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Abstract

The use of ontologies in various application domains, such as
Data Integration, the Semantic Web, or ontology-based data
management, where ontologies provide the access to large
amounts of data, is posing challenging requirements w.r.t. a
trade-off between expressive power of a DL and efficiency
of reasoning. The logics of thBL-Lite family were specifi-
cally designed to meet such requirements and optimized w.r.t.
the data complexity of answering complex types of queries.
In this paper we proposBL-Litepoo, an extension oDL-

Lite with full Booleans and number restrictions, and study
the complexity of reasoning iPL-Litepoo and its significant
sub-logics. We obtain our results, together with useful in-
sights into the properties of the studied logics, by a novel re-
duction to the one-variable fragment of first-order logic. We
study the computational complexity of satisfiability and sub-
sumption, and the data complexity of answering positive exis-
tential queries (which extend unions of conjunctive queries).
Notably, we extend the @GSPACE upper bound for the data
complexity of answering unions of conjunctive queries in
DL-Lite to positive queries and to the possibility of express-
ing also number restrictions, and hence local functionality in
the TBox.

Introduction

Description Logics (DLs) provide the formal foundation for
ontologies fttp://owll  _1.cs.manchester.ac.uk/ ),

and the tasks related to the use of ontologies in various ap-
plication domains are posing new and challenging require-
ments w.r.t. a trade-off between expressive power of a DL
and efficiency of reasoning over knowledge bases (KBs)
expressed in the DL. On the one hand, it is expected that
the DL provides the ability to express TBoxes without lim-

itations. On the other hand, tractable reasoning is essen-

tial in a context where ontologies become large and/or are
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over KBs (composed of a TBox storing intensional informa-
tion, and an ABox representing the extensional data), such
as those of th& L-family (Baader, Brandt, & Lutz 2005;
Baader, Lutz, & Suntisrivaraporn 2005) and of the-Lite
family (Calvaneset al. 2005a; 2006).

The logics of theDL-Lite family, in addition to having
inference that is polynomial in the size of the whole KB,
have been designed with the aim of providing efficient ac-
cess to large data repositories. The data that need to be
accessed are assumed to be stored in a standard relational
database (RDB), and one is interested in expressing, through
the ontology, sufficiently complex queries to such data that
go beyond the simplénstance checkingase (i.e., asking
for instances of single concepts and roles). The logics of the
DL-Lite family are tailored towards such a task. In other
words, they are specifically optimized w.idata complex-
ity: for the various versions dDL-Lite, answering unions
of conjunctive queries (UCQs) (Abiteboul, Hull, & Vianu
1995) can be done inGSPACE in data complexity (Cal-
vaneseet al. 2005a). Indeed, the aim of the original line
of research on thBL-Lite family was precisely to establish
the maximal subset of DLs constructs for which one can de-
vise query answering techniques that leverage on RDB tech-
nology, and thus guarantee performance and scalability (see
FOL-reducibility in (Calvaneset al. 2005a)). Clearly, a
requirement for this is that the data complexity of query an-
swering stays within bGSPACE.

In this paper, we pursue a similar objective and aim at
providing useful insights for the investigation of the compu-
tational properties of the logics in tHBL-Lite family. We
extend the basiPL-Lite with full Booleans and number re-
strictions, obtaining the logic we cdllL-Liteye, and intro-
duce two sublanguages of BL-Litexom and DL-Litenom.
Notably, the latter strictly extends badid_-Lite with num-

used to access large amounts of data. This is a scenarioper restrictions, and hentecal (as opposed to global) func-

emerging, e.g., in Data Integration (Lenzerini 2002), the
Semantic Web (Heflin & Hendler 2001), P2P data man-
agement (Bernsteiet al. 2002; Calvaneset al. 2004,
Franconiet al. 2004), ontology-based data access (Borgida
et al. 1989; Calvaneset al. 2005b), and biological data

management. These new requirements have led to the pro-

posal of novel DLs with PIME algorithms for reasoning
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tionality. We then characterize the first-order logic nature of
this class of newly introduced DLs by showing their strong
connection with theone variable fragmenQ£' of first-
order logic. The gained understanding allows us also to de-
rive novel results on the computational complexity of infer-
ence for the newly introduced variantsiof -Lite.

Specifically, we show that KB satisfiability (or subsump-
tion w.r.t. a KB) is NLOGSPACE-complete forDL-Liteyqom,
P-complete folDL-Litenom, and NP-complete (respoNP-



complete) forDL-Litepo,. We prove that data complexity
of both satisfiability and instance checking is in&SPACE

for DL-Litepoo. We then look into the data complexity of an-
sweringpositive existential queriesvhich extend the well-
known class of UCQs by allowing for an unrestricted in-
teraction of conjunction and disjunction. We extend the
LOoGSPACE upper bound already known for UCQs IPL-
Lite to positive existential queries iDL-Litepon. Due
essentially to the presence of disjunction, the problem is
coNP-hard forDL-Liteyom, and hence foDL-Litepoo (Cal-
vaneseet al. 2006).

The DL-Liteyoo family has been shown to be expressive
enough to capture conceptual data models like UML and
Extended ER (Artaleet al. 2007). Such correspondence
provided new complexity results for reasoning over various
fragments of the Extended ER language.

The rest of the paper is structured as follows. In the next
section we introduce the three variants i -Lite men-
tioned above. Then we exhibit the translation@#' and
derive the complexity results for satisfiability and subsump-
tion. We proceed with the analysis of data complexity, and
conclude with techniques and data complexity results for
answering positive existential queries. (All proofs can be
found athttp://www.dcs.bbk.ac.uk/ ~roman.)

The DL-Lite Family

We begin by introducing the following extensi®i_-Litepqo
of the description logidDL-Lite (Calvaneseet al. 2005a;
2006). The language dPL-Liteyoo CONtainsobject names
ag,ai,- .., concept namesdy, A;,... and role names
Py, Py, .... Complexroles R andconcepts of DL-Litepgo,
are defined as follows:

R == P, | P, B = 1 | Ax| >¢qR,
C

= B | =C | C1NCy,

whereq > 1. Concepts of the fornB are calledbasic
concepts A DL-Litepoo TBOX 7, consists of axioms of
the formC; C Cs, and anABox A, of assertions of the
form Aj(a;) or Py(a;,a;). TogetherT and.A constitute a
DL-Litepoo knowledge basé&B) K = (7,.A). (Note that,
assertions involving complex concepf§a;) and inverse
rolesP, (a;,a;) can be expressed a&:(a;), Ac C C and
Py (aj, a;), respectively, wherél - is a fresh concept name.)
A DL-Liteyoq interpretationis a structure of the form
LALAT L

I:(Avagva%w- -7P0Iapll-7"')7

@
whereA # , af € A, AL C A, PF C Ax A, and

aj # af,foralli # j. The role and concept constructors
are interpreted i as usual:

(Py) ={(y.z) e Ax A|(z,y) € P}, (L) =0,
(>qR) ={zeA|t{ye Al (z,y) € R"} > q},
(-C)F = A\ o7, (C1n )t =cfnct.

We make use of the standard abbreviatigids = > 1 R,
T=-l,and<gR=-(>q¢+1R).

Thesatisfaction relatior= is defined in the standard way:
IEC, CC, iff cfcc?,

T = Ap(a;) iff ol € AZ,
T = Pu(ai,a;) it (af,al) € PL.

AKB K = (T, A) is satisfiabldf there is an interpretation,
called amodel forkC, satisfying all axioms of” and.A.

We also consider two sublanguageddf-Litepoo (in the
following, the B; and B are basic concepts):

(Krom fragment) A TBox of a DL-Liteyom KB only con-
tains axioms of the formB; T By, By T —Bj or
-B; C Bsy. KBs with such TBoxes are calldttom KBs

(Horn fragment) A TBox of a DL-Litenom, KB only con-
tains axioms of the fornfi |, B, T B. KBs with such
TBoxes are calletHorn KBs

Note that the restricted negation of the original variants of
DL-Lite and DL-Liter - (Calvaneseet al. 2005a; 2006)
can only express disjointness of basic concepts, while the
full negation inDL-Litepoo allows one to define a concept
as the complement of another one. IMv.-Litenom One can
express disjointness of basic concepisby [ ], B, T L.
The explicit functionality axioms aDL-Liter r Stating that

a role R is globally functional can be represented in both
DL-Litegom and DL-Litenorn 8> 2 R T L. Moreover, the
two languages are capable of expresdowgl functionality

of a role, i.e., functionality restricted to a (basic) concept
B: B C —=(>2R)in DL-LiteomandBM>2R C 1 in
DL-Litenorn. Therefore DL-Litenor, Strictly extendsDL-Lite
andDL-Liter  with local functionality of roles and, more
generally, with number restrictions.

Embedding DL-Lite into the One-Variable
Fragment of First-Order Logic

Our main aim in this section is to show that satisfiability for
DL-Litepoo KBS can be polynomially reduced to the satisfi-
ability problem for theone-variable fragmen@." of first-
order logic without equality and function symbols.

LetC = (7,.A) be aDL-Liteyoo KB. Denote byrole(K)
the set of role names occurringfhand.A, by role® (K) the
set{ Py, P, | Py € role(KC)}, and byob(.A) the set of object
names ind. Letgs be the maximum numerical parameter in
7. Note thaly > 2 if the functionality axiom 2 R C 1)
is present in7. With every object name; in ob(A) we
associate the individual constant of Q£' and with each
concept namel;, the unary predicatd,, (x) from the signa-
ture of QL. For each roleR € role™ (K), we introduce;
fresh unary predicates, R(z), for 1 < ¢ < g7. Intuitively,

E, Py(z) and E; P, (z) represent the domain and range of
P,—i.e.,E1 P,(x) andE, P_ (x) are the sets of points with
at least oneP-successor andt least oneP,-predecessor,
respectively. Predicates, P, (z) and E,P, (x) represent
the sets of points witlat leastq distinct P,-successors and
at leastq distinct P,-predecessors, respectively. Addition-
ally, for every P, € role(K), we take two fresh individual
constantsip;, anddp, of QL' which will serve as ‘repre-
sentatives’ of the points from the domain &f and P_,



respectively (provided that they are not empty). Further- m > 0, is constructed by adding td/,,, some new ele-

more, for each pair of objects;,a; € ob(A) and each
R € role®(K), we take a frespropositional variableRa;a ;
of QL' to encodeR(a;,a;). By induction on the construc-

tion of a DL-Litepoo conceptC we define thed £ -formula
c*:
(L) =1, (A)" =A(@), (=qR)" = EgR(z),
(=C)" ==C*(x),  (C1MCy)" = Ci(x) AC5(x),

where A, is a concept name an® is a role. Then a
DL-Litepoo TBoX 7 corresponds to th@£!-sentence

It should be also clear how to translate an ABbinto QL ':

Al = /\Ak(ai)EAAk’(ai) A /\Pk(ai,aj)eAPkaiaj‘ 3)

The following Q£!-sentences express some natural proper-

ties of the role domains and ranges: for evBryg role® (K),
e(R) = Vz (EiR(z) — inv(EyR(dr))), 4)
6(R) = NiZy'Va (EgniR(x) — EqR(x)).  (5)

where inv(Ey R(dr)) is E1P, (dp,) if R = P, and
E\Py(dpy) if R = P_ . Sentence (4) says that if the do-
main of, say,P is not empty then its range is not empty
either: it contains the representatiyg, . We also need for-
mulas relating eacltia;a; to the unary predicates for the
role domain and range. For eaghe role® (K), let Rf be
the conjunction of the followin@£'-sentences

qaT
A A (AL Baa;, — E,R(@). ()
=1 a,aj,...,a;,€0b(A)
JiF#j forid
Nas 0, con(a) (Raia; — inv(R)aja;), )

whereinv(R)a;a; is the propositional variablé’, a;a; if
R = Py, andPya;a; if R = P, . Finally, for , we set

Kt = [T* A /\(s(R)/\d(R))} A [AT n A RT]

Rerole* (K) Rerole* (K)

It is worth noting that all of the conjuncts &' areuniversal
sentences.

Theorem 1. A DL-Litepoo KB K is satisfiable iff theD 2! -
sentenceéCt is satisfiable.

Proof. (<) Let 9t be an Herbrand model (in the signa-
ture of 1) satisfyingCt; for details see, e.g., (Rautenberg
2006). We denote the domain @ft by D (it consists of
all the constants occurring iit"), and the interpretations
of (unary) predicatesl, propositional variable£ and con-
stantsa of QL' in M by A™, R™ anda™, respectively.
We construct inductively @L-Litepoo modelZ based on
some domaim 2O D, which will be defined as the union
A = Uy _o W, with Wy = D. Each setW,,, for

ments that are frestopiesof certain elements frorid/, (i.e.,
Wi © Wiaq form > 0). If such a new element’ is a
copy ofw € Wy then we writecp(w’) = w, while, for
w € Wy, we letep(w) = w (thus,cp: A — Wy). The set
W \ W1, form > 0, will be denoted by, (for con-
venience, letV_; = () so thatl, = D). The interpretations
of the objects: in Z are given by their interpretations &,
namely,a’ = o™ € W,. The interpretationsi? of concept
namesA in 7 are defined by taking

AT = {we Al A*[op(w)]}. ®)

The interpretatiorP,f of a role P, in Z will be defined in-
ductively as the union
Py = Un—o P

along with the construction oA. For R € role*(K), we
define therequired R-rank r(R,d) of a pointd € D by
taking

where P[* C W, x Wy,

0, if M —ELR[d],
r(R,d)=<q, if ME (EqRA-Eg1R)[d],1<q<qr,
qr,if M = By, R[d].

It follows from (5) thatr(R, d) is indeed a function, and if
d € Dandr(R,d) = qthen = E, R[d], for1 < ¢ <g,
andM = —~Ey R[d], for ¢ < ¢’ < q7. We also define the
actual R-rankr,, (R, w) of w € A at stepm by taking

g, if we(>qR™Wn)\ (Zq+1R™.W,,)
and 0 <gq<gqr,
qr, if we (>qr R™.Wn),

Tm (R7 ’U}) =

whereR™ = P/" if R = Py, R™ = (P]")” if R = P,
and, forwWw C A, R C Ax Aand0 < ¢ < gr,
(=qRW) = {we W | #{v | (wyv) € R} > q}.
For the basis of induction we set, for eagh < role(KC),

PY = {(aT,aT) € Wy x Wy | M = Prasa;}.  (9)

R ]
Note that, by (6) and (7), for alk € role® (k) andw € W,
ro(R,w) < r(R,cp(w)). (10)

Suppose now that’,,, and theP;”, for m > 0, have already
been defined. If we had,,(R,w) = r(R,cp(w)), for all
R e rolei(IC) andw € W,,, then the model would be as

required. However, in general this is not the case because
there may be some ‘defects’ in the sense that the actual rank
of some points is smaller than the required rank. For a role

P, € role(K), consider the following sets of defectsij™:
A;gn = {’LU €V | rm(kaw) < T(Pk7cp(w))}’
AT = {w € Vi | 1Py, w) < r(Py,cp(w))}.

The purpose of, sayA}" is to identify those ‘defective’
pointsw € V,,, from which precisely-( Py, cp(w)) distinct
Py-arrows should start (according %), but some arrows
are still missing (onlyr,, (P, w) many arrows exist). To
‘cure’ these defects, we exterdl,,, to W, and P to

P! according to the following rules:



(A7) Letw € AT, g = r( Py, cp(w)) —rm (P, w) andd =
cp(w). SoM = E, Py[d], for someq’ > ¢ > 0. Then,
by (5), M |= E\Py[d] and, by (4)9 = E\P; [dp; ).
In this case we take fresh copieswy, ..., w;, of dp,,
setep(w)) = dpy,, add them tdV,,,, and add the pairs
(w,w!) to Pyt

(A7) is the mirror image of the above.

Observe the following important property of the construc-
tion: for all mg > 0, w € V;,, andR € role* (K),

0, if m < mo,
q, if m = mo, ¢ < T(R7 Cp(w))7
r(R,cp(w)), if m > mg.

rm(R,w) = (11)

This claim can be proved by considering all possible cases
for the relationship between andm,.

It follows from this property that, for alR e role* (K),
1< qg<grandw € A,

M = E,R[cp(w)]  iff  we (>qREA).  (12)

Now we show by induction on the construction of concepts
C'in K that, for everyw € A,

M= C*ep(w)]  iff  we C7. (13)

The basis of induction is trivial fof' = L, follows from (8)
for C = A; and from (12) forC = > ¢ R. The induction
step for the Booleans{ = —~C; andC = C; 1 () easily
follows from the induction hypothesis. Finally, we show that
for each statement € 7 U A,

M=yt i T = (14)

The case) = Cy C C, follows from (13) andy = Ag(a;)
from the definition ofA%. Fory = Py(ai, a;), we have
(af,at) € PF iff, by construction of P}, (af,a}) € P
iff, by (9), M |= Pra,a;. Thereforel = K.

The proof of(=) is straightforward. O

The translatioriC' of K is too lengthy to provide us with
reasonably low complexity resultgiCt| < const- |K| +
|ob(A)[97. Let us now define a more concise translation of
K = (T, A) into QL. For R € role*(K), let Q% be the
subset of the natural numbers containingnd all the nu-
merical parametergfor which the concept ¢ R occurs in
T (recall that the ABox does not contain numerical parame-
ters). Then we set

K = [T A Aneret o) CR) A (R)| A 2,

where7* ande(R) are as before (see (2) and (4)), and

&#(R) = N\ Vz(EyR(z) - ER(z)), (15)
7,4'€Q%, ¢'>qand
q'>q">qfornoq” cQf

A= A Aa) A A Ep.R@), (16)
A(a;)eA Rerole* (K),acob(A)

wheregg , is the maximum number fro) % such that there
areqg,, many distincta; with Py (a,a;) € A, for R = Py,

and Py,(a;,a) € A, for R = P, . Note thatk’, unlike
K, does not contain propositional variablgs;a;; indeed,
the actual connections between named objects (stated in the
ABox) are of no importance at all; what really matters are
the unary ‘types’ of named objects< ob(.A), that is, the
sets of all concept€’ from K such that = C(a). This
information is enough to restore the relations between the
named objects required Hy.

Now both the size of4” and the size oK” are linear in
the size of A and KC, respectivelyno matter whether the
numerical parameters are coded in unary or in binary

From the fact thakCT is satisfiable iffiC” is satisfiable the
following corollary holds.

Corollary 2. A DL-Litenoo KB K is satisfiable iff theD £ -
sentenceC’ is satisfiable.

As a consequence of Corollary 2 we obtain the following:

Theorem 3. The satisfiability problem i&P-complete for
DL-Litepoo KBS, NLOGSPACE-complete for DL-Liteyyom
KBs andP-complete foDL-Litenom KBS.

Proof. As K* contains no function symbols, its Herbrand
universe consists of all constants occurring in it, iod(A)
and thedr, R € role*(K). Therefore, satisfiability ok

is polynomially reducible to satisfiability of a set of propo-
sitional formulas, namely, the formulas obtained fréih

by replacingz with each of the constants occurring Att
(becauseK’ is a universal formula). It remains to recall
that the satisfiability of Boolean formulas is in NP, of 2-
CNFs in NLOGSPACE, and of propositional Horn formulas
in P (Papadimitriou 1994; Kozen 2006). The matching lower
bounds also follow from the complexity of the respective
fragments of propositional Boolean logic. O

Many other reasoning tasks are reducible to the satisfi-
ability problem. Consider, for example, tlseibsumption
problem given a KB K and two conceptg&’ and D, de-
cide whetherC = C' C D. Since subsumption and non-
satisfiability of KBs are reducible to each other anoN-
LOGSPACE=NLOGSPACE by the Immerman-Szelepesyi
theorem (see, e.g., Kozen, 2006) the following holds:

Theorem 4. The subsumption problem ONP-complete
for DL-Litepoo,, NLOGSPACE-complete foiDL-Liteyom and
P-complete foDL-Litenom.

Other reasoning tasks are analysed in the same way. In
particular, a reduction for the instance checking problem can
be found in the next section.

Data Complexity

In terms of the classification suggested in (Vardi 1982), so
far we have been considering tkembined complexitpf

the satisfiability problem. When the size of data is the cru-
cial parameter (as in ontologies for huge data sets) the most
relevant complexity measure beconuzga (or ABoY com-
plexity, where the complexity is only measured in terms of
the size of the ABox4, while the knowledge in the TBoX

is assumed to be fixed.



In this section we show that as far as data complexity is
concerned, reasoning problems fof.-Litep,q KBS can be
solved using only logarithmic space in the size of the ABox.

* computeprojy, (K, a), check whether it is satisfiable.
This algorithm requires space bounded by a logarithmic
function in the sizg.A| of the ABox. Indeed, in order to

We remind the reader (see e.g., Kozen, 2006) that a problem enymerate all subsets, of $(7) one needsrole™(7)|

belongs to the complexity clasGSPACEIf there is a two-
tape Turing machiné/ such that, starting with an input of
lengthn written on theread-only input tapeM stops in an
accepting or rejecting state having used at most: cells
of the (initially blank)read/write work tape

In what follows, without loss of generality, we assume
that all role names of a given KB = (7,.4) occur in its
TBox and writerole® (7') instead ofole® (). Let (7)) be
the set{ £y R(dr) | R € role™(7)} and, fors, C %(7),

cores, (7) = /\ EiR(dr) A
EjR(dr)eXg

A (T*[dr] AN ((R)[dr] A éb(R’)[dr])),

Rerolet (T) R’ €role® (T)
projy,, (K, a) = /\ —EiR(a) A
inv(E1 R(dr))eX(T)\Zo
Tl A N\ SR A Aa),

R’ €role® (T)

whereT*[c], e(R')[c] andd’(R')[c] are instantiations of the
universal quantifier in the respective formulas with the con-
stantc, and A’ (a) is the maximal subformula oA® contain-

ing only occurrences of predicates witlas their parameter.

Lemma 5. K" is satisfiable iff there i€, C ¥(7T) such
that core;, (7') and the proj;, (K, a), fora € ob(A), are all
satisfiable.

Note thatcores,, (7) and theprojy, (K, a), fora € ob(A),
are in essence propositional Boolean formulas and their size
does not depend on the sizef This is clearly the case for
cores, (7)) and the first three conjuncts pfojy, (KC, a). As
for the last conjunct oprojy, (K, a), its length does not ex-

ceed the number of concept name§iplus ¢ - [role™ (T)|

and, therefore, only depends on the structureZof The
above lemma states that satisfiability ofDd.-Litepoo KB

can be checked locally: first, for the elemedisrepresent-

ing the domains and ranges of all roles, and second, for every
object name in the ABox. This observation suggests a high
degree of parallelism in the satisfiability check.

Theorem 6. The data complexity of satisfiability and in-
stance checking fabPL-Litepoo KBS is inL OGSPACE.

Proof. The instance checking problem is reducible to the
(un)satisfiability problem: an object is an instance of a
basic concepB in every model oflC = (7, .A) iff the KB
(TU{A.p T -B}, AU{A p(a)}) is not satisfiable,
where A_p is a fresh concept name. The following deter-
ministic algorithm checks whether a KB = (7, A) is sat-
isfiable:

o for every subset, of ¥(7), repeat the following:

(c) computecores, (7) and check whether it is satisfiable;
(p) for every object name € ob(A),

* compute theyr ., for R € role*(T),

cells of the work tape—this does not depend|atl. At
step(c), the size ofcorey, (7)) does not depend of#| ei-
ther, and whether this formula is satisfiable can be checked
deterministically(though in time exponential and in space
linear in the length of the formula). At stgjp) we enu-
merate all elements ab(.A4), and this require®g |A| cells
on the working tape. Next, ther ., for R € rolei(T),
can be computed usingr - log |.A| of extra space: for ev-
ery1l < q < g7, one enumerates ajttuples(a;, , . .., a;,)

of distinct objects imb(.A) and checks whether, for every
1< j <gq, Pk(a,aij) cAifR= Py, ande,(aij,a) c A,

if R = P_. The maximum sucly is the required num-
ber g, (cf. (16)). Finally, for eachu € ob(A), the size
of projs, (K, a) does not depend dvd| and its satisfiability
can be checked deterministically. O

Query Answering
By apositive existential query(z4, . . ., z,,) we understand
any first-order formula constructed by means of conjunc-
tion, disjunction and existential quantification starting from
atoms of the from4,(¢) and Py (1, t2), whereAy, is a con-
cept name[P, is a role name, and ¢, ¢, aretermstaken
from the list of variablegyy,y:,... and the list of object
namesiy, a, ..., lL.e.,
q == Ap(t) | Pe(ti,t2) | atAge |@aVa | Jyig

The free variables of are called itgdistinguished variables
and the bound ones itson-distinguished variables We
write g(x1, . . ., 2, ) for a query with distinguished variables
x1,...,T,. A conjunctive queryCQ) is a positive existen-
tial query that contains no disjunction—that is, constructed
from atoms by means of conjunction and existential quan-
tification. Given a query(Z), with ¥ = x4, ..., x,, and an
n-tupled of object names, we writg(a) for the result of re-
placing every occurrence af in ¢(Z) with theith member
of @. Queries containing no distinguished variables will be
calledground

Let Z be aDL-Litepoo model of the form (1). Arassign-
menta in A is a function associating with every variahle
an elementi(y) of A. We will use the following notation:
al® = of andy”® = a(y). Define thesatisfaction rela-
tion for positive existential formulas with respect to a given
assignment:

TE® Au(t)

T E" Py(ti,ta)
IE"aAg
ITE" a1 Ve
TE"3yiq

the € AR,
(t°,157%) € P,
ZE" ¢ andZ * go,
A ):u q1 orZ ):u q2,
T =° ¢, for someb that

may differ froma ony;.
For a ground query(a) the satisfaction relation does not
depend on the assignmenthus we writeZ = ¢(a) instead
of 7 = ¢(@). Given a KBK = (7,.A), we say that a
tupled of objects fromob(.A) is ananswerto ¢(Z) and write
K = q(a) if 7 = q(d@) whenevelZ = K.



The query answering problemwe analyse here is formu-
lated as follows: given @L-Litepoo KB K = (7, .A), a
queryq(Z) and a tuplez of object names fronob(A), de-
cide whetheC = ¢(&@). The variant of this problem requir-
ing to ‘list all the answersi to ¢(Z) with respect tok’ is
L oGSPACE-equivalent to the previous one (Abiteboul, Hull,
& Vianu 1995, Exercise 16.13). We are interested indh&
complexityof the query answering problem.

We first recall known results (Donirgt al. 1994; Cal-
vaneseet al. 2006; Ortiz, Calvanese, & Eiter 2006) for the
case of conjunctive queries and obtain the following:

Theorem 7. The data complexity of the conjunctive and
positive existential query answering problems for both
DL-Liteyrom and DL-Litepoo KBS isSCONP-complete.

Proof. The lower bound was established in (Calvanete
al. 2006) by adapting the proof in (Donigt al. 1994). The
matching upper bound follows from results on data com-
plexity of conjunctive query answering in expressive DLs
(Ortiz, Calvanese, & Eiter 2006): every positive existential
gueryq can be transformed into an equivalent UCQ and, al-
though the resulting UCQ may be exponential in the length
of ¢, this clearly does not affect data complexity. O

Next, we show that the @GSPACE data complexity up-
per bound (Calvaneset al. 2005a; 2006) for conjunctive
gueries oveDL-Lite KBs, can be extended to positive exis-
tential queries oveDL-Litenom KBS:

Theorem 8. The data complexity of the positive existen-
tial query answering problem foDL-Litenorn KBS is in
LOGSPACE.

Proof. We only sketch the idea of the proof. (1) We con-
struct asingle but possibly infinite, modef, which pro-
vides all answers to all positive existential queries with re-
spect to a given Horn KB. (2) We show that to find all an-
swers to a given query it is enough to consider sdimite
part of Z, the size of which does not depend on the given
ABox but only on the number of distinguishadand non-
distinguished variableg in the given query as well as the
size of the TBox. (3) The bGSPACE query answering al-

We are further investigating the complexity of logics ob-
tained by adding further constructsid.-Lite. Preliminary
results show that already by adding role inclusion axioms to
DL-Litepoo the combined complexity raises tokETIME.
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