \rightarrow succ(x, x_p)) \]

– In the case of decrement, the opposite holds, i.e., the target counter must have a current value that is predecessor of the previous value:
\[Op(1) \land Target(1) \]
\[\rightarrow (\forall x, x, C_1(x) \land C_1(x) \rightarrow succ(x, x_p)) \]
\[Op(1) \land Target(2) \]
\[\rightarrow (\forall x, x, C_2(x) \land C_2(x) \rightarrow succ(x, x_p)) \]

- The initial database of inst initializes the two counters to 0, and the program counter to the first instruction:
\[D_{inst} = \{ Agent(inst), MyName(inst), C_1(0), C_2(0), PC(1) \} \]

- \(C_\mathcal{E} \) contains just a single rule, which enables inst to send a go message to itself if it is not halted:
\[MyName(a) \land \neg Halted \text{ enables } go() \text{ to } a \]

- \(\mathcal{A}_\mathcal{E} \) contains the following actions:
 - **SET-PC(ZF)** updates the program counter to the value passed as parameter:
\[\text{SET-PC(next)} : \begin{cases} PC(x) \rightarrow del \{ PC(x) \} \\
true \rightarrow add \{ PC(next) \} \end{cases} \]

 - **SET-OP(ZF, ZF)** sets the operation, i.e., the operation type and the target counter, to the passed parameters:
\[\text{SET-OP(o, t)} : \begin{cases} Op(x) \rightarrow del \{ Op(x) \} \\
Target(x) \rightarrow del \{ Target(x) \} \\
true \rightarrow add \{ Op(o) \} \\
true \rightarrow add \{ Target(t) \} \end{cases} \]

 - **U-C(ZF)** updates the value of the counter whose index is passed as parameter, and at the same time remembers the current value moving it to the “previous” counter relation:
\[\text{U-C(c)} : \begin{cases} c = 1 \land C_1(x) \rightarrow del \{ C_1(x) \} \\
c = 1 \land C_2(x) \rightarrow del \{ C_2(x) \} \\
c = 1 \rightarrow add \{ C_1(input) \} \\
c = 2 \land C_1(x) \rightarrow del \{ C_2(x) \} \\
c = 2 \land C_2(x) \rightarrow del \{ C_1(x) \} \\
c = 2 \rightarrow add \{ C_2(input) \} \end{cases} \]

It is worth noting that the action nondeterministically updates the content of the first or second counter, depending on the value of the parameter. However, by considering the constraints modelled in \(\mathcal{T}_\mathcal{E} \), only the successor state that has picked exactly the successor or predecessor value of the current one will be selected, depending on what the current operation is.

- **STOP()** is an action without parameters that just sets the *Halted* flag to true:
\[\text{STOP()} : \{ true \rightarrow add \{ Halted \} \} \]

- \(\mathcal{U}_\mathcal{E} \) contains a set of rules that mirror the instructions of \(\mathcal{C} \), according from the following translation schema:
 - For instruction \(k \land \text{INC}(i, k') \) (with \(i \in \{ 1, 2 \} \)), we get:
\[\begin{align*}
\text{on go if } & PC(k) \land C_i(0) \text{ then SET-PC(k')} \\
\text{on go if } & PC(k) \land C_i(0) \text{ then SET-OP(0, 1)} \\
\text{on go if } & PC(k) \land C_i(0) \text{ then U-C(1)}
\end{align*} \]

The first rule handles the update of the program counter. The second rule indicates that counter 1 must be subject to operation with code 0. The third rule indicates that the instruction require to update the content of counter 1.

- For instruction \(k \land \text{CDEC}(i, k', k'') \) (with \(i \in \{ 1, 2 \} \)), we get:
\[\begin{align*}
\text{on go if } & PC(k) \land C_i(0) \land \neg C_i(0) \text{ then SET-PC(k'')} \\
\text{on go if } & PC(k) \land \neg C_i(0) \text{ then SET-OP(1, 1)} \\
\text{on go if } & PC(k) \land \neg C_i(0) \text{ then U-C(1)}
\end{align*} \]

The formalization is specular to the case of increment, with the proviso that the manipulation of the counter is triggered only if the counter is not 0.

- For instruction \(n \land \text{HALT} \), we simply get:
\[\text{on go if } PC(n) \text{ then HALT()} \]

It is now apparent that \(\mathcal{C} \) halts on input \((0, 0) \) if and only if \(\forall x_\mathcal{E} \models \mu Z.(\text{Halted}) \lor (\neg Z) \)

\[\square \]

5.2 Densely-Ordered RMAS

Given the previous undecidability result, we focus on dense orders. A densely-ordered RMAS only relies on data types equipped with domain-specific equality = and, possibly, total dense orders, as well as corresponding facets. For this class of RMASs, we have:

Theorem 5.5. Verification of closed \(\mu \mathcal{T}_\mathcal{E} \) properties over state-bounded, densely-ordered RMASs is decidable and reducible to conventional, finite-state model checking.

Let \(\mathcal{X} = (\mathcal{T}, \mathcal{F}, \Delta_{0, x}, \mathcal{S}, \mathcal{M}, \mathcal{G}, \mathcal{I}) \) be an RMAS, and \(\Phi \) be a closed \(\mu \mathcal{T}_\mathcal{E} \) property. Notice that, by hypothesis, \(\mathcal{T} \) is constituted by a set \(\mathcal{T}_n \) of data types equipped with domain-specific equality only, and a set \(\mathcal{T}_n \) of data types equipped also with a dense total order: \(\mathcal{T} = \mathcal{T}_n \uplus \mathcal{T}_n \).

The proof is quite involved, so we separate it into several steps and intermediate lemmas.

The first step consists in reformulating the input RMAS \(\mathcal{X} \) into the equivalent, shallow-typed version \(\tilde{\mathcal{X}} = (\tilde{\mathcal{T}}, \tilde{\mathcal{F}}, \Delta_{0, x}, \tilde{\mathcal{S}}, \tilde{\mathcal{M}}, \tilde{\mathcal{G}}, \tilde{\mathcal{I}}) \), as defined in the proof of Theorem 5.1. By Theorem 5.1, we have that \(\forall \mathcal{X} \models \Phi \) if and only if \(\forall \mathcal{X} \models \Phi \).

As a second step, we consider the infinite-state transition system \(\mathcal{T}_\mathcal{E} \), and seek a faithful (sound and complete) finite-state abstraction of it, suitably extending the technique in [Bagheri Hariri et al. 2013] so as to consider types, and dense orders in particular. Since \(\mathcal{X} \) is state-bounded, two sources of infinity are possibly present in \(\mathcal{T}_\mathcal{E} \) and \(\tilde{\mathcal{X}} \):
1. **procedure** BUILD-FB-TS-SHALLOW(\tilde{X})

2. **input:** Shallow-typed RMAS $\tilde{X} = (\mathcal{T}, \tilde{T}, \Delta_{0,T}, \tilde{S}, \tilde{M})$, with $\mathcal{T} = \{T_1, \ldots, T_n\}$ and $\tilde{T} = \{T_1^\ast, \ldots, T_m^\ast\}$.

3. $AS_0 := \{(n, spec_n) | hasSpec(n, spec_n) \in D_0\}$

4. for all $(n, spec_n) \in AS_0$ do $s_0 := D_0^{spec_n}$

5. $\Sigma := \{s_0\}, \rightarrow := \emptyset$

6. while true do

7. pick $a \in \Sigma$ if $EMsg \neq \emptyset$ then

8. $CurAS := \{(n, spec_n) | hasSpec(a, spec_n) \in s.db\}$

9. for all $(n, spec_n) \in CurAS$ do

10. $EMsg := GET-MSGs(C^{spec}, s.db(a), CurAS)$

11. if $EMsg \neq \emptyset$ then

12. pick $(M(s), b) \in EMsg$, with $(b, spec_b) \in CurAS$

13. $ACT_a := \emptyset, ACT_b := \emptyset$

14. for all matching on-send rules “on $M(s)$ to t if $Q(t, x)$ then $a(t, x)$” in C^{spec} do

15. if $ans(Q(b, \tilde{s}), s.db(a))$ then $ACT_a := ACT_a \cup \{a(b, \tilde{s})\}$

16. for all matching on-receive rules “on $M(s)$ from s if $Q(s, \tilde{x})$ then $a(s, \tilde{x})$” in C^{spec} do

17. if $ans(Q(a, \tilde{s}), s.db(b))$ then $ACT_b := ACT_b \cup \{a(b, \tilde{s})\}$

18. $\langle ToDel^a, ToAdd^a \rangle := GET-FACTS($\tilde{X}, s.db(a), ACT_a$), $\langle ToDel^b, ToAdd^b \rangle := GET-FACTS($\tilde{X}, s.db(b), ACT_b$)

19. $DB_a^* := (s.db(a) \triangleleft ToDel^a) \cup ToAdd^a$

20. $DB_b^* := (s.db(b) \triangleleft ToDel^b) \cup ToAdd^b$

21. for all data type $T \in \mathcal{T}$ do

22. $\textit{ADom}_a(T) := \{d \in D_T \cap \Delta_{0,T} | d \in \textit{ADom}(s)\}$

23. $\{\{P_1, \ldots, P_n, H_1, \ldots, H_m\} | P_i \text{ is a } T_i^\ast\text{-equality commitment on } \textit{ADom}_a(T_i) \text{ for } i \in \{1, \ldots, n\}\}$

24. $\textit{ADom}_a(T) = \{d \in D_T | d \in \Delta_T \cap \Delta_{0,T} \}$

25. $\textit{Get} \text{ currently active agents with their specifications}$

26. $\text{assign} \text{-RES}^\Delta \sigma(s, f(s)) = d$

27. $DB_{\text{can}} := DB^* \sigma, DB_{\text{cas}} := DB_{\text{can}}$

28. if DB_{can} satisfies \tilde{T} then $DB_a := DB_{\text{can}}$

29. else $DB_a := s.db(a)$

30. $DB_b := s.db(b)$

31. Do the update for each active agent

32. if a is inst then $NewAS := \{\{n, spec_n\} | hasSpec(n, spec_n) \in DB_a\}$

33. else if b is inst then $NewAS := \{\{n, spec_n\} | hasSpec(n, spec_n) \in DB_b\}$

34. else $NewAS := CurAS$

35. No change if inst is not involved in the interaction or must reject the update

36. if $n = a$ then $s', \text{db}(n) := DB_a$

37. else if $n = b$ then $s', \text{db}(n) := DB_b$

38. else if $n \notin CurAS$ then $s', \text{db}(n) := D_0^{spec_n} \cup \{MyName(n)\}$

39. else $s', \text{db}(n) := s', \text{db}(n)$

40. if $\exists s'' \in S \text{ s.t. } s'', \text{db}(\text{inst}) = s', \text{db}(\text{inst})$ and for each $(n, \ldots) \in CurAS, s'', \text{db}(n) = s', \text{db}(n)$ then

41. $\rightarrow := \rightarrow \cup \{s', s''\}$

42. else $\Sigma := \Sigma \cup \{s', s''\}$, $\rightarrow := \rightarrow \cup \{s', s''\}$

Figure 3: Procedure for constructing a transition system that is a finite-branching, faithful abstraction of the transition system constructed by BUILD-TS-SHALLOW

1. infinite branching, that is, presence of a state with infinitely many successors due to the injection of data through service calls;

2. infinite runs, that is, runs that visit infinitely many different agent databases.

We can get rid of the infinite-branching in $\Gamma_\tilde{X}$ by suitably pruning it:

Lemma 5.4. For every shallow-typed RMAS \tilde{X}, there exists a transition system $\Lambda_\tilde{X}$ that obeys the following properties:

(i) $\Lambda_\tilde{X}$ is finite-branching;

(ii) for every closed μ^ϕ property Φ, $\Gamma_\tilde{X} \models \Phi$ if and only if $\Lambda_\tilde{X} \models \Phi$.

To produce $\Lambda_\tilde{X}$, we extend the notion of equality commitment exploited in [Bagheri Hariri et al. 2012][Bagheri Hariri et al. 2013]. Equality commitments are used to abstractly describe how the result of a service call relates through (in)equality to the values present in the active
domain of the system, and to those returned by other service calls issued in the same moment, without considering their actual, specific results. Technically, we adapt the definition of equality commitment in (Bagheri Hariri et al. 2012) to the case of RMASs, taking into account that: (i) differently from DCDDs, data objects are typed, and (ii) some data objects could be compared not only with equality, but also with a domain-specific total, dense relation.

Consider a data type \(T_u \in T_u \), and a set \(S \) made up of data objects in \(\Delta T_u \) and of ground service calls built by applying a service call \(\overrightarrow{f} \in S \) to input data objects, such that the return type of \(\overrightarrow{f} \) is compatible with \(T_u \). A \(\overrightarrow{f} \)-equality commitment \(P \) on \(S \) is a partition of \(S \), that is, a set of disjoint subsets of \(S \), called cells, such that the union of the cells in \(P \) is exactly \(S \). Each cell contains at most one data object (but arbitrarily many ground service calls). For any \(e \in P \), \([e]_P \) denotes the cell to which \(e \) belongs.

The intention of \(H \) is to abstractly characterize how the elements in \(S \) are related to each other via the domain-specific relation \(=_{T_u} \) of \(T_u \). In particular, \(P \) is used to capture equality and non-equality commitments on the members of \(S \) in the following sense: for every \(e_1, e_2 \in S \), we have \(e_1 =_{T_u} e_2 \) if and only if \([e_1]_P = [e_2]_P \).

Consider now a data type \(T_o \in T_o \), and a set \(S \) as before. A \(\overrightarrow{f} \)-densely ordered commitment \(H \) on \(S \) is a pair \((P, pos)\), where:

- \(P \) is a \(\overrightarrow{f} \)-equality commitment over \(S \):
- \(pos \) is an ordering over \(P \) that is compatible with \(S \), i.e., \(pos \) is a bijection \(\{1, \ldots, |P|\} \rightarrow P \) that obeys the following property: for every \(P_1, P_2 \in P \), whenever \(P_1 \) contains a data object \(d_1 \in T \) and \(P_2 \) contains a data object \(d_2 \in \Delta T \), we have \(pos(P_1) <_P pos(P_2) \) if and only if \(d_1 <_{T_u} d_2 \), where \(<_{T_u} \) denotes the total order relation on natural numbers.

The intention of \(H \) is to abstractly characterize how the elements in \(S \) are related to each other via the domain-specific relations \(=_{T_u} \) and \(<_{T_u} \) of \(T_u \). Specifically, \(P \) covers equality, while \(pos \) accounts for \(< \), and orders the members of \(S \) in the following sense: for every \(e_1, e_2 \in S \), we have \(e_1 =_{T_u} e_2 \) if and only if \(pos([e_1]_P) <_P pos([e_2]_P) \).

We now exploit commitments to change the BUILD-TS algorithm, shown in Figure 1 and used to construct \(Y \). In particular, we start from the TS-BUILD-SHALLOW procedure, and modify the function that nondeterministically selects the results returned by service calls. First of all, we assume the existence of a pre-defined function \textsc{assign-res}, parameterized by a tuple of commitments, which substitutes a service call with a corresponding result that is in accordance with the cell to which the service call belongs. In particular, let \(T_u = \{T_1^u, \ldots, T_n^u\} \) and \(T_o = \{T_1^o, \ldots, T_m^o\} \). Let \(\langle S_1^u, \ldots, S_n^u, S_1^o, \ldots, S_m^o \rangle \) be a tuple of sets, each containing data objects from the corresponding type, and possibly also service calls whose return type matches with that type. Let \(\overrightarrow{f} = \langle P_1, \ldots, P_n, H_1, \ldots, H_m \rangle \) be a tuple of commitments, where each \(P_i \) is a \(T_i^u \)-equality commitment built over \(S_i^u \), and where each \(H_j \) is a \(T_j^o \)-densely ordered commitment built over \(S_j^o \).

Specifically, given a data domain \(\Delta \), we define

\[
\textsc{assign-res}_{\Delta}^\overrightarrow{f} : \Sigma \times \text{calls}((\bigcup_{i \in \{1, \ldots, n\}} S_i^u \cup \bigcup_{j \in \{1, \ldots, m\}} S_j^o) \rightarrow \Delta)
\]

where, by fixing a state \(s \in \Sigma \), \textsc{assign-res}_{\Delta}^\overrightarrow{f} \) obeys to the following properties:

- For \(i \in \{1, \ldots, n\} \), for every service call \(f(\overrightarrow{o}) \in S_i^u \) and for every data object \(d \in S_i^u \), \(\textsc{assign-res}_{\Delta}^\overrightarrow{f}(s, f(\overrightarrow{o})) =_{T_i^u} d \) if \(f(\overrightarrow{o})|_P =_{T_i^u} [d]_P \).
- For \(i \in \{1, \ldots, n\} \) and for every two service calls \(f_1(\overrightarrow{o}_1), f_2(\overrightarrow{o}_2) \in S_i^u \), \(\textsc{assign-res}_{\Delta}^\overrightarrow{f}(s, f_1(\overrightarrow{o}_1)) =_{T_i^u} \textsc{assign-res}_{\Delta}^\overrightarrow{f}(s, f_2(\overrightarrow{o}_2)) \) if \(f_1(\overrightarrow{o}_1)|_P =_{T_i^u} f_2(\overrightarrow{o}_2)|_P \).
- For \(j \in \{1, \ldots, m\} \) with \(H_j = (P'_j, pos_j) \), for every service call \(f(\overrightarrow{o}) \in S_j^o \) and for every data object \(d \in S_j^o \), \(\textsc{assign-res}_{\Delta}^\overrightarrow{f}(s, f(\overrightarrow{o})) =_{T_j^o} d \) if \(f(\overrightarrow{o})|_P =_{T_j^o} d|_P' \).
- For \(H_j = (P'_j, pos_j) \) and for every two service calls \(f_1(\overrightarrow{o}_1), f_2(\overrightarrow{o}_2) \in S_j^o \), \(\textsc{assign-res}_{\Delta}^\overrightarrow{f}(s, f_1(\overrightarrow{o}_1)) =_{T_j^o} \textsc{assign-res}_{\Delta}^\overrightarrow{f}(s, f_2(\overrightarrow{o}_2)) \) if \(f_1(\overrightarrow{o}_1)|_P =_{T_j^o} f_2(\overrightarrow{o}_2)|_P pos((f_1(\overrightarrow{o}_1)|_P)^P \subset pos((f_2(\overrightarrow{o}_2)|_P)^P'). \)

Intuitively, this function is used to select a single, representative combination of service call results that obey to the constraints imposed by a given commitment.

Figure 3 shows the revised version of the algorithm in Figure 2. Instead of picking any combination of service call results, the BUILD-FB-TS-SHALLOW algorithm picks an equality/densely-ordered commitment for each type of the input RMAS, constructed over the current active domain for that type, where the current active domain for type \(T \) is obtained by considering:

- the initial data objects for \(T \);
- the current data objects for \(T \);
- the service calls that must be issued now, and whose return facet is defined over type \(T \).

The combination of service call results for each type is then obtained by applying the pre-defined \textsc{assign-res} function.

Let \(\Lambda \) be the transition system obtained by the application of the BUILD-FB-TS-SHALLOW procedure over the shallow-typed RMAS \(\overrightarrow{X} \). We first argue that \(\Lambda \) is finite-differentially, branching, differently from \(Y \), for which the function \textsc{get-call-res} may return infinitely many combinations of service call results. In fact, given the current active domain \(ADoms(T) \) of a type \(T \), there are only finitely many commitments that can be constructed over that set. More specifically, when \(T \) is an unordered type their number is bounded by the Bell number of \(|ADoms(T)| \), whereas when \(T \) is an ordered type their number is bounded by the Bell number of \(|ADoms(T)| \), multiplied by the factorial of \(|ADoms(T)| \) (so as to account for the permutation of data objects). Since the \textsc{assign-res} function assigns a single combination of results for each commitment, there are only finitely many combination of service call results, and consequently only
To show that $\lambda_{\tilde{\Lambda}}$, and $\Lambda_{\tilde{\Lambda}}$ satisfy the same set of $\mu\Lambda_{\tilde{\Lambda}}$ formulae, one needs to follow step-by-step the proof of [Bagheri Hariri et al. 2012, Bagheri Hariri et al. 2013], noticing that the notion of densely-ordered commitment covers the case of formulae of the form $x < y$, which is the only one not already tackled by [Bagheri Hariri et al. 2012, Bagheri Hariri et al. 2013]. This concludes the proof of Lemma 5.4.

We now observe that $\Lambda_{\tilde{\Lambda}}$ may still contain runs visiting infinitely many different states. The third phase of our proof consequently consists of showing that it is possible to produce a “folded” folded transition system $\Theta_{\tilde{\Lambda}}$ that is finite-state, and such that for every closed $\mu\Lambda_{\tilde{\Lambda}}$ property Φ, $\Lambda_{\tilde{\Lambda}} \models \Phi$ if and only if $\Theta_{\tilde{\Lambda}} \models \Phi$.

Before showing how this can be done, we define a variant of BUILD-FB-TS-SHALLOW that, instead of employing the domain-specific (rigid) ordering relations, relies on additional “comparison tables” that are suitably manipulated state by state. The algorithm is shown in Figure 4. The construction algorithm exploits a specific database (indexed in the state by symbol $<$) to store the projection of the ordering relations of types in \mathcal{T}_ω, where only actively persisting data objects are considered. Such database employs a relation $lessThan_{\mathcal{T}_\omega}$, for each densely-ordered data type $T_\omega \in \mathcal{T}_\omega$. In order to make the input RMAS insisting on such relations instead of the domain-specific ones, we introduce the FLATTEN operator, which takes an RMAS or one of its components, and substitutes every occurrence of a query of the form $x < T_\omega y$ with the corresponding atomic query $lessThan_{\mathcal{T}_\omega}(x, y)$.

Such a database is initialized by computing, for each data type $T_\omega \in \mathcal{T}_\omega$, the transitive closure of the $<_{T_\omega}$ relation on the initial data domain for T_ω, and by inserting all extracted pairs into the dedicated $lessThan_{\mathcal{T}_\omega}$ binary relation. It is then used whenever a query is issued over an agent database, so as to complement it with the explicit listing of all $lessThan$ relations. Finally, it is updated state-by-state:

- on the one hand by considering the issued service calls, in accordance with the pos relation of the established densely-ordered commitments (cf. line 36 in Figure 4);
- on the other hand by filtering away those tuples that involve a data object that is not persisting when performing a transition from the current to the next state (cf. line 53 in Figure 4).

Let Λ_{flat} be the transition system produced by BUILD-FB-TS-SHALLOW-FLATTEN($\tilde{\Lambda}$). We have that:

Lemma 5.5. For every shallow-typed RMAS $\hat{\mathcal{X}}$ and every closed $\mu\Lambda_{\tilde{\Lambda}}$ property Φ:

$$\Lambda_{\tilde{\Lambda}} \models \Phi \text{ if and only if } \Lambda_{flat} \models \text{FLATTEN}(\Phi)$$

The lemma can be proven by induction on the construction of the two transition systems, recalling that:

- Every execution step of an RMAS is triggered by issuing domain-independent queries over the current database of one of its agents, and therefore comparisons can only be applied to data objects actively present in that database.
- $\mu\Lambda_{\tilde{\Lambda}}$ queries can only compare data objects that are present in the current active domain of the system, or that were present in the immediately previous state. This is suitably handled, for $\text{FLATTEN}($$\Phi$$)$, in line 53 of Figure 4, where all comparisons between data objects present in the previous or current states are explicitly maintained.

It is also important to observe that Λ_{flat} does not alter the state-boundedness of $\Lambda_{\tilde{\Lambda}}$, because it only adds relations on data objects that are present in the current or previous active domains, while comparisons between old data objects are filtered away.

However, the crucial property of the construction of Λ_{flat}, is that apart from data objects present in the initial data domain, the comparison database is not based on the domain-specific ordering relations, but is constructed starting from the picked densely-ordered commitments, as shown in line 36 of Figure 4. We combine this crucial property with the inability of $\mu\Lambda_{\tilde{\Lambda}}$, due to its persistent nature, of comparing currently active data objects with objects that were encountered in the past, but are not active anymore. In particular, we can directly apply the data recycling technique in [Bagheri Hariri et al. 2012, Bagheri Hariri et al. 2013], reusing old, forgotten data objects in place of fresh ones.

Figure 5 shows the construction algorithm with recycling of data objects. Let $\Theta_{\tilde{\Lambda}}$ be the transition system produced by such an algorithm. Due to the fact, argued before, that during the system construction comparisons are stored by analyzing densely-ordered commitments, and not domain-specific ordering relations, correctness is obtained by adapting the proof in [Bagheri Hariri et al. 2012, Bagheri Hariri et al. 2013]. In particular, we obtain that, when the original RMAS is state-bounded, then only a bounded number of new data objects must be inserted before recycling makes it not necessary anymore to consider fresh values, that is, before the set $Passive$ is guaranteed to contain sufficiently many used but non-active data objects. This implies that the construction algorithm of Figure 5 terminates, and in turn that $\Theta_{\tilde{\Lambda}}$ is finite-state, and represents at the same time a sound and complete abstraction of the original system.

By putting everything together, we obtain in fact that, for every state-bounded, densely-ordered RMAS \mathcal{X}, and for every $\mu\Lambda_{\tilde{\Lambda}}$ property Φ:

1. $\Theta_{\tilde{\Lambda}}$ can be effectively constructed using the procedure BUILD-TS-ABSTRACT of Figure 5;
2. $\Theta_{\tilde{\Lambda}}$ has a finite number of states;
3. $\Theta_{\tilde{\Lambda}} \models \Phi$ if and only if $\Theta_{\tilde{\Lambda}} \models \text{FLATTEN}(\Phi)$.

This concludes the proof.

6 Conclusion

RMASs constitute a very rich modeling framework for data-aware multiagent systems. The presence of concrete data types and their facets greatly empowers its modeling capabilities, making it, e.g., apt to capture mutual exclusion
protocols, asynchronous interactions with bounded queues, and price-based protocols. Our key result, namely that densely-order, state-bounded RMASs are verifiable with standard model checking techniques, paves the way towards concrete verification algorithms for this class of systems [Cavada et al. 2014]. In this respect, a major obstacle is the exponentiality in the data slots that can be changed over time, a source of complexity that is inherent in all data-aware dynamic systems [Deutsch, Sui, and Vianu 2007]. We intend to attack this by proposing data modularization techniques to decompose the system into smaller components.

From a foundational perspective, our work presents connections to (Belardinelli 2014), which extends the framework in (Belardinelli, Lomuscio, and Patrizi 2012) with types so as to model and verify auctions. The two settings are incomparable w.r.t. both the framework and the verification logic, and it would be interesting to study cross-transfer of results between the two settings.

References

1: procedure BUILD-FB-TS-SHALLOW-FLAT(\vec{x})
2: input: Shallow-typed, RMAS $\vec{X} = \langle \vec{T}, \vec{\Delta}_0, F, \hat{S}, \hat{M} \rangle$, with $\vec{T} = \{ T^1_0, \ldots, T^m_0 \} \cup \{ T^1_n, \ldots, T^n_n \}$
3: output: transition system $\mathcal{Y}_x = \langle \Delta_T, \Sigma, s_0, \rightarrow \rangle$
4: $D^0_\Sigma := \emptyset$ \hspace{1em} \triangleright Initial DB incorporating the domain-specific $<$ relations for data objects in Δ_0, F
5: for all $i \in \{ 1, \ldots, m \}$ do
6: for all $d_1, d_2 \in \Delta_0, F \cap \Delta_T^n$ do
7: if $d_1 <_{\Delta_T} d_2$ then $D^0_{\Sigma} := D^0_{\Sigma} \cup \{ lessThan_{\Delta_T^n}(d_1, d_2) \}$
8: $A_{\Sigma} := \{ \{ n, \text{spec}_c \} \mid \text{hasSpec}(n, \text{spec}_c) \in D^0_{\Sigma} \}$ \hspace{1em} \triangleright Initial agents with their specifications
9: for all $\{ n, \text{spec}_c \} \in A_{\Sigma}$ do $s_0.db(n) := D^0_{\Sigma}[n]$ \hspace{1em} \triangleright Specify the initial state by extracting the initial DBs from the agent specs
10: $s_0.db(<) := D^0_\Sigma$ \hspace{1em} \triangleright Insert the special less-than DB
11: $\Sigma := \{ s_0 \} \rightarrow := \emptyset$
12: while true do
13: pick $s \in \Sigma$ \hspace{1em} \triangleright Nondeterministically pick a state
14: $CurAS := \{ \{ n, \text{spec}_c \} \mid \text{hasSpec}(a, \text{spec}_c) \in s.db(inst) \}$ \hspace{1em} \triangleright Get currently active agents with their specifications
15: pick $(a, \text{spec}_c) \in CurAS$ \hspace{1em} \triangleright Nondeterministically pick an active agent a, elected as “sender”
16: $EMsg := \text{GET-MSGS}($FLATTEN$(\hat{\Sigma}_{\text{spec}_c}^a), s.db(a) \cup s.db(<), CurAS) \}$ \hspace{1em} \triangleright Get the enabled messages with target agents
17: if $EMsg \neq \emptyset$ then
18: pick $(M(\hat{\sigma}), b) \in EMsg$, with $(b, \text{spec}_c) \in CurAS$ \hspace{1em} \triangleright Pick a message+target agent and trigger message exchange and reactions
19: $ACT_b := \emptyset$, $ACT_a := \emptyset$ \hspace{1em} \triangleright Get the actions with actual parameters to be applied by a and b
20: for all matching on-send rules “on $M(\hat{\sigma})$ to t if $Q(t, \hat{x})$ then $a(t, \hat{\sigma})$” in FLATTEN($\hat{\Sigma}_{\text{spec}_c}^a$) do
21: if $ans(Q(b, \hat{\sigma}), s.db(b) \cup s.db(<))$ then $ACT_b := ACT_b \cup \{ a(b, \hat{\sigma}) \}$
22: for all matching on-receive rules “on $M(\hat{\sigma})$ from s if $Q(s, \hat{x})$ then $a(s, \hat{\sigma})$” in FLATTEN($\hat{\Sigma}_{\text{spec}_c}^a$) do
23: if $ans(Q(a, \hat{\sigma}), s.db(b) \cup s.db(<))$ then $ACT_a := ACT_a \cup \{ a(a, \hat{\sigma}) \}$
24: \{ToDel\}a, \{ToAdd\}$_a$:= \{FACTS(FLATTEN($\hat{\Sigma}_{\text{spec}_c}^a$), $n.db(a) \cup s.db(<)$, ACT_a) \}
25: \{ToDel\}b, \{ToAdd\}$_b$:= \{FACTS(FLATTEN($\hat{\Sigma}_{\text{spec}_c}^a$), $n.db(b) \cup s.db(<)$, ACT_b) \}
26: $DB_a^\Sigma := (s.db(a) \setminus \{ToDel\}) \cup \{ToAdd\}$ \hspace{1em} \triangleright Calculate new a’s DB, still with service calls to be issued
27: $DB_b^\Sigma := (s.db(b) \setminus \{ToDel\}) \cup \{ToAdd\}$ \hspace{1em} \triangleright Calculate new b’s DB, still with service calls to be issued
28: for all data type $T \in T^a$ do
29: $ADom_a(T) := \{ d \mid d \in \Delta_T \cap ADom(a) \}$
30: \{f(\hat{\sigma}) \mid f(\hat{\sigma}) \in Calls(DB_a^\Sigma \cup DB_b^\Sigma) \}$ and $T = \{ f/n, F^{in}, F^{out} \} \in \hat{S}$ with $F^{out} = \{ T, \text{true} \}$
31: $D^\Sigma := \emptyset$ \hspace{1em} \triangleright Recalculate the lessThan relations by considering the current active domains and the picked commitments
32: for all $i \in \{ 1, \ldots, m \}$, with $H_i = \{ P_i, pos_i \}$ do
33: for all $d_1, d_2 \in P_i$ do
34: if $pos_1([d_1] biz) < n pos_1([d_2] biz)$ then
35: $D^\Sigma := D^\Sigma \cup \{ lessThan_{\Delta_T^n}(d_1, d_2) \}$
36: $DB_a^\Sigma := DB_a^\Sigma \cup \{DB_a^\Sigma \}$ \hspace{1em} \triangleright Obtain new candidate DBs by substituting service calls with results
37: else DB_a^Σ satisfies FLATTEN(\vec{T}^a) then $DB_a := DB_a^\Sigma$ \hspace{1em} \triangleright Update a’s DB
38: else $DB_a := s.db(a)$ \hspace{1em} \triangleright Rollback a’s DB
39: else DB_b^Σ satisfies FLATTEN(\vec{T}^a) then $DB_b := DB_b^\Sigma$ \hspace{1em} \triangleright Update b’s DB
40: else $DB_b := s.db(b)$ \hspace{1em} \triangleright Rollback b’s DB
41: pick fresh state s'
42: $NewAS := \emptyset$ \hspace{1em} \triangleright Determine the (possibly changed) set of active agents and their specs
43: if $a = \text{inst}$ then $NewAS := \{ \{ n, \text{spec}_c \} \mid \text{hasSpec}(a, \text{spec}_c) \in DB_a \}$
44: else if $b = \text{inst}$ then $NewAS := \{ \{ n, \text{spec}_c \} \mid \text{hasSpec}(n, \text{spec}_c) \in DB_b \}$
45: else $NewAS := CurAS$ \hspace{1em} \triangleright No change if inst is not involved in the interaction or must reject the update
46: for all $\{ n, \text{spec}_c \} \in NewAS$ do
47: if $n = a$ then $\text{add}(n) := DB_a$ \hspace{1em} \triangleright Case of sender agent
48: else if $n = b$ then $\text{add}(n) := DB_b$ \hspace{1em} \triangleright Case of target agent
49: else if $\not\in CurAS$ then $\text{add}(n) := D^0_{\Sigma}[n] \cup \{ MyName(n) \}$ \hspace{1em} \triangleright n’s initial DB gets the initial data fixed by its specification, plus its name
50: else $\text{add}(n) := s.db(n)$ \hspace{1em} \triangleright Default case: persisting agent not affected by the interaction
51: $D^\Sigma := \{ lessThan_{\Delta_T^n}(d_1, d_2) \mid lessThan_{\Delta_T^n}(d_1, d_2) \in D^\Sigma$ and $d_1, d_2 \in ADom(s) \cup ADom(s') \}$ \hspace{1em} \triangleright Filter lessThan
52: $s'.db(<) := D^\Sigma$ \hspace{1em} \triangleright Keep the explicit lessThan relation only for persisting objects
53: if $s' \in \Sigma$ s.t. $s'.db(inst) = s'.db(inst)$ and for each $(n, _)$ in $CurAS, s'.db(n) = s'.db(n)$ then
54: $\rightarrow := \rightarrow \cup \{ s', s'' \}$ \hspace{1em} \triangleright State already exists: connect s to that state
55: else $\Sigma := \Sigma \cup \{ s', s'' \}$, \hspace{1em} $\rightarrow := \rightarrow \cup \{ s', s'' \}$ \hspace{1em} \triangleright Add and connect new state

Figure 4: Procedure for constructing a transition system that is equivalent to that of BUILD-FB-TS-SHALLOW, but incorporates the ordering relations as special database facts
1: procedure BUILD-ABSTRACT-TS(\(\hat{I}\))
2: input: Shallow-typed, RAMAS \(\hat{X} = (\hat{T}, \hat{T}, \Delta_{0,\hat{X}}, \hat{S}, \hat{M})\), with \(T = \{T_1^1, \ldots, T_n^m\} \cup \{T^1_1, \ldots, T^m_n\}\)
3: output: transition system \(Y = (\Delta_Y, \Sigma, \xi, s_0, \rightarrow)\)
4: \(D_0^Y := \emptyset\)
5: for all \(i \in \{1, \ldots, m\}\) do
6: for all \(d_1, d_2 \in \Delta_{0,\hat{X}} \cap \Delta_{T_Y}^m\) do
7: if \(d_1 <_{T_Y} d_2\) then \(D_0^Y := D_0^Y \cup \{\text{lessThan}_{T_Y}(d_1, d_2)\}\)
8: \(A_{S_0} := \{\langle n, \text{spec}_n \rangle | \text{hasSpec}(n, \text{spec}_n) \in D_0^{\text{inst}}\}\)
9: for all \(\langle n, \text{spec}_n \rangle \in A_{S_0}\) do \(s_0.db(n) := D_0^{\text{spec}}\)
10: \(\Sigma := \emptyset\)
11: \(\xi := \emptyset\)
12: \(\text{CurAS} := \Delta_{0,\hat{X}}\)
13: while true do
14: pick \(s \in \Sigma\)
15: \(\text{CurAS} := \{\langle n, \text{spec}_n \rangle | \text{hasSpec}(a, \text{spec}_n) \in s.db(\text{inst})\}\)
16: \(\text{pick}(a, \text{spec}_n) \in \text{CurAS}\)
17: \(\text{EMsg} := \text{GET-MSGS(FLATTEN}(\hat{I}^{\text{addobj}})^*\), s.db(a) \& s.db(\langle\rangle), \text{CurAS}}\)
18: if \(\text{EMsg} \neq \emptyset\) then
19: \(\text{pick}(M(\hat{f}), b) \in \text{EMsg}, \text{with } \{\langle b, \text{spec}_b \rangle \in \text{CurAS}\}\)
20: \(\text{ACT}_a := \emptyset\)
21: for all matching on-send rules "on \(M(\hat{f})\) to \(t\) if \(Q(t, \hat{f})\) then \(\alpha(\hat{f}, \hat{x})\)" in \(\text{FLATTEN}(\hat{U}^{\text{addobj}})^*\) do
22: if \(\text{ans}(Q(\hat{f}, \hat{x}),\{b, \text{db}(\langle\rangle)\})\) then \(\text{ACT}_a := \text{ACT}_a \cup \{a, \hat{b}\}\)
23: for all matching on-receive rules "on \(M(\hat{f})\) from \(s\) if \(Q(s, \hat{f})\) then \(\alpha(s, \hat{x})\)" in \(\text{FLATTEN}(\hat{U}^{\text{addobj}})^*\) do
24: if \(\text{ans}(Q(\hat{f}, \hat{x}),\{b, \text{db}(\langle\rangle)\})\) then \(\text{ACT}_a := \text{ACT}_a \cup \{a, \hat{b}\}\)
25: \(\langle \text{ToDo}_a, \text{ToDo}_b \rangle := \text{GET-EFACTS(FLATTEN(\hat{I}^*), s.db(a) \& s.db(\langle\rangle), \text{ACT}_a}\)
26: \(\langle \text{ToDo}_a, \text{ToDo}_b \rangle := \text{GET-EFACTS(FLATTEN(\hat{I}^*), s.db(b) \& s.db(\langle\rangle), \text{ACT}_a}\)
27: \(D_b^a := \{\text{db}(a) \& \text{ToDo}_b \} \cup \text{ToDo}_a\)
28: \(D_b^a := \{\text{db}(b) \& \text{ToDo}_a \} \cup \text{ToDo}_a\)
29: for all data type \(T \in \text{ACT}_a\) do
30: \(\text{Dom}_a(T) := \cup \{d | d \in \Delta_T \cap \Delta_{0,\hat{X}}\} \cup \{f(\hat{f}) | f(\hat{f}) \in \text{CALLS}(\text{DB}^a_b \cup \text{DB}^b_a)\}\)
31: \(\text{PassiveObj} := \text{UsedObj} \setminus \text{PassiveObj}\)
32: \(\text{pick} \hat{f} \in \{\langle P_1, \langle P_n, H_1, \ldots, H_m \rangle \rangle \}^{P_\text{in}\cup P_\text{out}}\)
33: \(\Delta := \text{PassiveObj}\)
34: if \(\exists \hat{f} \in \{\langle P_1, \langle P_n, H_1, \ldots, H_m \rangle \rangle \}^{P_\text{in}\cup P_\text{out}}\) then \(\text{PassiveObj} \cup \text{PassiveObj}\)
35: \(\text{Recalculate the lessThan relations by considering the current active domains and the picked commitments}\)
36: for all \(i \in \{1, \ldots, m\}\), with \(H_i = \{P_i, \text{pos}_i\}\) do
37: for all \(d_1, d_2 \in P_{\text{\hat{f}}}\) do
38: if \(\text{pos}_i(d_1) \prec_{\text{\hat{f}}} \text{pos}_i(d_2)\) then
39: \(D^\text{less} := D^\text{less} \cup \{\text{lessThan}_{T_Y}(d_1, d_2)\}\)
40: \(\text{DB}_a^{\text{cand}} := \text{DB}_a^\sigma \cup \text{DB}_a^{\text{addobj}}\)
41: if \(\text{DB}_a^{\text{cand}} \cap \text{DB}_b^{\text{cand}} = \emptyset\) then \(\text{DB}_a := \text{DB}_a^{\text{cand}}\)
42: else \(\text{DB}_a := \text{DB}_a(b)\)
43: if \(\text{DB}_a^{\text{cand}} \cap \text{DB}_b^{\text{cand}} = \emptyset\) then \(\text{DB}_b := \text{DB}_b^{\text{cand}}\)
44: else \(\text{DB}_b := \text{DB}_b(a)\)
45: if \(\text{DB}_a^{\text{cand}} \cap \text{DB}_b^{\text{cand}} = \emptyset\) then \(\text{DB}_a := \text{DB}_a^{\text{cand}}\)
46: else \(\text{DB}_b := \text{DB}_b(b)\)
47: \(\text{pick fresh state} s'\)
48: \(\text{NewAS} := \emptyset\)
49: if \(a = \text{inst}\) then \(\text{NewAS} := \{\langle n, \text{spec}_n \rangle | \text{hasSpec}(n, \text{spec}_n) \in \text{DB}_a\}\)
50: else \(b = \text{inst}\) then \(\text{NewAS} := \{\langle n, \text{spec}_n \rangle | \text{hasSpec}(n, \text{spec}_n) \in \text{DB}_b\}\)
51: else \(\text{NewAS} := \text{CurAS}\)
52: for all \(\langle n, \text{spec}_n \rangle \in \text{NewAS}\) do
53: if \(n = a\) then \(s'.db(n) := DB_a\)
54: else if \(n = b\) then \(s'.db(n) := DB_b\)
55: else if \(n \in \text{CurAS}\) then
56: \(s'.db(n) := D_n^{\text{addobj}} \cup \{\text{MyName}(n)\}\)
57: else \(s'.db(n) := D_n^{\text{addobj}}\)
58: \(\Delta'_0 := \{\text{lessThan}_{T_Y}(d_1, d_2) | \text{lessThan}_{T_Y}(d_1, d_2) \in \Delta'_0 \land d_1, d_2 \in \text{ADOm} \land \text{ADOm}(s) \cap \text{ADOm}(s')\}\)
59: if \(\exists \hat{s} \in \Sigma \times s'.db(\text{inst}) = s'.db(\text{inst})\) and for each \(\langle n, _ \rangle \in \text{CurAS}\) \(s',s'.db(n) = s',s'.db(n)\) then
60: \(\rightarrow := \rightarrow \cup \{s', s''\}\)
61: else \(\Sigma := \Sigma \cup \{s', s''\}\)
62: \(\text{Filter lessThan}\)
63: \(\text{Add and connect new state}\)

Figure 5: Procedure for constructing a sound and complete abstraction of the transition system constructed with the BUILD-FB-TS-SHALLOW-FLAT procedure, by recycling non-persisting data objects