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Abstract

The use of ontologies in various application domains, such as
Data Integration, the Semantic Web, or ontology-based data
management, where ontologies provide the access to large
amounts of data, is posing challenging requirements w.r.t. a
trade-off between expressive power of a DL and efficiency
of reasoning. The logics of theDL-Lite family were specifi-
cally designed to meet such requirements and optimized w.r.t.
the data complexity of answering complex types of queries.
In this paper we proposeDL-Litebool, an extension ofDL-
Lite with full Booleans and number restrictions, and study
the complexity of reasoning inDL-Litebool and its significant
sub-logics. We obtain our results, together with useful in-
sights into the properties of the studied logics, by a novel re-
duction to the one-variable fragment of first-order logic. We
study the computational complexity of satisfiability and sub-
sumption, and the data complexity of answering positive exis-
tential queries (which extend unions of conjunctive queries).
Notably, we extend the LOGSPACE upper bound for the data
complexity of answering unions of conjunctive queries in
DL-Lite to positive queries and to the possibility of express-
ing also number restrictions, and hence local functionality in
the TBox.

Introduction
Description Logics (DLs) provide the formal foundation for
ontologies (http://owl1 1.cs.manchester.ac.uk/ ),
and the tasks related to the use of ontologies in various ap-
plication domains are posing new and challenging require-
ments w.r.t. a trade-off between expressive power of a DL
and efficiency of reasoning over knowledge bases (KBs)
expressed in the DL. On the one hand, it is expected that
the DL provides the ability to express TBoxes without lim-
itations. On the other hand, tractable reasoning is essen-
tial in a context where ontologies become large and/or are
used to access large amounts of data. This is a scenario
emerging, e.g., in Data Integration (Lenzerini 2002), the
Semantic Web (Heflin & Hendler 2001), P2P data man-
agement (Bernsteinet al. 2002; Calvaneseet al. 2004;
Franconiet al. 2004), ontology-based data access (Borgida
et al. 1989; Calvaneseet al. 2005b), and biological data
management. These new requirements have led to the pro-
posal of novel DLs with PTIME algorithms for reasoning
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over KBs (composed of a TBox storing intensional informa-
tion, and an ABox representing the extensional data), such
as those of theEL-family (Baader, Brandt, & Lutz 2005;
Baader, Lutz, & Suntisrivaraporn 2005) and of theDL-Lite
family (Calvaneseet al. 2005a; 2006).

The logics of theDL-Lite family, in addition to having
inference that is polynomial in the size of the whole KB,
have been designed with the aim of providing efficient ac-
cess to large data repositories. The data that need to be
accessed are assumed to be stored in a standard relational
database (RDB), and one is interested in expressing, through
the ontology, sufficiently complex queries to such data that
go beyond the simpleinstance checkingcase (i.e., asking
for instances of single concepts and roles). The logics of the
DL-Lite family are tailored towards such a task. In other
words, they are specifically optimized w.r.t.data complex-
ity: for the various versions ofDL-Lite, answering unions
of conjunctive queries (UCQs) (Abiteboul, Hull, & Vianu
1995) can be done in LOGSPACE in data complexity (Cal-
vaneseet al. 2005a). Indeed, the aim of the original line
of research on theDL-Lite family was precisely to establish
the maximal subset of DLs constructs for which one can de-
vise query answering techniques that leverage on RDB tech-
nology, and thus guarantee performance and scalability (see
FOL-reducibility in (Calvaneseet al. 2005a)). Clearly, a
requirement for this is that the data complexity of query an-
swering stays within LOGSPACE.

In this paper, we pursue a similar objective and aim at
providing useful insights for the investigation of the compu-
tational properties of the logics in theDL-Lite family. We
extend the basicDL-Lite with full Booleans and number re-
strictions, obtaining the logic we callDL-Litebool, and intro-
duce two sublanguages of it,DL-Litekrom andDL-Litehorn.
Notably, the latter strictly extends basicDL-Lite with num-
ber restrictions, and hencelocal (as opposed to global) func-
tionality. We then characterize the first-order logic nature of
this class of newly introduced DLs by showing their strong
connection with theone variable fragmentQL1 of first-
order logic. The gained understanding allows us also to de-
rive novel results on the computational complexity of infer-
ence for the newly introduced variants ofDL-Lite.

Specifically, we show that KB satisfiability (or subsump-
tion w.r.t. a KB) is NLOGSPACE-complete forDL-Litekrom,
P-complete forDL-Litehorn, and NP-complete (resp.CONP-



complete) forDL-Litebool. We prove that data complexity
of both satisfiability and instance checking is in LOGSPACE
for DL-Litebool. We then look into the data complexity of an-
sweringpositive existential queries, which extend the well-
known class of UCQs by allowing for an unrestricted in-
teraction of conjunction and disjunction. We extend the
LOGSPACE upper bound already known for UCQs inDL-
Lite to positive existential queries inDL-Litehorn. Due
essentially to the presence of disjunction, the problem is
CONP-hard forDL-Litekrom, and hence forDL-Litebool (Cal-
vaneseet al. 2006).

The DL-Litebool family has been shown to be expressive
enough to capture conceptual data models like UML and
Extended ER (Artaleet al. 2007). Such correspondence
provided new complexity results for reasoning over various
fragments of the Extended ER language.

The rest of the paper is structured as follows. In the next
section we introduce the three variants ofDL-Lite men-
tioned above. Then we exhibit the translation toQL1 and
derive the complexity results for satisfiability and subsump-
tion. We proceed with the analysis of data complexity, and
conclude with techniques and data complexity results for
answering positive existential queries. (All proofs can be
found athttp://www.dcs.bbk.ac.uk/ ˜ roman .)

The DL-Lite Family
We begin by introducing the following extensionDL-Litebool
of the description logicDL-Lite (Calvaneseet al. 2005a;
2006). The language ofDL-Litebool containsobject names
a0, a1, . . . , concept namesA0, A1, . . . and role names
P0, P1, . . . . ComplexrolesR andconceptsC of DL-Litebool
are defined as follows:

R ::= Pk | P−
k , B ::= ⊥ | Ak | ≥ q R,

C ::= B | ¬C | C1 u C2,

whereq ≥ 1. Concepts of the formB are calledbasic
concepts. A DL-Litebool TBox, T , consists of axioms of
the formC1 v C2, and anABox, A, of assertions of the
form Ak(ai) or Pk(ai, aj). TogetherT andA constitute a
DL-Litebool knowledge base(KB) K = (T ,A). (Note that,
assertions involving complex conceptsC(ai) and inverse
rolesP−k (ai, aj) can be expressed asAC(ai), AC v C and
Pk(aj , ai), respectively, whereAC is a fresh concept name.)

A DL-Litebool interpretationis a structure of the form

I = (∆, aI0 , aI1 , . . . , AI
0 , AI

1 , . . . , P I
0 , P I

1 , . . . ), (1)

where∆ 6= ∅, aIi ∈ ∆, AIk ⊆ ∆, P Ik ⊆ ∆ × ∆, and
aIi 6= aIj , for all i 6= j. The role and concept constructors
are interpreted inI as usual:

(P−
k )I = {(y, x) ∈ ∆×∆ | (x, y) ∈ P I

k }, (⊥)I = ∅,

(≥q R)I = {x ∈ ∆ | ]{y ∈ ∆ | (x, y) ∈ RI} ≥ q},

(¬C)I = ∆ \ CI , (C1 u C2)
I = CI

1 ∩ CI
2 .

We make use of the standard abbreviations∃R ≡ ≥ 1R,
> ≡ ¬⊥, and≤ q R ≡ ¬(≥ q + 1R).

Thesatisfaction relation|= is defined in the standard way:

I |= C1 v C2 iff CI1 ⊆ CI2 ,

I |= Ak(ai) iff aIi ∈ AIk ,
I |= Pk(ai, aj) iff (aIi , a

I
j ) ∈ P Ik .

A KB K = (T ,A) is satisfiableif there is an interpretation,
called amodel forK, satisfying all axioms ofT andA.

We also consider two sublanguages ofDL-Litebool (in the
following, theBi andB are basic concepts):

(Krom fragment) A TBox of a DL-Litekrom KB only con-
tains axioms of the formB1 v B2, B1 v ¬B2 or
¬B1 v B2. KBs with such TBoxes are calledKrom KBs.

(Horn fragment) A TBox of a DL-Litehorn KB only con-
tains axioms of the form

d
k Bk v B. KBs with such

TBoxes are calledHorn KBs.

Note that the restricted negation of the original variants of
DL-Lite and DL-LiteF,u (Calvaneseet al. 2005a; 2006)
can only express disjointness of basic concepts, while the
full negation inDL-Litebool allows one to define a concept
as the complement of another one. InDL-Litehorn one can
express disjointness of basic conceptsBk by

d
k Bk v ⊥.

The explicit functionality axioms ofDL-LiteF,u stating that
a roleR is globally functional can be represented in both
DL-Litekrom andDL-Litehorn as≥ 2R v ⊥. Moreover, the
two languages are capable of expressinglocal functionality
of a role, i.e., functionality restricted to a (basic) concept
B: B v ¬(≥ 2R) in DL-Litekrom andB u ≥ 2R v ⊥ in
DL-Litehorn. Therefore,DL-Litehorn strictly extendsDL-Lite
andDL-LiteF,u with local functionality of roles and, more
generally, with number restrictions.

Embedding DL-Lite into the One-Variable
Fragment of First-Order Logic

Our main aim in this section is to show that satisfiability for
DL-Litebool KBs can be polynomially reduced to the satisfi-
ability problem for theone-variable fragmentQL1 of first-
order logic without equality and function symbols.

LetK = (T ,A) be aDL-Litebool KB. Denote byrole(K)
the set of role names occurring inT andA, by role±(K) the
set{Pk, P

−
k | Pk ∈ role(K)}, and byob(A) the set of object

names inA. LetqT be the maximum numerical parameter in
T . Note thatqT ≥ 2 if the functionality axiom (≥ 2R v ⊥)
is present inT . With every object nameai in ob(A) we
associate the individual constantai of QL1 and with each
concept nameAk the unary predicateAk(x) from the signa-
ture ofQL1. For each roleR ∈ role±(K), we introduceqT
fresh unary predicatesEqR(x), for 1 ≤ q ≤ qT . Intuitively,
E1Pk(x) andE1P

−
k (x) represent the domain and range of

Pk—i.e.,E1Pk(x) andE1P
−
k (x) are the sets of points with

at least onePk-successor andat least onePk-predecessor,
respectively. PredicatesEqPk(x) andEqP

−
k (x) represent

the sets of points withat leastq distinctPk-successors and
at leastq distinctPk-predecessors, respectively. Addition-
ally, for everyPk ∈ role(K), we take two fresh individual
constantsdpk anddp−k of QL1 which will serve as ‘repre-
sentatives’ of the points from the domain ofPk andP−k ,



respectively (provided that they are not empty). Further-
more, for each pair of objectsai, aj ∈ ob(A) and each
R ∈ role±(K), we take a freshpropositional variableRaiaj

of QL1 to encodeR(ai, aj). By induction on the construc-
tion of aDL-Litebool conceptC we define theQL1-formula
C∗:

(⊥)∗ = ⊥, (Ak)∗ = Ak(x), (≥q R)∗ = EqR(x),
(¬C)∗ = ¬C∗(x), (C1 u C2)∗ = C∗1 (x) ∧ C∗2 (x),

whereAk is a concept name andR is a role. Then a
DL-Litebool TBox T corresponds to theQL1-sentence

T ∗ =
∧

C1vC2∈T ∀x
(
C∗1 (x) → C∗2 (x)

)
. (2)

It should be also clear how to translate an ABoxA intoQL1:

A† =
∧

Ak(ai)∈AAk(ai) ∧
∧

Pk(ai,aj)∈A Pkaiaj . (3)

The followingQL1-sentences express some natural proper-
ties of the role domains and ranges: for everyR ∈ role±(K),

ε(R) = ∀x
(
E1R(x) → inv(E1R(dr))

)
, (4)

δ(R) =
∧qT −1

q=1 ∀x
(
Eq+1R(x) → EqR(x)

)
, (5)

where inv(E1R(dr)) is E1P
−
k (dp−k ) if R = Pk, and

E1Pk(dpk) if R = P−k . Sentence (4) says that if the do-
main of, say,Pk is not empty then its range is not empty
either: it contains the representativedp−k . We also need for-
mulas relating eachRaiaj to the unary predicates for the
role domain and range. For eachR ∈ role±(K), letR† be
the conjunction of the followingQL1-sentences

qT∧
q=1

∧
a,aj1 ,...,ajq∈ob(A)

ji 6=ji′ for i 6=i′

(∧q
i=1Raaji

→ EqR(a)
)
, (6)

∧
ai,aj∈ob(A)

(
Raiaj → inv(R)ajai

)
, (7)

where inv(R)ajai is the propositional variableP−k ajai if
R = Pk, andPkajai if R = P−k . Finally, forK, we set

K† =
[
T ∗ ∧

∧
R∈role±(K)

(
ε(R) ∧ δ(R)

)]
∧

[
A† ∧

∧
R∈role±(K)

R†
]
.

It is worth noting that all of the conjuncts ofK† areuniversal
sentences.

Theorem 1. A DL-Litebool KBK is satisfiable iff theQL1-
sentenceK† is satisfiable.

Proof. (⇐) Let M be an Herbrand model (in the signa-
ture ofK†) satisfyingK†; for details see, e.g., (Rautenberg
2006). We denote the domain ofM by D (it consists of
all the constants occurring inK†), and the interpretations
of (unary) predicatesA, propositional variablesR and con-
stantsa of QL1 in M by AM, RM andaM, respectively.
We construct inductively aDL-Litebool modelI based on
some domain∆ ⊇ D, which will be defined as the union
∆ =

⋃∞
m=0Wm with W0 = D. Each setWm+1, for

m ≥ 0, is constructed by adding toWm some new ele-
ments that are freshcopiesof certain elements fromW0 (i.e.,
Wm ⊆ Wm+1 for m ≥ 0). If such a new elementw′ is a
copy of w ∈ W0 then we writecp(w′) = w, while, for
w ∈ W0, we letcp(w) = w (thus,cp : ∆ → W0). The set
Wm \Wm−1, for m ≥ 0, will be denoted byVm (for con-
venience, letW−1 = ∅ so thatV0 = D). The interpretations
of the objectsa in I are given by their interpretations inM,
namely,aI = aM ∈W0. The interpretationsAI of concept
namesA in I are defined by taking

AI = {w ∈ ∆ | M |= A∗[cp(w)]}. (8)

The interpretationP Ik of a rolePk in I will be defined in-
ductively as the union

P Ik =
⋃∞

m=0 P
m
k , where Pm

k ⊆Wm ×Wm,

along with the construction of∆. ForR ∈ role±(K), we
define therequiredR-rank r(R, d) of a point d ∈ D by
taking

r(R, d) =

8><>:
0, if M |= ¬E1R[d],

q, if M |= (EqR ∧ ¬Eq+1R)[d], 1 ≤ q < qT ,

qT , if M |= EqT R[d].

It follows from (5) thatr(R, d) is indeed a function, and if
d ∈ D andr(R, d) = q thenM |= Eq′R[d], for 1 ≤ q′ ≤ q,
andM |= ¬Eq′R[d], for q < q′ ≤ qT . We also define the
actualR-rank rm(R,w) ofw ∈ ∆ at stepm by taking

rm(R, w) =

8><>:
q, if w ∈ (≥q Rm.Wm) \ (≥q+1 Rm.Wm)

and 0 ≤ q < qT ,

qT , if w ∈ (≥ qT Rm.Wm),

whereRm = Pm
k if R = Pk, Rm = (Pm

k )− if R = P−k ,
and, forW ⊆ ∆, R ⊆ ∆ × ∆ and 0 ≤ q ≤ qT ,
(≥q R.W ) =

{
w ∈ W | ]{v | (w, v) ∈ R} ≥ q}.

For the basis of induction we set, for eachPk ∈ role(K),

P 0
k = {(aM

i , aM
j ) ∈W0 ×W0 | M |= Pkaiaj}. (9)

Note that, by (6) and (7), for allR ∈ role±(K) andw ∈W0,

r0(R,w) ≤ r(R, cp(w)). (10)

Suppose now thatWm and thePm
k , form ≥ 0, have already

been defined. If we hadrm(R,w) = r(R, cp(w)), for all
R ∈ role±(K) andw ∈ Wm, then the model would be as
required. However, in general this is not the case because
there may be some ‘defects’ in the sense that the actual rank
of some points is smaller than the required rank. For a role
Pk ∈ role(K), consider the following sets of defects inPm

k :

Λm
k = {w ∈ Vm | rm(Pk, w) < r(Pk, cp(w))},

Λm−
k = {w ∈ Vm | rm(P−k , w) < r(P−k , cp(w))}.

The purpose of, say,Λm
k is to identify those ‘defective’

pointsw ∈ Vm from which preciselyr(Pk, cp(w)) distinct
Pk-arrows should start (according toM), but some arrows
are still missing (onlyrm(Pk, w) many arrows exist). To
‘cure’ these defects, we extendWm to Wm+1 andPm

k to
Pm+1

k according to the following rules:



(Λm
k ) Letw ∈ Λm

k , q = r(Pk, cp(w))−rm(Pk, w) andd =
cp(w). SoM |= Eq′Pk[d], for someq′ ≥ q > 0. Then,
by (5), M |= E1Pk[d] and, by (4),M |= E1P

−
k [dp−k ].

In this case we takeq fresh copiesw′1, . . . , w
′
q of dp−k ,

setcp(w′i) = dp−k , add them toWm+1 and add the pairs
(w,w′i) to Pm+1

k .

(Λm−
k ) is the mirror image of the above.

Observe the following important property of the construc-
tion: for allm0 ≥ 0, w ∈ Vm0 andR ∈ role±(K),

rm(R, w) =

8><>:
0, if m < m0,

q, if m = m0, q ≤ r(R, cp(w)),

r(R, cp(w)), if m > m0.

(11)

This claim can be proved by considering all possible cases
for the relationship betweenm andm0.

It follows from this property that, for allR ∈ role±(K),
1 ≤ q ≤ qT andw ∈ ∆,

M |= EqR[cp(w)] iff w ∈ (≥ q RI .∆). (12)

Now we show by induction on the construction of concepts
C in K that, for everyw ∈ ∆,

M |= C∗[cp(w)] iff w ∈ CI . (13)

The basis of induction is trivial forC = ⊥, follows from (8)
for C = Ak and from (12) forC = ≥ q R. The induction
step for the Booleans (C = ¬C1 andC = C1 u C2) easily
follows from the induction hypothesis. Finally, we show that
for each statementψ ∈ T ∪ A,

M |= ψ† iff I |= ψ. (14)

The caseψ = C1 v C2 follows from (13) andψ = Ak(ai)
from the definition ofAIk . For ψ = Pk(ai, aj), we have
(aIi , a

I
j ) ∈ P Ik iff, by construction ofP Ik , (aIi , a

I
j ) ∈ P 0

k

iff, by (9), M |= Pkaiaj . Therefore,I |= K.
The proof of(⇒) is straightforward.

The translationK† of K is too lengthy to provide us with
reasonably low complexity results:|K†| ≤ const· |K| +
|ob(A)|qT . Let us now define a more concise translation of
K = (T ,A) into QL1. ForR ∈ role±(K), letQR

T be the
subset of the natural numbers containing1 and all the nu-
merical parametersq for which the concept≥ q R occurs in
T (recall that the ABox does not contain numerical parame-
ters). Then we set

K[ =
[
T ∗ ∧

∧
R∈role±(K)

(
ε(R) ∧ δ[(R)

)]
∧ A[,

whereT ∗ andε(R) are as before (see (2) and (4)), and

δ[(R) =
∧

q,q′∈QR
T , q′>q and

q′>q′′>q for noq′′∈QR
T

∀x
(
Eq′R(x) → EqR(x)

)
, (15)

A[ =
∧

A(ai)∈A

A(ai) ∧
∧

R∈role±(K),a∈ob(A)

EqR,a
R(a), (16)

whereqR,a is the maximum number fromQR
T such that there

areqR,a many distinctai with Pk(a, ai) ∈ A, for R = Pk,

andPk(ai, a) ∈ A, for R = P−k . Note thatK[, unlike
K†, does not contain propositional variablesRaiaj ; indeed,
the actual connections between named objects (stated in the
ABox) are of no importance at all; what really matters are
the unary ‘types’ of named objectsa ∈ ob(A), that is, the
sets of all conceptsC from K such thatK |= C(a). This
information is enough to restore the relations between the
named objects required byK.

Now both the size ofA[ and the size ofK[ are linear in
the size ofA andK, respectively,no matter whether the
numerical parameters are coded in unary or in binary.

From the fact thatK† is satisfiable iffK[ is satisfiable the
following corollary holds.

Corollary 2. A DL-Litebool KBK is satisfiable iff theQL1-
sentenceK[ is satisfiable.

As a consequence of Corollary 2 we obtain the following:

Theorem 3. The satisfiability problem isNP-complete for
DL-Litebool KBs, NLOGSPACE-complete forDL-Litekrom
KBs andP-complete forDL-Litehorn KBs.

Proof. As K[ contains no function symbols, its Herbrand
universe consists of all constants occurring in it, i.e.,ob(A)
and thedr, R ∈ role±(K). Therefore, satisfiability ofK
is polynomially reducible to satisfiability of a set of propo-
sitional formulas, namely, the formulas obtained fromK[

by replacingx with each of the constants occurring inK[

(becauseK[ is a universal formula). It remains to recall
that the satisfiability of Boolean formulas is in NP, of 2-
CNFs in NLOGSPACE, and of propositional Horn formulas
in P (Papadimitriou 1994; Kozen 2006). The matching lower
bounds also follow from the complexity of the respective
fragments of propositional Boolean logic.

Many other reasoning tasks are reducible to the satisfi-
ability problem. Consider, for example, thesubsumption
problem: given a KBK and two conceptsC andD, de-
cide whetherK |= C v D. Since subsumption and non-
satisfiability of KBs are reducible to each other andCON-
LOGSPACE=NLOGSPACE by the Immerman-Szelepcsényi
theorem (see, e.g., Kozen, 2006) the following holds:

Theorem 4. The subsumption problem isCONP-complete
for DL-Litebool, NLOGSPACE-complete forDL-Litekrom and
P-complete forDL-Litehorn.

Other reasoning tasks are analysed in the same way. In
particular, a reduction for the instance checking problem can
be found in the next section.

Data Complexity
In terms of the classification suggested in (Vardi 1982), so
far we have been considering thecombined complexityof
the satisfiability problem. When the size of data is the cru-
cial parameter (as in ontologies for huge data sets) the most
relevant complexity measure becomesdata (or ABox) com-
plexity, where the complexity is only measured in terms of
the size of the ABoxA, while the knowledge in the TBoxT
is assumed to be fixed.



In this section we show that as far as data complexity is
concerned, reasoning problems forDL-Litebool KBs can be
solved using only logarithmic space in the size of the ABox.
We remind the reader (see e.g., Kozen, 2006) that a problem
belongs to the complexity class LOGSPACE if there is a two-
tape Turing machineM such that, starting with an input of
lengthn written on theread-only input tape, M stops in an
accepting or rejecting state having used at mostlog n cells
of the (initially blank)read/write work tape.

In what follows, without loss of generality, we assume
that all role names of a given KBK = (T ,A) occur in its
TBox and writerole±(T ) instead ofrole±(K). LetΣ(T ) be
the set{E1R(dr) | R ∈ role±(T )} and, forΣ0 ⊆ Σ(T ),

coreΣ0(T ) =
^

E1R(dr)∈Σ0

E1R(dr) ∧

^
R∈role±(T )

“
T ∗[dr] ∧

^
R′∈role±(T )

`
ε(R′)[dr] ∧ δ[(R′)[dr]

´”
,

projΣ0
(K, a) =

^
inv(E1R(dr))∈Σ(T )\Σ0

¬E1R(a) ∧

T ∗[a] ∧
^

R′∈role±(T )

δ[(R′)[a] ∧ A[(a),

whereT ∗[c], ε(R′)[c] andδ[(R′)[c] are instantiations of the
universal quantifier in the respective formulas with the con-
stantc, andA[(a) is the maximal subformula ofA[ contain-
ing only occurrences of predicates witha as their parameter.

Lemma 5. K[ is satisfiable iff there isΣ0 ⊆ Σ(T ) such
that coreΣ0(T ) and the projΣ0

(K, a), for a ∈ ob(A), are all
satisfiable.

Note thatcoreΣ0(T ) and theprojΣ0
(K, a), for a ∈ ob(A),

are in essence propositional Boolean formulas and their size
does not depend on the size ofA. This is clearly the case for
coreΣ0(T ) and the first three conjuncts ofprojΣ0

(K, a). As
for the last conjunct ofprojΣ0

(K, a), its length does not ex-
ceed the number of concept names inT plusqT · |role±(T )|
and, therefore, only depends on the structure ofT . The
above lemma states that satisfiability of aDL-Litebool KB
can be checked locally: first, for the elementsdr represent-
ing the domains and ranges of all roles, and second, for every
object name in the ABox. This observation suggests a high
degree of parallelism in the satisfiability check.

Theorem 6. The data complexity of satisfiability and in-
stance checking forDL-Litebool KBs is inLOGSPACE.

Proof. The instance checking problem is reducible to the
(un)satisfiability problem: an objecta is an instance of a
basic conceptB in every model ofK = (T ,A) iff the KB(
T ∪ {A¬B v ¬B}, A ∪ {A¬B(a)}

)
is not satisfiable,

whereA¬B is a fresh concept name. The following deter-
ministic algorithm checks whether a KBK = (T ,A) is sat-
isfiable:
• for every subsetΣ0 of Σ(T ), repeat the following:
(c) computecoreΣ0(T ) and check whether it is satisfiable;
(p) for every object namea ∈ ob(A),
∗ compute theqR,a, forR ∈ role±(T ),

∗ computeprojΣ0
(K, a), check whether it is satisfiable.

This algorithm requires space bounded by a logarithmic
function in the size|A| of the ABox. Indeed, in order to
enumerate all subsetsΣ0 of Σ(T ) one needs|role±(T )|
cells of the work tape—this does not depend on|A|. At
step(c), the size ofcoreΣ0(T ) does not depend on|A| ei-
ther, and whether this formula is satisfiable can be checked
deterministically(though in time exponential and in space
linear in the length of the formula). At step(p) we enu-
merate all elements ofob(A), and this requireslog |A| cells
on the working tape. Next, theqR,a, for R ∈ role±(T ),
can be computed usingqT · log |A| of extra space: for ev-
ery 1 ≤ q ≤ qT , one enumerates allq-tuples(ai1 , . . . , aiq )
of distinct objects inob(A) and checks whether, for every
1 ≤ j ≤ q, Pk(a, aij ) ∈ A, if R = Pk, andPk(aij , a) ∈ A,
if R = P−k . The maximum suchq is the required num-
ber qR,a (cf. (16)). Finally, for eacha ∈ ob(A), the size
of projΣ0

(K, a) does not depend on|A| and its satisfiability
can be checked deterministically.

Query Answering
By apositive existential queryq(x1, . . . , xn) we understand
any first-order formula constructed by means of conjunc-
tion, disjunction and existential quantification starting from
atoms of the fromAk(t) andPk(t1, t2), whereAk is a con-
cept name,Pk is a role name, andt, t1, t2 are termstaken
from the list of variablesy0, y1, . . . and the list of object
namesa0, a1, . . . , i.e.,

q ::= Ak(t) | Pk(t1, t2) | q1 ∧ q2 | q1 ∨ q2 | ∃yi q.

The free variables ofq are called itsdistinguished variables
and the bound ones itsnon-distinguished variables. We
write q(x1, . . . , xn) for a query with distinguished variables
x1, . . . , xn. A conjunctive query(CQ) is a positive existen-
tial query that contains no disjunction—that is, constructed
from atoms by means of conjunction and existential quan-
tification. Given a queryq(~x), with ~x = x1, . . . , xn, and an
n-tuple~a of object names, we writeq(~a) for the result of re-
placing every occurrence ofxi in q(~x) with theith member
of ~a. Queries containing no distinguished variables will be
calledground.

Let I be aDL-Litebool model of the form (1). Anassign-
menta in ∆ is a function associating with every variabley
an elementa(y) of ∆. We will use the following notation:
aI,a

i = aIi andyI,a = a(y). Define thesatisfaction rela-
tion for positive existential formulas with respect to a given
assignmenta:

I |=a Ak(t) iff tI,a ∈ AI
k ,

I |=a Pk(t1, t2) iff (tI,a
1 , tI,a

2 ) ∈ P I
k ,

I |=a q1 ∧ q2 iff I |=a q1 andI |=a q2,

I |=a q1 ∨ q2 iff I |=a q1 or I |=a q2,

I |=a ∃yi q iff I |=b q, for someb that
may differ froma onyi.

For a ground queryq(~a) the satisfaction relation does not
depend on the assignmenta, thus we writeI |= q(~a) instead
of I |=a q(~a). Given a KBK = (T ,A), we say that a
tuple~a of objects fromob(A) is ananswerto q(~x) and write
K |= q(~a) if I |= q(~a) wheneverI |= K.



Thequery answering problemwe analyse here is formu-
lated as follows: given aDL-Litebool KB K = (T ,A), a
queryq(~x) and a tuple~a of object names fromob(A), de-
cide whetherK |= q(~a). The variant of this problem requir-
ing to ‘list all the answers~a to q(~x) with respect toK’ is
LOGSPACE-equivalent to the previous one (Abiteboul, Hull,
& Vianu 1995, Exercise 16.13). We are interested in thedata
complexityof the query answering problem.

We first recall known results (Doniniet al. 1994; Cal-
vaneseet al. 2006; Ortiz, Calvanese, & Eiter 2006) for the
case of conjunctive queries and obtain the following:
Theorem 7. The data complexity of the conjunctive and
positive existential query answering problems for both
DL-Litekrom andDL-Litebool KBs isCONP-complete.

Proof. The lower bound was established in (Calvaneseet
al. 2006) by adapting the proof in (Doniniet al. 1994). The
matching upper bound follows from results on data com-
plexity of conjunctive query answering in expressive DLs
(Ortiz, Calvanese, & Eiter 2006): every positive existential
queryq can be transformed into an equivalent UCQ and, al-
though the resulting UCQ may be exponential in the length
of q, this clearly does not affect data complexity.

Next, we show that the LOGSPACE data complexity up-
per bound (Calvaneseet al. 2005a; 2006) for conjunctive
queries overDL-Lite KBs, can be extended to positive exis-
tential queries overDL-Litehorn KBs:
Theorem 8. The data complexity of the positive existen-
tial query answering problem forDL-Litehorn KBs is in
LOGSPACE.

Proof. We only sketch the idea of the proof. (1) We con-
struct asingle, but possibly infinite, modelI0 which pro-
vides all answers to all positive existential queries with re-
spect to a given Horn KB. (2) We show that to find all an-
swers to a given query it is enough to consider somefinite
part of I0 the size of which does not depend on the given
ABox but only on the number of distinguished~x and non-
distinguished variables~y in the given query as well as the
size of the TBox. (3) The LOGSPACE query answering al-
gorithm considers then all proper possible assignments of
elements in that finite part ofI0 to the variables~x, ~y, com-
putes the corresponding types—the concepts that contain
these elements—and, finally, evaluates the query.

It should be noted that the actual data complexity may be
somewhat lower: the upper bounds in Theorems 6 and 8 can
be improved to AC0.

Conclusions
The LOGSPACE data complexity result for query answering
provides the basis for the development of algorithms that op-
erate on a KB whose ABox is stored in a relational database
(RDB), and that evaluate a query by relying on the query an-
swering capabilities of a RDB management system, cf. (Cal-
vaneseet al. 2005a). The known algorithms forDL-Lite are
based on rewriting the original query using the TBox ax-
ioms. We aim at developing a similar technique also for
answering positive existential queries inDL-Litehorn.

We are further investigating the complexity of logics ob-
tained by adding further constructs toDL-Lite. Preliminary
results show that already by adding role inclusion axioms to
DL-Litebool the combined complexity raises to EXPTIME.
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