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Abstract

As a result of the extensive research in view-based query processing, three notions have been identified as fundamental, namely
rewriting, answering, and losslessness. Answering amounts to computing the tuples satisfying the query in all databases consistent
with the views. Rewriting consists in first reformulating the query in terms of the views and then evaluating the rewriting over
the view extensions. Losslessness holds if we can answer the query by solely relying on the content of the views. While the
mutual relationship between these three notions is easy to identify in the case of conjunctive queries, the terrain of notions gets
considerably more complicated going beyond such a query class. In this paper, we revisit the notions of answering, rewriting, and
losslessness and clarify their relationship in the setting of semistructured databases, and in particular for the basic query class in
this setting, i.e., two-way regular path queries. Our first result is a clean explanation of the relationship between answering and
rewriting, in which we characterize rewriting as a “linear approximation” of query answering. We show that applying this linear
approximation to the constraint-satisfaction framework yields an elegant automata-theoretic approach to query rewriting. As for
losslessness, we show that there are indeed two distinct interpretations for this notion, namely with respect to answering, and with
respect to rewriting. We also show that the constraint-theoretic approach and the automata-theoretic approach can be combined to
give algorithmic characterization of the various facets of losslessness. Finally, we deal with the problem of coping with loss, by
considering mechanisms aimed at explaining lossiness to the user.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

View-based query processing is the problem of computing the answer to a query based on a set of views [1–3].
This problem has recently received much attention in several application areas, such as mobile computing, query
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optimization, data warehousing, and data integration. A large number of results have been reported in the last years,
and several methods have been proposed (see [4] for a recent survey).

As a result of the extensive research in this area, there is proliferation of notions whose relationship to each other is
not clear. Fundamentally, there seem to be two basic approaches to view-based query processing. The first approach,
originating with [1], is the query-rewriting approach, which is based on the idea of first reformulating the query in
terms of the views and then evaluating the rewriting over the view extensions. The other approach, originating with [5],
is the query-answering approach, which takes a more direct route, trying to compute the so-called certain tuples, i.e.,
the tuples satisfying the query in all databases consistent with the views, on the basis of the view definitions and the
view extensions. The relationship between the two approaches has been discussed (e.g., [6,7]), but not completely
clarified, and is often ignored, see for example [1,8,9].

A related issue that has been studied in several papers is whether the information content of the views is sufficient
to answer a given query completely, i.e., as if one could access the underlying database. We say that a set of views
is lossless with respect to a query, if, no matter what the database is, we can answer completely the query by solely
relying on the content of the views. This concept has several applications, for example, in view selection [10], where
we have to measure the quality of the choice of the views to materialize in the data warehouse, or in data integration,
where we may be interested in checking whether the relevant queries can be answered by accessing only a given set of
sources [11]. Several papers have addressed the issue of losslessness implicitly [1,12,11] or explicitly [13]. It should
be noted, however, that losslessness is relative to the manner in which view-based query processing is performed,
since the goal is lossless query processing. Thus, there ought to be two distinct notions of losslessness, with respect to
query rewriting or with respect to query answering. Recent discussions of losslessness, such as [11,13], do not reflect
this distinction.

One of the reasons the distinction between query answering and query rewriting has been blurred is that much of
the work in this area has focused on using conjunctive queries for both target queries and view definitions, cf. [4].
This setting turns out to be extremely well behaved. In particular, query rewriting and query answering coincide, if
we allow the target query to be written as a union of conjunctive queries. Furthermore, losslessness with respect to
query rewriting and with respect to query answering also coincide, even if we require rewriting by conjunctive queries
(disallowing unions). These results, implicit or explicit in [1], give the impression of a simple “terrain” of notions.
Once, however, one goes even slightly beyond conjunctive queries or slightly modifies the view model, the terrain of
notions gets considerably more complicated, as has already been observed in [3].

In this paper, we revisit the notions of query answering, query rewriting and losslessness, and clarify their
relationship in the setting of semistructured databases, which capture data that do not fit into rigid, predefined schemas,
and are best described by graph-based data models [14–17]. The prevalent model for semistructured data is that of
edge-labeled graphs, in which nodes describe data elements and edges describe relationships or values. (Extensions
to node-labeled graphs or to node-edge-labeled graphs are straightforward.)

Methods for extracting information from semistructured data necessarily incorporate special querying mechanisms
that are not common in traditional database systems. One such basic mechanism is that of regular-path queries (RPQs),
which retrieves all pairs of nodes in the graph connected by a path conforming to a regular expression [18,19]. We
allow in our regular path queries also the inverse operator. The inverse operator is essential for expressing navigations
in the database that traverse the edges both backward and forward [20]. We call such queries two-way regular path
queries (2RPQs). Such path queries are useful in real settings (see for example [14,18,21]), and are part of the core of
many query languages for semistructured data [19,22,23]. In our earlier work we studied both query answering and
query rewriting for 2RPQs [24]. For an introductory survey on 2RPQs, see [25].

Our first result is a clean explanation of the relationship between query rewriting and query answering. We view
query answering as the more robust notion among the two, since its definition is in terms of the information content
of the view extensions. The certain tuples are the tuples whose presence in the answer logically follows from the view
extension. In contrast, query rewriting is motivated by the pragmatic need to access the view extensions using a query
language that is close, if not identical, to the language in which the target query and the views were formulated. For
example, [1] considered rewriting of conjunctive queries by means of unions of conjunctive queries, [26] considered
rewriting of RPQs by means of RPQs, and [24] considered rewriting of 2RPQs using 2RPQs.

The setup we use in this paper is that of sound views, in which view extension need not reflect global data
completely. Thus, all we require from a view Vi defined in terms of a query Qi is that its extension Ei with respect
to a global database B is such that Ei ⊆ Qi (B). This setting corresponds to the long-standing open-world approach
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for querying incomplete information [27]. In this setting query answering can be characterized in terms of constraint
satisfaction (or, equivalently, the homomorphism problem [28]), with a constraint template derived from the target
query and view definition [7].

A second contribution is the introduction of the notion of “linear approximation” of query answering, and a
characterization of the rewriting of a 2RPQ by means of 2RPQs in terms of such a linear approximation. The linear
approximation of query answering consists in retrieving a pair (c, d) from the view extension only if its inclusion in
the answer is logically implied by a single path between c and d in the view extension. (For 2RPQs two-way paths are
considered, while for RPQs one-way paths are considered.) We show that, by applying this linear approximation, we
can exploit the constraint-satisfaction framework also for query rewriting. In particular, this yields a natural extension
to 2RPQs of the elegant automata-theoretic approach to query rewriting of [26].

As a third contribution, we show that there are indeed two distinct notions of losslessness. Losslessness with respect
to query rewriting is what has been called exactness in [26], while losslessness with respect to query answering is
what has been called simply losslessness in [13], and which we view as the more fundamental notion. Since query
rewriting is an approximation of query answering, exactness is a stronger notion than losslessness; exactness implies
losslessness, but not vice versa. Exactness was taken in [26] to be a measure of quality of query rewriting, but we
now see that it combines query rewriting with losslessness. A better way to measure the quality of query rewriting
is to measure its quality as an approximation. We say that query rewriting is perfect if it is equivalent to query
answering. Thus, exactness is the conjunction of perfectness and losslessness (with respect to query answering). We
show that the constraint-theoretic approach and the automata-theoretic approach can be combined to give algorithmic
characterization of the three notions of perfectness, losslessness, and exactness.

We also consider lossiness, which we view as the central challenge of view-based query processing, as lossiness is
more likely to be the norm rather than the exception. Once a schema designer has learned that a view decomposition
is lossy with respect to a certain query, how should this “loss” be dealt with? We believe that database design tools
should help users to “cope with loss”. In particular, we believe that it would be useful to the user to understand what
information is lost by view-based query answering. We discuss a variety of mechanisms aimed at explaining such
lossiness to the user.

Finally, we discuss how exactness, perfectness, losslessness, and lossiness relate to each other. In this way, we get a
complete picture of the relationships among maximal rewriting, linear approximation, certain answers, and the query
itself.

The paper is organized as follows. In Section 2 we recall the basic notions related to view-based query processing,
and in Section 3 we recall the relationship between query answering and constraint satisfaction. In Section 4 we
discuss the relationship between answering and rewriting. In Section 5 we study losslessness with respect to rewriting
for 2RPQs and in Section 6 losslessness with respect to answering. For the latter we introduce the notion of linear
fragments of certain answers. In Section 7 we conclude the paper with a final discussion relating the various notions
to each other.

2. Preliminaries

Following the usual approach in semistructured data [17], we define a semistructured database as a finite directed
graph whose edges are labeled by elements from a given finite alphabet Σ . Each node represents an object and an
edge from object x to object y labeled by r , denoted r(x, y), represents the fact that relation r holds between x
and y. Observe that a semistructured database can be seen as a (finite) relational structure over the set Σ of binary
relational symbols. A relational structure (or simply structure) B over Σ is a pair (∆B, ·B), where ∆B is a finite
domain and ·

B is a function that assigns to each relation symbol in r ∈ Σ a binary relation rB over ∆B, also denoted
by r(B).

A query is a function from relational structures to relations, assigning to each relational structure over a given
alphabet a relation of a certain arity. In this paper we deal mainly with binary queries. A regular-path query (RPQ)
over Σ is defined in terms of a regular language over Σ . The answer Q(B) to an RPQ Q over a database B is the
set of pairs of objects connected in B by a directed path traversing a sequence of edges forming a word in the regular
language L(Q) defined by Q.

RPQs allow for navigating the edges of a semistructured databases only in the forward direction. RPQs extended
with the ability of navigating database edges backward are called two-way regular-path queries (2RPQs) [24].
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Formally, we consider an alphabet Σ±
= Σ ∪ {r−

| r ∈ Σ } which includes a new symbol r− for each relation
symbol r in Σ . The symbol r− denotes the inverse of the binary relation r . If p ∈ Σ±, then we use p− to mean the
inverse of p, i.e., if p is r , then p− is r−, and if p is r−, then p− is r . A 2RPQ over Σ is defined in terms of a regular
language over Σ±. The answer Q(B) to a 2RPQ Q over a database B is the set of pairs of objects connected in B
by a semipath that conforms to the regular language L(Q). A semipath in B from x to y (labeled with p1 · · · pn) is a
sequence of the form (x0, p1, x1, . . . , xn−1, pn, xn), where n ≥ 0, x0 = x , xn = y, and for each xi−1, pi , xi , we have
that pi ∈ Σ±, and, if pi = r then (xi−1, xi ) ∈ r(B), and if pi = r− then (xi , xi−1) ∈ r(B). Intuitively, a semipath
(x0, p1, x1, . . . , xn−1, pn, xn) corresponds to a navigation of the database from x0 to xn , following edges forward or
backward, according to the sequence of edge labels p1 · · · pn . Note that the objects in a semipath are not necessarily
distinct. A semipath is said to be simple if no object in it appears more than once. A linear database with endpoints x
and y is a database constituted by a single simple semipath from x to y. We say that a semipath (x0, p1, . . . , pn, xn)

conforms to a 2RPQ Q if p1 · · · pn ∈ L(Q). Summing up, a pair (x, y) of objects is in the answer Q(B) if and
only if, by starting from x , it is possible to reach y by navigating on B according to one of the words in L(Q). The
notions above can be extended to two-way path queries, which are defined similarly to 2RPQs, but without requiring
the language to be regular.

Consider now a semistructured database that is accessible only through a collection of views expressed as 2RPQs,
and suppose we need to answer a 2RPQ over the database only on the basis of our knowledge on the views.
Specifically, the collection of views is represented by a finite set V of view symbols, each denoting a binary relation.
Each view symbol V ∈ V has an associated view definition V Σ , which is a 2RPQ over Σ . A V-extension E is a
relational structure over V . We consider views to be sound [3,29], i.e., we model a situation where the extension of
the views provides a subset of the results of applying the view definitions to the database. Formally, given a set V of
views and a database B, we use VΣ (B) to denote the V-extension E such that V (E) = V Σ (B), for each V ∈ V . We
say that a V-extension E is sound wrt a database B if E ⊆ VΣ (B). In other words, for a view V ∈ V , all the tuples in
V (E) must appear in V Σ (B), but V Σ (B) may contain tuples not in V (E).

Given a set V of views, a V-extension E , and a query Q over Σ , the set of certain answers (under sound views) to
Q with respect to V and E is the set of pairs (x, y) of objects such that (x, y) ∈ Q(B) for every database B wrt which
E is sound, i.e., E ⊆ VΣ (B). View-based query answering consists in deciding whether a given pair of objects is a
certain answer to Q with respect to V and E . Given a set V of views and a query Q, we denote by certQ,V the query
that, for every V-extension E , returns the set of certain answers to Q with respect to V and E .

View-based query answering has also been tackled using an indirect approach, called view-based query rewriting.
According to such an approach, a query Q over the database alphabet is processed by first reformulating Q into an
expression of a fixed query language over the view alphabet V (called rewriting), and then evaluating the rewriting
over the view extensions. Formally, let Q be a query over the database alphabet, and let Qr be a query over the view
alphabet V . We say that Qr is a rewriting of Q under sound views V (or simply, with respect to views V), if for
every database B and for every V-extension E with E ⊆ VΣ (B), we have that Qr (E) ⊆ Q(B). Since 2RPQs are
monotone, by results in [7] (Proposition 13 and 24), rewritings admit the following simpler characterization. A 2RPQ
Qr is a rewriting of a 2RPQ Q if, for every database B, we have that Qr (VΣ (B)) ⊆ Q(B). We make use of this
characterization in the following.

Obviously, in view-based query rewriting, we are not interested in arbitrary rewritings, but we aim at computing
rewritings that capture the original query at best. Let C be a query class in which rewritings are expressed. A query
Qr in C is a C-maximal rewriting of Q under V if (i) it is a rewriting of Q under V , and (ii) for each query Q′

r
in C that is a rewriting of Q under V and for each database B and each V-extension E with E ⊆ VΣ (B), we have
that Q′

r (E) ⊆ Qr (E).1 Since in this paper we are focusing on 2RPQs, we are interested in the case where also
rewritings are 2RPQs over the view alphabet V , i.e., rewritings are expressed in the same language as queries over the
database.

Throughout the paper, we will assume that RPQs are expressed as finite state automata over an appropriate alphabet.
Besides standard (one-way) deterministic and non-deterministic finite state automata over words (1DFAs and 1NFAs,
respectively), we assume familiarity with two-way automata (2NFAs) [30].

1 Observe that, by definition, all maximal rewritings are semantically equivalent, though they may be syntactically different. Hence, with some
abuse of terminology, we will talk about “the” maximal rewriting.
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3. Answering and constraint satisfaction

In this work we make use of the tight relationship between view-based query answering for RPQs and 2RPQs and
constraint satisfaction, which we recall here.

A constraint-satisfaction problem (CSP) is traditionally defined in terms of a set of variables, a set of values,
and a set of constraints, and asks whether there is an assignment of the variables with the values that satisfies the
constraints. A characterization of CSP can be given in terms of homomorphisms between relational structures [28].
Here we consider relational structures whose relations are of arbitrary arity.

A homomorphism h : A → B between two relational structures A and B over the same alphabet is a mapping
h : ∆A

→ ∆B such that, if (c1, . . . , cn) ∈ r(A), then (h(c1), . . . , h(cn)) ∈ r(B), for every relation symbol r in
the alphabet. Let A and B be two classes of structures. The (uniform) constraint-satisfaction problem CSP(A,B) is
the following decision problem: given a structure A ∈ A and a structure B ∈ B over the same alphabet, is there
a homomorphism h : A → B? When B consists of a single structure B and A is the set of all structures over the
alphabet of B, we get the so-called non-uniform constraint-satisfaction problem, denoted by CSP(B), where B is fixed
and the input is just a structure A ∈ A. As usual, we use CSP(B) also to denote the set of structures A such that there
is a homomorphism from A to B. From the very definition of CSP it follows directly that every CSP(A,B) problem
is in NP.

A tight relationship between non-uniform CSP and view-based query answering for RPQs and 2RPQs has been
developed in [31,7]. Such a relationship is based on the notions of constraint templates, associated to the query and
view definitions, and constraint instance, associated to the view extension. Formally, given a 2RPQ Q and a set V of
2RPQ views, the constraint template CT Q,V of Q with respect to V is the relational structure C defined as follows.

• The alphabet of C is V ∪ {Ui , U f }, where each view denotes a binary relation symbol, and Ui and U f are unary
relation symbols.

• Let AQ
= (Σ±, SQ, SQ

0 , %Q, F Q) be a 1NFA for Q, where Σ± is the alphabet, SQ is the set of states, SQ
0 is the

set of initial states, %Q is the transition relation, and F Q is the set of final states. The structure C = (∆C , ·C ) is
given by:
. ∆C

= 2SQ
;

. σ ∈ Ui (C) iff SQ
0 ⊆ σ ;

. σ ∈ U f (C) iff σ ∩ F Q
= ∅;

. for a view V ∈ V , we have that (σ1, σ2) ∈ V C iff there exists a word q1 · · · qk ∈ L(V Σ ) and a sequence
T0, . . . , Tk of subsets of SQ such that the following hold:

(1) T0 = σ1 and Tk = σ2,
(2) if s ∈ Ti and (s, qi+1, t) ∈ %Q then t ∈ Ti+1, for 0 ≤ i < k, and
(3) if s ∈ Ti and (s, q−

i , t) ∈ %Q then t ∈ Ti−1, for 0 < i ≤ k.

Intuitively, the constraint template represents for each view V how the states of AQ (i.e., of the 1NFA for Q)
change when we follow database edges according to (paths specified by) words in L(V Σ ). Specifically, the last
condition above corresponds to saying that a pair of sets of states (σ1, σ2) is in V (C) if and only if there is some word
w in L(V Σ ) such that the following holds: if we start from a state in σ1 on the left edge of w and move back and forth
on w according to the transitions in AQ , then, if we end up at the left edge of w we can be only in states in σ1, and
if we end up at the right edge of w we can be only in states in σ2; similarly, if we start from a state in σ2 on the right
edge of w. Moreover, the sets of states in Ui (C) contain all initial states of AQ , while the sets of states in U f (C) do
not contain any final state of AQ . This takes into account that we aim at characterizing counterexamples to view-based
query answering, and hence we are interested in not getting to a final state of AQ , regardless of the initial state from
which we start and how we follow transitions.

Observe that, to check the existence of a word q1 · · · qk ∈ L(V Σ ) and of a sequence T0, . . . , Tk of subsets of S
such that conditions (1)–(3) above are satisfied, we can resort to a construction analogous to the one in [32]. Hence,
such a check can be done in polynomial space in the size of Q, and in fact in nondeterministic logarithmic space in
the size of V Σ .

Given a V-extension E and a pair of objects c, d , the constraint instance Ec,d is the structure I = (∆I , ·I ) over the
alphabet V ∪ {Ui , U f } defined as follows:
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Fig. 1. The structure of the certQ,V in Example 4.1.

• ∆I
= ∆E

∪ {c, d};
• V (I ) = V (E), for each V ∈ V;
• Ui (I ) = {c}, and U f (I ) = {d}.

The following theorem provides the characterization of view-based query answering in terms of CSP.

Theorem 3.1 ([7]). Let Q be a 2RPQ, V a set of 2RPQ views, E a V-extension, and c, d a pair of objects. Then,
(c, d) 6∈ certQ,V (E) if and only if there is a homomorphism from Ec,d to CT Q,V .

4. Relationship between rewriting and answering

The relationship between answering and rewriting in view-based query processing is not always well understood.
As we said before, one reason for the confusion is that much of the work in this area has focused on a setting based
on conjunctive queries, where answering and rewriting coincide. Indeed, if we allow the target query to be written as
a union of conjunctive queries (UCQs), then the UCQ-maximal rewriting of the query computes exactly the certain
answers. Things get more complicated with RPQs and 2RPQs [6,31], as shown by the following example.

Example 4.1. Consider the RPQ Q = r1·r3 + r2·r4 and the views V = {V1, V2, V3} with definitions

V Σ
1 = r1, V Σ

2 = r2, V Σ
3 = r3 + r4.

It can be checked that the RPQ-maximal rewriting of Q under V is empty. On the other hand, certQ,V can be expressed
as the following conjunctive RPQ [31]

certQ,V = { (x, y) | ∃z.x V1 z ∧ x V2 z ∧ z V3 y }.

Note that certQ,V matches with non-linear patterns in a database, as depicted in Fig. 1. �

Interestingly, we show next that we can use the above characterization of view-based query answering in terms of
CSP, to characterize also query rewriting, thus providing a clean explanation of the relationship between answering
and rewriting.

A preliminary observation is that one can restrict attention to linear databases when looking for counterexamples
to rewritings.

Lemma 4.2 ([24]). Let Q be a 2RPQ, V a set of 2RPQ views, and w a word over V±. Then w is not a rewriting (note
that w can be viewed as a 2RPQ) of Q with respect to V if and only if there exists a linear database B with endpoints
c and d, and a view extension E with E ⊆ VΣ (B), such that (c, d) ∈ w(E) but (c, d) 6∈ Q(B).

Making use of this result, we are able to exploit the constraint template itself as a 1NFA that recognizes the words
that do not belong to a rewriting. However, we have first to take care of the fact that only direct view symbols appear
in the constraint template, while a rewriting is a 1NFA over direct and inverse view symbols. To do so, we extend the
constraint template by adding to the alphabet, for each symbol V ∈ V , also the inverse symbol V −. Then we define
(σ1, σ2) ∈ V −C if and only if (σ2, σ1) ∈ V C . We denote the resulting constraint template with CT±

Q,V . Observe that
the construction of CT±

Q,V from CT Q,V takes into account the perfect symmetry that we have when moving along
direct and inverse database and view symbols.

Now, C = CT±

Q,V can be viewed directly as a 1NFA Anr over V±, by taking the domain of C as the set of states
of Anr, the extension of Ui and U f in C respectively as the set of initial and final states, and by deriving the transition
relation of Anr from the extension of the various v ∈ V± as follows: Anr has a transition (σ1, v, σ2) if and only if
(σ1, σ2) ∈ vC .
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Let Arew be a 1NFA accepting the complement of Anr. Then the following characterization of the 2RPQ-maximal
rewriting holds.

Theorem 4.3. Let Q be a 2RPQ and V a set of 2RPQ views. Then Arew is the 2RPQ-maximal rewriting of Q with
respect to V .

Proof. We show that a word w over V± is in the 2RPQ-maximal rewriting of Q with respect to V if and only if
w 6∈ L(Anr).

“⇒” Let w = v1 · · · vk be a word over V± such that w ∈ L(Anr). We construct a (linear) view extension Ew as
follows: we introduce pairwise disjoint objects c = a0, a1, . . . , ak = d, and for each i ∈ {1, . . . , k},

• (ai−1, ai ) ∈ V (Ew), if vi = V , and
• (ai , ai−1) ∈ V (Ew), if vi = V −.

Consider now the constraint instance I = Ec,d
w obtained from Ew by defining Ui (I ) = {c} and U f (I ) = {d}. It is

immediate to verify that, by construction, there is a homomorphism from I to the constraint template CT Q,V . Hence,
by Theorem 3.1, we have that (c, d) 6∈ certQ,V (Ew), while obviously (c, d) ∈ w(Ew). Thus w is not part of a rewriting.

“⇐” Let w = v1 · · · vk be a word over V± that is not part of any rewriting. By Lemma 4.2, there exists a linear
database B containing objects c and d , and a view extension E with E ⊆ VΣ (B), such that (c, d) ∈ w(E) but
(c, d) 6∈ Q(B). Since (c, d) ∈ w(E) and E ⊆ VΣ (B), there are objects c = a0, a1, . . . , ak = d in B and a word
p = q1 · · · qk , with each qi a word over Σ±, such that for each i ∈ {1, . . . , k}, we have that (ai−1, ai ) ∈ qi (B), and

• qi ∈ L(V Σ ), if vi = V , and
• qi ∈ L((V Σ )−), if vi = V −.

We construct from B a constraint instance I = Ec,d as follows: for each i ∈ {1, . . . , k},

• (ai−1, ai ) ∈ V (I ), if vi = V , and
• (ai , ai−1) ∈ V (I ), if vi = V −,

and Ui (I ) = {c} and U f (I ) = {d}. Since (c, d) 6∈ Q(B), and E ⊆ V(B), we also have that (c, d) 6∈ certQ,V (E).
Hence there is a homomorphism h from I to CT Q,V , and therefore, for each i ∈ {1, . . . , k},

• (h(ai−1), h(ai )) ∈ V (CT Q,V ), if vi = V , and
• (h(ai ), h(ai−1)) ∈ V (CT Q,V ), if vi = V −.

In any case, this means that there are transitions (h(ai−1), vi , h(ai )) ∈ %nr that lead from an initial to a final state of
Anr. Hence, w = v1 · · · vk is accepted by Anr. �

The above characterization provides a nice combination of the constraint based [31] and automata theoretic [24]
approaches to view-based query processing for 2RPQs, and goes into the heart of view-based rewriting. A (language)
rewriting accepts a pair (c, d) if there is a path between c and d such that, if we view this path as a linear view
extension, then (c, d) is in the certain answer with respect to this view extension. That means that there is no
homomorphism from this path into the constraint template. Indeed, for a path, the existence of a homomorphism
into the constraint template means that the path is accepted by the template, viewed as an automaton. Naturally, the
difference with view-based query answering, is that we are not limited to linear view extensions only. Suppose that
Vi and V j connect the same pair of objects in a view extension. In rewriting we have to ignore this and allow the
choice of distinct pairs of objects for the two views in a counterexample database. Query answering instead takes into
account that the two pairs of objects are the same. Thus, query answering is more precise than query rewriting. On
the other hand, the simplification introduced by query rewriting allows one to have polynomial time evaluation in the
size of the data, while query answering is coNP-complete [6].

Finally, observe that the above construction provides also optimal upper bounds for the problems of computing
the 2RPQ-maximal rewriting and of determining whether such a rewriting is nonempty [24]. Indeed, the constraint
template, and hence the 1NFA Anr can be constructed in EXPTIME and is of exponential size [7]. Hence, its
complement Arew, which provides the 2RPQ-maximal rewriting, is of double exponential size and can be constructed
in 2EXPTIME. On the other hand, if we only want to check its emptiness, we can complement Anr on the fly, getting
an EXPSPACE upper bound. All these bounds are tight [26].
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5. Losslessness with respect to rewriting

We deal now with the problem of analyzing the loss of information in view-based query processing, and of
characterizing the quality of certain answers and of rewritings. For this purpose, we make use of the following basic
notions.

• To determine whether the information content of a set of views is sufficient to answer completely a given query,
we make use of the notion of losslessness [12,13]. In [13], a set of views V is said to be lossless with respect to a
query Q, if for every database B we have that Q(B) = certQ,V (VΣ (B)).

• As for rewritings, equivalence of a rewriting to the original query, modulo the view definitions, is called exactness
(cf. [1,26]). Formally, a rewriting Qr in a certain query class C is an exact rewriting of Q with respect to views V ,
if for every database B we have that Q(B) = Qr (VΣ (B)).

• Finally, to determine whether we lose answering power by resorting to rewriting, we can compare rewritings with
the certain answers, with the aim of checking whether the two are actually equivalent. A rewriting Qr in a certain
query class C is a perfect rewriting of Q with respect to views V , if for every database B and every view extension
E with E ⊆ VΣ (B) we have that certQ,V (E) = Qr (E).

The first notion aims at determining possible loss with respect to view-based query answering, and will be discussed
in the next section. The other two notions deal with the loss of information in the case of rewritings, and are discussed
below.

In the case of conjunctive queries, the best rewriting of a conjunctive query Q is a union of conjunctive queries.
Therefore, checking exactness amounts to verifying whether Q is contained in the UCQ-maximal rewriting. The latter
is a, possibly exponential, union of conjunctive queries, each of linear size. Since a conjunctive query is contained in a
union of conjunctive queries only if it is contained in one of its disjuncts, it suffices to check whether there is a single
conjunctive query in the rewriting that is equivalent to Q, after substituting the view definitions. This can be done in
NP in the size of Q. As for perfectness, we already observed that the maximal rewriting computes exactly the certain
answers. Therefore, the maximal rewriting is always perfect.

In the case of 2RPQs, things are more complicated. Exactness is studied in [24], where it is shown that verifying
the existence of an exact rewriting is 2EXPSPACE-complete. On the other hand, perfectness is a new notion, and
we provide here a method for checking perfectness of the 2RPQ-maximal rewriting Arew of a query Q. Exploiting
the fact that 2RPQs are monotone, by results in [7], this amounts to check whether for all databases B we have that
certQ,V (VΣ (B)) ⊆ Arew(VΣ (B)). This corresponds to checking whether Q is view-based contained in Arew (see [7]).
To do this check, we can in principle directly use the technique in [7]. Since the 2RPQ-maximal rewriting Arew is a
1NFA of double exponential size in Q, and checking whether Q is view-based contained in Arew can be done in
NEXPTIME in Q and Arew [7], this gives us a N3EXPTIME upper bound. However, we can do better, by making use
of the fact that we have obtained the 1NFA Arew for the rewriting by complementation, and thus by application of the
subset construction. This allows us to characterize non-membership in the answer set to Arew by homomorphism into
a structure C = (∆C , ·C ), called the rewriting constraint template CTRArew,V of Arew, defined as follows:

• The alphabet of C is V±
∪ {Ui , U f }, where Ui and U f denote unary relation symbols.

• Let Anr
= (V±, S, S0, %, F) be a 1NFA for the complement of the rewriting (see Section 4). Then

. ∆C
= 2S ;

. σ ∈ U C
i iff S0 ⊆ σ ;

. σ ∈ U C
f iff σ ⊆ F ;

. (σ1, σ2) ∈ rC iff %(σ1, r) ⊆ σ2 and %(σ2, r−) ⊆ σ1.

To characterize perfectness of the rewriting in terms of CSP, we need to introduce proper constraint templates
(see also [7]). Given the rewriting constraint template CT Arew,V , a proper constraint template CTα,β

Arew,V is obtained by
eliminating from Ui all but one element α and from U f all but one element β.

Lemma 5.1. Let Q be a 2RPQ and V be a set of 2RPQ views. Then the 2RPQ-maximal rewriting of Q with respect to
V is perfect if and only if for every proper constraint template CTRα,β

Arew,V of CTRArew,V , there exists a homomorphism

from CTRα,β

Arew,V to CT Q,V .
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Fig. 2. Databases of Example 6.1.

Proof. Consider now a view extension E = VΣ (B) for some database B, and a pair (c, d) that is not in the answer set
Arew(E). This means that every semipath (x0, v1, x1, . . . , xn−1, vn, xn) from c = x0 to d = xn in E can be instantiated
by words wi ∈ L(vi ) such that Q, when evaluated over the linear database (x0, w1, x1, . . . , xn−1, wn, xn), does not
accept (c, d). Thus, we can label the objects x0, . . . , xn on the path from c to d in the view extension by sets of states
of Anr (recall that Anr is the 1NFA from which we have obtained Arew by complementation) such that the label of c
contains the start set and the label of d consists of accepting states of Anr. This holds for all paths. Thus, we should
be able to label all the objects in the view extension E by sets of states of Anr such that the label of c contains the start
set, the label of d consists of accepting states of Anr, and the edges respect the transition relation of A. In summary,
we have mapped the view extension E into the rewriting constraint template of Arew. Thus, non-membership in the
answer-set Arew(E) is characterized by homomorphism from Ec,d into the rewriting constraint template of Arew. Now,
non-membership in certQ,V (E) is also characterized by homomorphism from Ec,d to CT Q,V . Hence, by reasoning as
in the proof of Theorem 18 in [7], we get the claim. �

The above characterization provides us with a tighter upper bound than the one discussed above.

Theorem 5.2. Let Q be a 2RPQ and V a set of 2RPQ views. Then checking whether the 2RPQ-maximal rewriting of
Q with respect to V is perfect can be done in N2EXPTIME in the size of Q and in NEXPTIME in the size of VΣ .

Proof. We have to check whether, for every proper constraint template CTRα,β

Arew,V of CTRArew,V there exists a
homomorphism to CT Q,V . Constructing the constraint template CT Q,V is in EXPTIME in the size of Q and polynomial
in the size of VΣ . Constructing the 1NFA Anr is in EXPTIME in the size of Q and polynomial in the size of VΣ . Hence,
constructing the rewriting constraint template CTRArew,V of Arew and each proper constraint template CTRα,β

Arew,V is in
2EXPTIME in the size of Q and in EXPTIME in the size of VΣ . Checking the existence of each homomorphism is NP
in the size of the CTRα,β

Arew,V . Moreover, the number of proper constraint templates is 2 · 2k , where k is the number of
states of Anr, and hence it is doubly exponential in the size of Q. These bounds give us the claim. �

We conjecture that such an upper bound is tight.

6. Losslessness with respect to answering

We now turn to verifying losslessness with respect to answering. We want to verify whether a set of views V is
lossless with respect to a query Q, i.e., verifying whether certQ,V is equivalent to Q (cf. [13]).

In the case of conjunctive queries, we already observed that the maximal rewriting computes exactly the certain
answers. Therefore, losslessness with respect to answering and losslessness with respect to rewriting coincide. This is
not necessarily the case for RPQs and 2RPQs, as shown in the following example.

Example 6.1. Consider the RPQ Q = 010+101+000+111 and the views V = {V1, V2, V3, V4, V5} with definitions

V Σ
1 = 0 + 1, V Σ

2 = 01, V Σ
3 = 10, V Σ

4 = 000, V Σ
5 = 111.

The set V of views is not lossless with respect to rewriting. Indeed, the maximal RPQ-rewriting of Q under V is
V4 + V5, and hence is not exact, i.e., equivalent to Q.

However, V is lossless with respect to answering, i.e., certQ,V is equivalent to Q. To show this, consider a linear
database B = (x1, a, x2, b, x3, c, x4) such that Q(B) is not empty. We consider the case where abc = 010 (see Fig. 2).



178 D. Calvanese et al. / Theoretical Computer Science 371 (2007) 169–182

The case where abc = 101 is symmetric, and the cases where abc = 000 and abc = 111 are trivial. Then, V1(B)

returns all pairs of nodes, while

V2(B) = {(x1, x3)}, V3(B) = {(x2, x4)}, V4(B) = ∅, V5(B) = ∅.

Consider now a (possibly non-linear) database B′ such that V(B) ⊆ V(B′) but with (x1, x4) 6∈ Q(B′) (see Fig. 2).
Then, by V1(B) ⊆ V1(B′), there is a path in B′ of the form (x1, a′, x2, b′, x3, c′, x4); by V2(B) ⊆ V2(B′), there is a
path in B′ of the form (x1, 0, z2, 1, x3); and by V3(B) ⊆ V3(B′), there is a path in B′ of the form (x2, 1, z3, 0, x4).
Since (x1, x4) 6∈ Q(B′), the path (x1, a′, x2, b′, x3, c′, x4) must be such that a′b′c′

∈ {001, 011, 100, 110}. But then, if
a′

= 0 we have in B′ the path (x1, 0, x2, 1, z3, 0, x4), and hence (x1, x4) ∈ Q(B′). Similarly, if a′
= 1 then c′

= 0 and
hence we have in B′ the path (x1, 0, z2, 1, x3, 0, x4), and again (x1, x4) ∈ Q(B′). In both cases we get a contradiction.
�

Losslessness with respect to answering for RPQs was studied in [13]. In the rest of this section we study losslessness
with respect to answering for 2RPQs.

The main step toward this goal is to characterize the linear fragment of certain answers. Formally, the linear
fragment of certain answers clinQ,V for a 2RPQ Q with respect to a set V of 2RPQ views is the maximal two-way
path query2 Q′ over Σ such that, for every database B we have that Q′(B) ⊆ certQ,V (V(B)). Q′ being maximal means
that, for all path queries Q′′ over Σ satisfying the condition above, we have that Q′′(B) ⊆ Q′(B) for every database
B. The following result shows that, in order to characterize the linear fragment of certain answers it is sufficient to
restrict attention to linear databases, i.e., databases constituted by a single semipath.

Lemma 6.2. Let Q′ be a two-way path query. Then, if there is a database B and a pair of objects (c, d) in B such that
(c, d) ∈ Q′(B) and (c, d) 6∈ certQ,V (VΣ (B)), then there is a linear database B` with endpoints c′ and d ′ such that
(c′, d ′) ∈ Q′(B`) and (c′, d ′) 6∈ certQ,V (VΣ (B`)).

Proof. The proof is analogous to the proof of Theorem 9 in [13]. �

Hence, to construct the linear fragment of certain answers, we characterize the set of linear databases of the form
B = (x0, q1, x1, q2, . . . , qm, xm), for some m, such that (x0, xm) 6∈ certQ,V (V(B)). By Theorem 3.1, this holds if and
only if there is a homomorphism from the constraint instance V(B)x0,xm to the constraint template CT Q,V . In other
words, (x0, xm) 6∈ certQ,V (V(B)) if and only if there is a function `(·) (i.e., the homomorphism) that labels x0, . . . , xm

with sets of states of the 1NFA AQ
= (Σ±, SQ, SQ

0 , %Q, F Q) for Q such that the following conditions (which we
call CT-conditions) hold:

• SQ
0 ⊆ `(x0);

• `(xm) ∩ F Q
= ∅;

• for each pair of objects x j and xh in B and each view V in V , we have that, if (x j , xh) ∈ V Σ (B) then there exists
a word q1 · · · qk ∈ L(V Σ ) and a sequence T0, . . . , Tk of subsets of SQ such that the following hold:

(1) T0 = `(x j ) and Tk = `(xh),
(2) if s ∈ Ti and (s, qi+1, t) ∈ %Q then t ∈ Ti+1, for 0 ≤ i < k, and
(3) if s ∈ Ti and (s, q−

i , t) ∈ %Q then t ∈ Ti−1, for 0 < i ≤ k.

Thus, we are looking for words of the form `0, q1, . . . , qm, `m , where each `i is a set of states of AQ , representing
`(xi ), and that satisfies the above conditions. As shown by the following lemma, we can construct a 1NFA that accepts
such words, and then project away the `i transitions.

For a word w ∈ Σ±∗, we denote with Ba,b
w the linear database constituted by a path from a to b spelled by w (with

arbitrary intermediate nodes).

Lemma 6.3. Let Q be a 2RPQ and V be a set of 2RPQ views. Then we can construct in double exponential time in
Q and VΣ two 1NFAs Anlin and Alin such that:

2 Recall from Section 2 that two-way path queries are a generalization of 2RPQs in which the language used to define a query is not required to
be regular.
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• Anlin accepts all words w ∈ Σ±∗ such that (a, b) 6∈ certQ,V (V(Ba,b
w )).

• Alin accepts all words w ∈ Σ±∗ such that (a, b) ∈ certQ,V (V(Ba,b
w )).

Proof. We construct a 1DFA AV over the alphabet Σ±
∪ Λ, with Λ = 2SQ

, as follows:

• We construct a 1DFA A0 accepting words that
. start with a symbol ` ∈ Λ such that SQ

0 ⊆ `, and
. end with a symbol ` ∈ Λ such that ` ∩ F Q

= ∅.
These conditions can be checked by A0 in a straightforward manner using a constant number of states.

• For each view V ∈ V , we construct a 1NFA AV as follows. We first define a binary relation V r on Λ as follows:
(`, `′) ∈ V r if there exists a word q1 · · · qk ∈ L(V Σ ) and a sequence T0, . . . , Tk of subsets of SQ such that the
following hold:

(1) T0 = ` and Tk = `′,
(2) if s ∈ Ti and (s, qi+1, t) ∈ %Q then t ∈ Ti+1, for 0 ≤ i < k, and
(3) if s ∈ Ti and (s, q−

i , t) ∈ %Q then t ∈ Ti−1, for 0 < i ≤ k.

Note that for each `, `′ we can decide in PSPACE whether (`, `′) ∈ V r holds,3 so all the relations V r can
be constructed in time exponential in the size of AQ and linear in the size of VΣ . From the relation V r we can
immediately construct a 1NFA that accepts a word starting with ` and ending with `′ if and only if (`, `′) 6∈ V r .

We then construct the 1NFA AV in such a way that it reads a word w, guesses positions j and h, checks that
(` j , `h) 6∈ V r , and checks that (` j , `h) ∈ V Σ (Bw), where Bw is a (linear) database obtained from w by considering
each symbol `i as an object. To do so, we first construct a 2NFA that reads a word w, guesses positions j and h,
and checks that (` j , `h) ∈ V Σ (Bw). Note that the 2NFA does not need to consider the actual symbols `i appearing
in w, but only the symbols qi , hence it has a number of states that is polynomial in V Σ (and does not depend on
Q). Then we transform the 2NFA into a 1NFA and modify it in the following way to obtain AV : when the 1NFA
guesses the position j it also remembers ` j and, when it guesses position h, it checks that (` j , `h) 6∈ V r . The
number of states of the 1NFA derived from the 2NFA is exponential, and the necessity to remember ` j along its
computation multiplies such a number by at most another exponential in Q. Hence, the overall number of states of
AV is exponential both in Q and in V .

• Finally, we take the union of the automata AV , for each V ∈ V , complement it, and intersect with A0, thus getting
AV . Note that such an automaton is deterministic, and has a number of states that is doubly exponential in the size
of Q and VΣ .

Since we are interested in words that consist of an alternation of symbols in Λ and symbols in Σ±, we also construct
a 1DFA Aalt accepting such words. The number of states of Aalt is constant.

Now, using AV and Aalt we can characterize both the linear fragment of the certain answers and its complement.

• By intersecting AV with Aalt, and projecting away the symbols `i , we obtain an 1NFA Anlin.
• Similarly, by intersecting the complement4 of AV with Aalt, and projecting away the symbols `i , we obtain an

1NFA Alin.

Finally, we prove now that Anlin accepts a word w ∈ Σ±∗ if and only if (a, b) 6∈ certQ,V (V(Ba,b
w )). The proof

for Alin is analogous. “⇐” Let w = q1q2 · · · qm be a word such that (x0, xm) 6∈ certQ,V (V(Bx0,xm
w )), and let Bx0,xm

w

be (x0, q1, x1, q2, . . . , qm, xm). By Theorem 3.1 there exists a labeling `(·) of the objects x0, . . . , xm with states of
AQ such that the CT-conditions hold. Now consider the word `(x0)q1`(x1)q2 · · · qm`(xm). One can check that, by
construction, such a word is accepted by AV and Aalt. Hence, w is accepted by Anlin.

“⇒” If Anlin accepts a word w = q1q2 · · · qm , then there exists a word `0q1`1q2 · · · qm`m accepted by AV and
Aalt. Now, consider the linear database B of the form (x0, q1, x1, q2, . . . , qm, xm) and a labeling `(·) of the objects
x0, . . . , xm with states of AQ defined by `(xi ) = `i , for i ∈ {0, . . . , m}. Since `0q1`1q2 · · · qm`m is accepted by AV ,
the CT-conditions hold and hence, by Theorem 3.1 (x0, xm) 6∈ certQ,V (V(B)). �

3 The condition can be verified by checking the nonemptiness of a 1NFA built as in [33]. The 1NFA has an exponential number of states, however
nonemptiness can be checked on the fly, without actually building the 1NFA.

4 Observe that AV is deterministic, so complementing simply amounts to swapping final and non-final states.
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Both 1NFAs Anlin and Alin have a number of states that is doubly exponential in both Q and VΣ . Obviously, the
two automata accept complementary languages. However, in the proof of the above lemma we show how to construct
Alin directly, instead of complementing Anlin, to avoid an additional exponential blowup.

Theorem 6.4. Let Q be a 2RPQ and V be a set of 2RPQ views, and Anlin and Alin the 1NFAs defined as above. Then
Alin is the linear fragment clinQ,V of the certain answers of Q with respect to V .

Corollary 6.5. The linear fragment of a 2RPQ with respect to a set of 2RPQ views is a 2RPQ.

Now we can deal with checking losslessness with respect to answering. To check whether a set V of 2RPQ views
is lossless with respect to a 2RPQ query Q, we have to check whether for all databases B, we have that Q(B) is
contained in the certain answers certQ,V (VΣ (B)). Since Q is itself a 2RPQ, and hence a path query, it suffices to
check whether Q is contained in the linear fragment of the certain answers, i.e., whether for all databases B we have
that Q(B) ⊆ clinQ,V (B). By exploiting the characterization of the linear fragment of the certain answers in terms of
1NFAs provided above, we get the following upper bound, which is tight already for RPQs [13].

Theorem 6.6. Let Q be a 2RPQ and V be a set of 2RPQ views. Then checking whether V is lossless with respect to
Q can be done in EXPSPACE in the size of Q and VΣ .

Proof. By Theorem 6.4, the linear fragment clinQ,V of the certain answers is given by Alin. Its complement Anlin is
an 1NFA with a number of states that is doubly exponential in Q and VΣ . Recall that for a word w ∈ Σ±∗, we denote
with Ba,b

w the linear database constituted by a path from a to b spelled by w (with arbitrary intermediate nodes), and
that Anlin accepts all words w such that (a, b) 6∈ certQ,V (V(Ba,b

w )). To check whether Q is not contained in clinQ,V ,
it suffices to check whether there is a word w ∈ Σ±∗ such that (a, b) ∈ Q(Ba,b

w ) and w ∈ L(Anlin). By Lemma 2
in [25], it suffices to check whether there is a word w ∈ L(Q) ∩ L(Anlin), i.e., whether the intersection of Q and Anlin

is nonempty. Anlin has a number of states that is double exponential in Q and V . Considering that emptiness of 1NFAs
is NLOGSPACE in the number of states and that the construction of Anlin can be done on the fly while checking for
emptiness, we get the claim. �

Observe that when we have that a set of views is lossless with respect to a query, we have also, as a side effect,
that the linear fragment of certain answers is equivalent to the certain answers, since both are equivalent to the query.
Now it is natural to try to understand when the linear fragment of certain answers is equivalent to the certain answers,
independently of losslessness with respect to answering. Indeed, in this case, since the certain answers are actually
expressible as a 2RPQ over the database, we directly get a characterization of the certain answers in the same language
used for expressing the query and thus in terms that are understandable to the user.

Given a 2RPQ Q and a set of 2RPQ views V , checking whether the linear fragment of certain answers is equivalent
to the certain answers amounts to checking whether for every database B we have that certQ,V (VΣ (B)) ⊆ clinQ,V (B).
Consider the 1NFA Alin, constructed above, recognizing the linear fragment clinQ,V of the certain answers of Q. One
can verify that the certain answers certAlin,V of Alin with respect to V are actually equivalent to Alin itself. Hence, the
above check amounts to verifying whether for all databases B, we have that certQ,V (VΣ (B)) ⊆ certAlin,V (VΣ (B)).
This is a form of view-based containment, and by [7] it can done in NEXPTIME in the size of Q and Alin. Considering
that Alin has a number of states that is doubly exponential in the size of Q and VΣ , we get the following upper bound.

Theorem 6.7. Let Q be a 2RPQ and V be a set of 2RPQ views. Then checking whether the certain answers certQ,V
of Q with respect to V is equivalent to its linear fragment can be done in N3EXPTIME in the size of Q and VΣ .

We conjecture that such an upper bound can be improved.

7. Discussion

In this paper, we have revisited the notions of answering, rewriting and losslessness in the context of view-based
query processing in semistructured databases. In particular the richness of RPQs and 2RPQs allows us to uncover
several subtle distinctions between the notions of rewriting and answering, and losslessness with respect to them.
Such distinctions are completely blurred when focusing on conjunctive queries, due to the fact that rewriting and
answering collapse.
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Let Q be a 2RPQ, V a set of 2RPQ views, and let Rmax
Q,V denote the 2RPQ-maximal rewriting of Q with respect

to V . Then, by definition and by results in [7] exploiting the fact that 2RPQs are monotone, we know that for every
database B, the following holds:

Rmax
Q,V (VΣ (B)) ⊆

(1) clinQ,V (B) ⊆
(2) certQ,V (VΣ (B)) ⊆

(3) Q(B).

Notice that we start from a database B and are evaluating certQ,V and Rmax
Q,V over a particular view extension, namely

VΣ (B), instead of an arbitrary view extension E that is sound with respect to B, i.e., such that E ⊆ VΣ (B). This is
due to the fact that our aim is to understand whether there is loss. It is clear that when E is a strict subset of VΣ (B)

then loss may occur, but this has nothing to do with the “quality” of the views.
It is now of interest to consider the cases in which some or all of the above inclusions are actually equalities, since

these correspond to the notions studied in this paper.

(1) If Rmax
Q,V is exact, i.e., is equivalent to Q (modulo the view definitions), then all three inclusions are actually

equalities. Hence, not only do we have losslessness with respect to rewriting but we also have both that the views
are lossless with respect to answering and that Rmax

Q,V is perfect. Thus exactness of the maximal rewriting is the
strongest notion, combining both losslessness of the views and perfectness of the rewriting.

(2) If Rmax
Q,V is perfect, i.e., is equivalent to certQ,V , then inclusions (1) and (2) are actually equalities. In this case, we

also get that certQ,V has to coincide with clinQ,V . By Corollary 6.5 we can conclude that the certain answers are
expressible as a 2RPQ over B.

(3) If V is lossless with respect to Q, i.e., we have losslessness with respect to answering, then inclusion (3) is actually
an equality. Moreover, in this case, since Q is itself a 2RPQ, and hence is linear, then certQ,V has also to be linear
and has to coincide with clinQ,V . Hence inclusion (2) is also an equality. In this case we know that there is not
loss of information related to the fact that we are answering the query based on a set of views.

(4) Finally, if V is lossy with respect to Q, i.e., we have lossiness with respect to answering, we can check whether
inclusion (2) is actually an equality, i.e., whether the certain answers are actually expressible as a 2RPQ over the
database. If this is the case, we directly get a characterization of the certain answers in the same language used for
expressing the query, namely 2RPQs over the database, and thus in terms that are understandable to the user.

More generally, if V is lossy with respect to Q and inclusion (2) is a proper inclusion, we would like to provide an
explanation for the answers that are actually returned or, equivalently, for the loss of information. Indeed, in this case,
we know that there will be at least one view extension such that, in order to show that a tuple is not a certain answer,
we need to resort to a non-linear database. It remains to be investigated whether the techniques we provide for doing
the check allow one also to extract such a counterexample database to exhibit to the user.
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