Answering Queries in Description Logics: Theory and Applications to Data Management

Diego Calvanese1, Michael Zakharyaschev2

1 KRDB Research Centre
Free University of Bozen-Bolzano

2 Birbeck College, London

ESSLLI 2010, August 14–20, 2010
Copenhagen, Denmark
Overview of the Course

1. Introduction and background
 1. Ontology-based data management
 2. Brief introduction to computational complexity
 3. Query answering in databases
 4. Querying databases and ontologies

2. Lightweight description logics
 5. Introduction to description logics
 6. DLs for conceptual data modeling: the DL-Lite family
 7. The \mathcal{EL} family of tractable description logics

3. Query answering in the DL-Lite family
 8. Query answering in description logics
 9. Lower bounds for more expressive description logics
 10. Query answering by rewriting

4. The combined approach to query answering
 11. Query answering in DL-Lite: data completion
 12. Query rewriting in \mathcal{EL}

5. Linking ontologies to relational data
 13. The impedance mismatch problem
 14. Query answering in Ontology-Based Data Access systems

6. Conclusions and references
Lecture 2:

‘Lightweight’ description logics:

DL-$Lite$ and EL

(A quick introduction to Description Logic, focusing on tractable DL-$Lite$ and EL logics)
Recommended reading

DL-Lite

(1) A. Artale, D. Calvanese, R. Kontchakov and M. Zakharyaschev.

(3) D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati.
Tractable reasoning and efficient query answering in DLs: The DL-Lite family.

EL

Acknowledgements: Roman Kontchakov, Carsten Lutz, Frank Wolter
Description Logic

http://en.wikipedia.org/wiki/Description_logic

DL is a (large) family of knowledge representation & reasoning formalisms

- more expressive than propositional logic
- less expressive than first-order logic
 \(\approx \) decidable modal logics, hybrid logics
- developed by KR community for applications in AI

Application-driven equilibrium: expressiveness vs. computational costs

Applications:
- Ontologies (or terminologies) in medicine, bioinformatics, ...
- Semantic Web
- Ontology-based data access

Web Ontology Language (OWL)
W3C standards OWL 1 (2004), OWL 2 (2009)

\[\text{OWL} = \text{DL} + \text{XML} \]
Knowledge Base (KB)

TBox (terminological box, schema)

\[
\text{Man} \equiv \text{Human} \cap \text{Male} \\
\text{Appendicitis} \sqsubseteq \text{Disease} \sqcap \exists \text{morphology.Inflam}
\]

ABox (assertion box, data)

\[
\text{Man(john)} \\
\text{hasChild(john, mary)}
\]
Description logic constructs

- **Alphabet:**
 - concept names A_0, A_1, \ldots (e.g., Person, Female, ...)
 - role names R_0, R_1, \ldots (e.g., hasChild, loves, ...)
 - individual names a_0, a_1, \ldots (e.g., john, mary, ...)
 - concept constructs: $\top, \bot, \neg, \exists, \forall, \geq q, \ldots$ (e.g., Person \sqcap Female)
 - role constructs: $R^-, R \circ S, \ldots$ (e.g., isChildOf)
 - axiom construct: \sqsubseteq (e.g., Man \sqsubseteq Person)

- **Concepts:**
 - concept names
 - $\top, \bot, \neg C, C \sqcap D, \forall R.C, \exists R.C, \geq qR.C$, where C, D are concepts and R a role

Examples:
- Person \sqcap Female
- Person $\sqcap \neg$Female
- Person $\sqcap \exists$hasChild.\top
- Person $\sqcap \forall$hasChild.Male
Description logic semantics

- (standard Tarski-style) **interpretation** is a structure $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$
 - $\Delta^\mathcal{I}$ is the **domain** of \mathcal{I} (a non-empty set)
 - $\cdot^\mathcal{I}$ is an **interpretation function** that maps:
 * concept name $A_i \mapsto$ subset $A_i^\mathcal{I}$ of $\Delta^\mathcal{I}$ $(A_i^\mathcal{I} \subseteq \Delta^\mathcal{I})$
 * role name $R_i \mapsto$ binary relation $R_i^\mathcal{I}$ over $\Delta^\mathcal{I}$ $(R_i^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I})$
 * individual name $a_i \mapsto$ element $a_i^\mathcal{I}$ of $\Delta^\mathcal{I}$ $(a_i^\mathcal{I} \in \Delta^\mathcal{I})$

- interpretation of **complex concepts** in \mathcal{I}:
 - $(\top)^\mathcal{I} = \Delta^\mathcal{I}$ and $(\bot)^\mathcal{I} = \emptyset$
 - $(\neg C)^\mathcal{I} = \Delta^\mathcal{I} \setminus C^\mathcal{I}$
 - $(C \cap D)^\mathcal{I} = C^\mathcal{I} \cap D^\mathcal{I}$
 - $(\forall R.C)^\mathcal{I} = \{ x \in \Delta^\mathcal{I} \mid \forall y \in \Delta^\mathcal{I} \ (x, y) \in R^\mathcal{I} \rightarrow y \in C^\mathcal{I} \}$
 - $(\exists R.C)^\mathcal{I} = \{ x \in \Delta^\mathcal{I} \mid \exists y \in C^\mathcal{I} \ (x, y) \in R^\mathcal{I} \}$
 - $(\geq q R.C)^\mathcal{I} = \{ x \in \Delta^\mathcal{I} \mid \# \{ y \in C^\mathcal{I} \mid (x, y) \in R^\mathcal{I} \} \geq q \}$
TBoxes

statements about **how concepts and roles are related to each other**

A TBox \mathcal{T} is a finite set of **terminological axioms**:

- $C \sqsubseteq D$
 C is subsumed by D
 (concept inclusion)

- $R \sqsubseteq S$
 R is a subrole of S
 (role inclusion)

An interpretation \mathcal{I} **satisfies** an axiom

- $\mathcal{I} \models C \sqsubseteq D$
 iff
 $C^\mathcal{I} \subseteq D^\mathcal{I}$

- $\mathcal{I} \models R \sqsubseteq S$
 iff
 $R^\mathcal{I} \subseteq S^\mathcal{I}$

An interpretation \mathcal{I} is a **model** of \mathcal{T} if \mathcal{I} satisfies **every axiom** of \mathcal{T}
ABoxes

assert knowledge about **individuals**

An ABox \mathcal{A} is a finite set of **assertional axioms**

- $C(a)$ concept assertion for an individual
- $R(a, b)$ role assertion for a pair of individuals

<table>
<thead>
<tr>
<th>an interpretation \mathcal{I} satisfies an assertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{I} \models C(a)$ iff $a^\mathcal{I} \in C^\mathcal{I}$</td>
</tr>
<tr>
<td>$\mathcal{I} \models R(a, b)$ iff $(a^\mathcal{I}, b^\mathcal{I}) \in R^\mathcal{I}$</td>
</tr>
</tbody>
</table>

An interpretation \mathcal{I} is a **model** of a knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ if \mathcal{I} satisfies every axiom of \mathcal{T} and \mathcal{A}
OWL ontology example

- **Protégé 4.0** a free, open source ontology editor

 where you can also find a library of ontologies

 (tutorials explaining how to use Protégé are at

 http://www.co-ode.org/resources/tutorials/

- built-in ontology reasoners **FaCT++**, **Pellet** or **HermiT**

 http://owl.man.ac.uk/factplusplus/
Reasoning problems

Concept satisfiability: given \mathcal{T} and a concept C, decide whether there is $\mathcal{I} \models \mathcal{T}$ with $C^\mathcal{I} \neq \emptyset$

Subsumption: given \mathcal{T} and concepts C, D, decide whether $\mathcal{T} \models C \sqsubseteq D$

i.e., $\forall \mathcal{I} (\mathcal{I} \models \mathcal{T} \rightarrow \mathcal{I} \models C \sqsubseteq D)$

Instance checking: given $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, C and an individual a from \mathcal{A}, decide whether $\mathcal{K} \models C(a)$

Exercise: show that these three problems are reducible to each other

Conjunctive query answering: given a KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, a CQ $q(\vec{x})$ and a tuple \vec{a} of individual names from \mathcal{A}, decide whether $\mathcal{K} \models q(\vec{a})$

Query answering is typically a harder problem than the other three
First-order translation

\[
A \quad \mapsto \quad A(x)
\]

\[
\neg C \quad \mapsto \quad \neg C(x)
\]

\[
C \cap D \quad \mapsto \quad C(x) \land D(x)
\]

\[
\forall R.C \quad \mapsto \quad \forall y \ (R(x, y) \rightarrow C(y))
\]

\[
\exists R.C \quad \mapsto \quad \exists y \ (R(x, y) \land C(y))
\]

\[
\geq qR.C \quad \mapsto \quad \exists y_1, \ldots, y_q \ (y_i \neq y_j \land R(x, y_i) \land C(y_i))
\]

\[
C \sqsubseteq D \quad \mapsto \quad \forall x \ (C(x) \rightarrow D(x))
\]

DL is embeddable into the 2-variable guarded fragment of first-order logic

(full FOL is undecidable; this guarded fragment is NExpTime-complete)
Unique name assumption (UNA)

An interpretation \mathcal{I} is a **model** of a KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ **under the UNA** if $\mathcal{I} \models \mathcal{K}$ and $a_i^T \neq a_j^T$, for any distinct object names a_i and a_j occurring in \mathcal{A}.

OWL: a more flexible approach

- UNA is **dropped** (so no restrictions on interpretations of object names)
- User is provided with the constructs $=$ (sameAs) and \neq (differentFrom) to explicitly impose constraints on individual names
- UNA is expressible: add $a_i \neq a_j$ to \mathcal{A}, for all distinct a_i and a_j in \mathcal{A}

Price of $=$

Have to check whether $a = b$ in \mathcal{A} under given equality constraints

Equivalent to reachability in undirected graphs, which is

...just peanuts for most DLs, but not for DL-Lite & OWL 2 QL...

(Reingold 2008)
The history of description logic so far

... – mid 1990s:
- Efficient reasoning cannot afford full Booleans.
- Sub-Boolean DLs with \sqcap and \forall are enough.
- $\mathcal{FL}, \mathcal{AL}, \ldots$ combined complexity $\leq \text{NP}$

mid 1990s – 2005
- ‘Efficient’ reasoning possible for ExpTime DLs (FaCT,...).
- Full Booleans and other constructs.
- $\text{SHIQ, SHOIN} (\approx \text{OWL 1}), \text{SROIQ} (\approx \text{OWL 2}) \geq \text{ExpTime}$

mid 2005 – ...
- New challenges: answering queries & huge ontologies.
- Horn DLs with \sqcap and \exists.
- DL-Lite and \mathcal{EL} families $\leq \text{P}$.
Which DLs are suitable for ontology-based data access?

Aim: to achieve **logical transparency** in accessing data
- hide from the user where and how data is stored
- present only a **conceptual view** of the data
- query the data sources through the **conceptual model** using RDBMSs

Diagram:
- AcademicStaff subclass of Lecturer
- Domain and range of teaches relationship
- Module as range of teaches
- Data sources connected to ontology
Translating into DL:

TopManager ⊑ Manager
AreaManager ⊑ ¬TopManager
Manager ⊑ AreaManager ⊔ TopManager
Employee ⊑ ∃salary.⊤
∃salary⁻.⊤ ⊑ Integer
≥ 2 salary.⊤ ⊑ ⊥
Project ⊑ ≥ 3 worksOn⁻.⊤
manages ⊑ worksOn
CEO ⊓ (≥ 5 worksOn.⊤) ⊓ ∃manages.⊤ ⊑ ⊥ (integrity constraint)
Basic DL-Lite logics

1. \(DL-Lite^N_{bool}\)

\[
\begin{align*}
R & ::= P \mid P^- \\
B & ::= \bot \mid A \mid \ge qR \\
C & ::= B \mid \neg C \mid C_1 \sqcap C_2
\end{align*}
\]

TBox axioms \(C_1 \sqsubseteq C_2\)

2. \(DL-Lite^N_{horn}\)

\[
B_1 \sqcap \cdots \sqcap B_n \sqsubseteq B
\]

3. \(DL-Lite^N_{krom}\)

\[
B_1 \sqsubseteq B_2 \quad B_1 \sqsubseteq \neg B_2 \quad \neg B_1 \sqsubseteq B_2
\]

4. \(DL-Lite^N_{core} = DL-Lite^N_{horn} \cap DL-Lite^N_{krom}\)

\(DL-Lite_{bool}, DL-Lite_{horn}, DL-Lite_{krom}, DL-Lite_{core}: \) only \(\exists R\) available

combined complexity sat.: \(NP\)

data comp. instance: in \(AC^0\)
data comp. query: \(coNP\)

combined complexity: \(P\)
data comp. instance: in \(AC^0\)
data comp. query: in \(AC^0\)

comb. comp.: \(NLogSpace\)
d.c. instance: in \(AC^0\)
d.c. query: \(coNP\)

comb. comp.: \(NLogSpace\)
d.c. instance: in \(AC^0\)
d.c. query: in \(AC^0\)
Observations and examples

DL-Lite can only speak about the **domains** and **ranges** of binary relations, and **how many** successors and predecessors a point can have but **not** about the **types** of these successors/predecessors; types are defined **uniformly** by domain/range constraints.

Examples. Describe the models of the following KBs:

1. \(\mathcal{T} = \{ \top \sqsubseteq \exists R, \geq 2R \sqsubseteq \bot \}, \quad (R \text{ is total and functional}) \)
 \[\mathcal{A} = \emptyset \]

2. \(\mathcal{T} = \{ A \sqsubseteq \lnot \exists R^-, \quad A \sqsubseteq \exists R, \quad \exists R^- \sqsubseteq \exists R, \quad \geq 2^R \sqsubseteq \bot \}, \)
 \[\mathcal{A} = \{ A(a) \} \]

- **Infinite** models are required; **no** finite model property
- Tree model property (see page 19)
- Can be simulated by first-order formulas with **one** variable (see page 20)
Bisimulations for $\text{DL-Lite}_{\text{bool}}^N$

Let \mathcal{I} and \mathcal{J} be two interpretations.

A relation $\rho \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{J}$ is called a **lite-bisimulation** between \mathcal{I} and \mathcal{J} if

concept for every concept name A, if $x \rho y$ then $x \in A^\mathcal{I}$ iff $y \in A^\mathcal{J}$

role for every role R, if $x \rho y$ then $x \in (= qR)^\mathcal{I}$ iff $y \in (= qR)^\mathcal{J}$

where $q \in \mathbb{N} \cup \{\infty\}$, $= qR ::= \geq qR \cap \neg \geq (q + 1)R$

$(\mathcal{I}, x) \sim (\mathcal{J}, y)$ if there is a lite-bisimulation ρ between \mathcal{I} and \mathcal{J} with $x \rho y$

$\text{DL-Lite}_{\text{bool}}^N$ concepts are **invariant under lite-bisimulations**, that is,

if $(\mathcal{I}, x) \sim (\mathcal{J}, y)$ then $x \in C^\mathcal{I}$ iff $y \in C^\mathcal{J}$, for every concept C

A first-order formula $\varphi(x)$ is equivalent to a $\text{DL-Lite}_{\text{bool}}^N$ concept iff

$\varphi(x)$ is invariant under lite-bisimulations
Global lite-bisimulations for DL-$Lite^N_{bool}$

A lite-bisimulation relation ρ between \mathcal{I} and \mathcal{J} is **global** if

- for every $x \in \Delta^\mathcal{I}$ there is $y \in \Delta^\mathcal{J}$ with $x \rho y$, and
- for every $y \in \Delta^\mathcal{J}$ there is $x \in \Delta^\mathcal{I}$ with $x \rho y$

\mathcal{I} is **lite-bisimilar** to \mathcal{J}, $\mathcal{I} \sim \mathcal{J}$, if there is a global lite-bisimulation between \mathcal{I} and \mathcal{J}

DL-$Lite^N_{bool}$ TBoxes are **invariant under global lite-bisimulations**, that is,

if $\mathcal{I} \sim \mathcal{J}$ then $\mathcal{I} \models T$ iff $\mathcal{J} \models T$, for every DL-$Lite^N_{bool}$ TBox T

Given \mathcal{I} and $x \in \Delta^\mathcal{I}$, let $t_\mathcal{I}(x) = \{ C \mid x \in C^\mathcal{I} \}$ — the **type** of x in \mathcal{I}

$T_\mathcal{I} = \{ t_\mathcal{I}(x) \mid x \in \Delta^\mathcal{I} \}$ — set of all types in \mathcal{I}

$\mathcal{I} \sim \mathcal{J}$ iff $T_\mathcal{I} = T_\mathcal{J}$ models are determined by their types \sim 1-ary predicates
Every model of a DL-$Lite^{N}_{bool}$ TBox is globally lite-bisimilar to a tree-shaped model.

Examples. Construct a tree-shaped model which is globally lite-bisimilar to

$t_1 \rightarrow R \rightarrow t_2 \rightarrow R \rightarrow t_3 \rightarrow R \rightarrow t_1$

where t_1, t_2, t_3 are distinct types.

Why is the tree-model property so important?
Embedding *DL-Lite* into 1-variable FO logic

Satisfiability of $DL-Lite_{bool}^N$ KBs is **NP**-complete (for combined complexity)

Proof $DL-Lite_{bool}^N \mathcal{K} \sim \mathcal{K}^\dagger$ (a universal 1-variable FO formula)

$\mathcal{T} = \{ A \subseteq \exists P^-, \exists P^- \subseteq A, A \subseteq > 2 P, \top \subseteq \leq 1 P^-, \exists P \subseteq A \}$, $\mathcal{A} = \{ A(a), P(a, a') \}$

$\forall x \left[(A(x) \rightarrow E_1 P^-(x)) \land (E_1 P^-(x) \rightarrow A(x)) \land (A(x) \rightarrow E_2 P(x)) \land \neg E_2 P^-(x) \land (E_1 P(x) \rightarrow A(x)) \land (E_2 P(x) \rightarrow E_1 P(x)) \land (E_2 P^-(x) \rightarrow E_1 P^-(x)) \land (E_1 P(x) \rightarrow E_1 P^-(dp^-)) \land (E_1 P^-(x) \rightarrow E_1 P(dp)) \right] \land A(a) \land E_1 P(a) \land E_1 P^-(a')$

$(\exists P)^T \neq \emptyset$ iff $(\exists P^-)^T \neq \emptyset$

$\exists x E_1 P(x) \leftrightarrow \exists x E_1 P^-(x)$

\mathcal{K} is satisfiable iff \mathcal{K}^\dagger is.

\mathcal{K}^\dagger computed in **LogSpace**.

\mathcal{K}^\dagger says that

- \exists appropriate dr
- \forall point is of proper type
DL-Lite Horn, Krom and core (under UNA)

For DL-Lite$_{\text{horn}}^N$ KBs \mathcal{K}, the translation \mathcal{K}^\dagger is a conjunction of formulas of the form

(horn) \[\forall x \ (A_1(x) \land \cdots \land A_n(x) \rightarrow A(x)) \]

Satisfiability of **Horn formulas** is P-complete (combined complexity)

For DL-Lite$_{\text{krom}}^N$ KBs \mathcal{K}, the translation \mathcal{K}^\dagger is a conjunction of formulas of the form

(krom) \[\forall x \ (A_1(x) \rightarrow A_2(x)), \ \forall x \ (A_1(x) \rightarrow \neg A_2(x)), \ \forall x \ (\neg A_1(x) \rightarrow A_2(x)) \]

Satisfiability of **Krom formulas** is $\text{NLogSpace-complete}$ (combined complexity)

For DL-Lite$_{\text{core}}^N$ KBs \mathcal{K}, the translation \mathcal{K}^\dagger is a conjunction of formulas of the form

(core) \[\forall x \ (A_1(x) \rightarrow A_2(x)), \ \forall x \ (A_1(x) \rightarrow \neg A_2(x)) \]

Satisfiability of **core formulas** is $\text{NLogSpace-complete}$ (combined complexity)
Canonical models for DL-$Lite^N_{\text{horn}}$ and DL-$Lite^N_{\text{core}}$

For a consistent DL-$Lite^N_{\text{horn}}$ KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, the canonical model $\mathcal{I}_\mathcal{K}$ is constructed as follows:

1. take the ABox and add $\geq qR$ to $t(a)$ if q-many R-arrows start from a in \mathcal{A}
2. ‘saturate’ the existing types by applying the rules in \mathcal{T}
3. for every x, if $(\geq qR) \in t(x)$ but there are $< q$ R-arrows starting from x, draw the missing R-arrows to fresh points and add $\exists R^-$ to their types
4. go to Step 2

- If $\mathcal{I} \models \mathcal{K}$ then there is a map $h: \Delta^\mathcal{I}_\mathcal{K} \rightarrow \Delta^\mathcal{I}$ such that,
 for all $x, y \in \Delta^\mathcal{I}_\mathcal{K}$, basic concepts B and roles R,
 - if $x \in B^\mathcal{I}_\mathcal{K}$ then $h(x) \in B^\mathcal{I}$;
 - if $(x, y) \in R^\mathcal{I}_\mathcal{K}$ then $(h(x), h(y)) \in R^\mathcal{I}$

- $\mathcal{K} \models q(\bar{a})$ iff $\mathcal{I}_\mathcal{K} \models q(\bar{a})$

Exercise: construct $\mathcal{I}_\mathcal{K}$ for \mathcal{K} on page 20
DL-Lite with role hierarchies

DL-Lite\(^F\)\(_{core}\) (only functionality) is **NLogSpace**-complete for combined complexity and in **AC\(^0\)** for data complexity.

DL-Lite\(^H\)\(^F\)\(_{core}\) (**DL-Lite**\(^F\)\(_{core}\) + \(R_1 \sqsubseteq R_2\)) is **ExpTime**-complete for combined complexity and **P**-complete for data complexity.

Example: \(A_1 \cap A_2 \sqsubseteq C\) can be simulated by the axioms:

\[
\begin{align*}
A_1 & \sqsubseteq \exists R_1 \\
R_1 & \sqsubseteq R_{12} \\
\geq 2 R_{12} & \sqsubseteq \bot \\
\exists R_1^- & \sqsubseteq \exists R_3^- \\
\exists R_3 & \sqsubseteq C \\
R_3 & \sqsubseteq R_{23} \\
\geq 2 R_{23}^- & \sqsubseteq \bot \\
A_2 & \sqsubseteq \exists R_2 \\
R_2 & \sqsubseteq R_{12} \\
R_2 & \sqsubseteq R_{23}
\end{align*}
\]
DL-Lite$_{\alpha}^{RN}$: pushing the limits of DL-Lite

- role inclusions + number restrictions

 if R has a proper sub-role in T then T contains no negative occurrences of $\geq qR$ or $\geq qR^{-}$ with $q \geq 2$

- positive occurrences of qualified number restrictions $\geq qR.C$

 if $\geq qR.C$ occurs in T then T contains no negative occurrences of $\geq q'R$ or $\geq q'\text{inv}(R)$ with $q' \geq 2$

 no TBox can contain both a functionality constraint $\geq 2R \sqsubseteq \bot$ and $\geq qR.C$, for any $q \geq 1$

- role disjointness, symmetry, asymmetry, reflexivity and irreflexivity constraints

 all these extensions do not change the complexity
 in particular, same complexity of DL-Lite$_{\alpha}^{RN}$ and DL-Lite$_{\alpha}^{N}$

NB. transitive roles do not change the combined complexity
(NLogSpace-hard for data complexity)
DL-Lite without UNA

Without UNA, satisfiability of DL-$Lite^N_\alpha$ KBs is **NP-complete** w.r.t. both combined and data complexity, for any $\alpha \in \{\text{core, krom, horn, bool}\}$

source of non-determinism: different ways of identifying ABox individuals

Lower bound: by reduction of **monotone 1-in-3 3SAT**

$$\bigwedge_{k=1}^{n} (a_{k,1} \lor a_{k,2} \lor a_{k,3})$$

$$\mathcal{A} = \{a_{k,i} \neq a_{k,j} \mid i \neq j\} \cup \{P(c_k, a_{k,j}) \mid k \leq n, j \leq 3\} \quad \mathcal{T} = \{\geq 4P \sqsubseteq \perp\}$$

Answer is **yes** iff there is a (true) variable a_i in the given CNF such that $\mathcal{K}_{a_i} = (\mathcal{T}, \mathcal{A} \cup \{P(c_k, a_i) \mid k \leq n\})$ is satisfiable without UNA

NB: One can get rid of \neq in \mathcal{A}

ESSLLI 2010, Copenhagen, Answering queries in DLs (2) 25
DL-Lite$_{\alpha}^{(R,F)}$ without UNA

Deterministically glue together those ABox objects a and b for which
- either $\mathcal{A} \models (a = b)$
- or $\mathcal{T} \models (\geq 2R \sqsubseteq \bot)$ and $R(c,a), R(c,b)$, for some ABox object c

This gives a polynomial reduction of no-UNA to UNA for $DL-Lite_{\alpha}^{(R,F)}$ logics, which increases complexity by P.

Can’t do better: functionality constraints can encode inference for Horn CNFs

Example: Represent $\varphi = (a \land b \rightarrow c) \land a \land b$ as follows:

\[\begin{align*}
\mathcal{A} & \text{ includes all these } P-, R- \text{ and } S- \text{arrows} \\
\mathcal{T} & \text{ says that } P, R \text{ and } S \text{ are functional} \\
\varphi \models c & \text{ iff } (\mathcal{T}, \mathcal{A} \cup \{\neg S(t,c)\}) \text{ is not satisfiable}
\end{align*} \]

Without UNA, satisfiability of $DL-Lite_{\alpha}^{(R,F)}$ KBs (with or without $=$ and \neq) is P-hard for both combined and data complexity.
The DL-Lite family: complexity-scape

query answering
= instance checking

coNP
query answering

Legend

satisfiability
combined complexity

EXP\text{TIME}
NP
P
NLOGSPACE

instance checking
data complexity

\text{\textbullet} coNP
\text{\textbullet} P
\text{\textbullet} AC^0

with/without UNA role inclusions

no UNA no role inclusions

UNA no role inclusions

horn core krom bool
An OWL 2 profile is a trimmed down version of OWL 2 that trades some expressive power for the efficiency of reasoning.

OWL 2 QL is aimed at applications that use very large volumes of instance data, and where query answering is the most important reasoning task. In OWL 2 QL, conjunctive query answering can be implemented using conventional relational database systems.

\[
\text{OWL 2 QL} = \text{DL-Lite}^\mathcal{H}_{\text{core}} \quad \text{with}/\text{without UNA} \\
\quad \text{with } \neq \quad \text{(but no } =) \\
\quad \text{with (a)symmetric, (ir)reflexive and disjoint roles} \\
\quad \quad \text{(but no transitive roles)}
\]

Why not \text{DL-Lite}^\mathcal{H}_{\text{horn}}?
The **OWL 2 EL** profile is designed as a subset of OWL 2 that

- is particularly suitable for applications employing ontologies that define very large numbers of classes and/or properties,
- captures the expressive power used by many such ontologies, and
- for which ontology consistency, class expression subsumption, and instance checking can be decided in polynomial time.

For example, OWL 2 EL provides class constructors that are sufficient to express the very large biomedical ontology SNOMED CT (≈ 400,000 axioms)

```plaintext
Pericardium ⊑ Tissue ∩ ∃cont_in.Heart
Pericarditis ⊑ Inflammation ∩ ∃has_loc.Pericardium
Inflammation ⊑ Disease ∩ ∃acts_on.Tissue
Disease ∩ ∃has_loc.∃cont_in.Heart ⊑ Heartdisease ∩ NeedsTreatment
```
Basic \mathcal{EL}

\mathcal{EL} concepts:

$C ::= \top \mid \bot \mid A \mid \exists R.C \mid C_1 \sqcap C_2$

\mathcal{EL} TBoxes: finite sets of CIs

$C_1 \sqsubseteq C_2$

\mathcal{EL} ABoxes: finite sets of assertions

$C(a), \ R(a, b)$

Concept satisfiability: given \mathcal{T}, C, decide whether there is $\mathcal{I} \models \mathcal{T}$ with $C^\mathcal{I} \neq \emptyset$

Subsumption: given \mathcal{T} and concepts C, D, decide whether $\mathcal{T} \models C \sqsubseteq D$

Instance checking: given a KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, C and an individual a from \mathcal{A}, decide whether $\mathcal{K} \models C(a)$

Reducible to each other!

Conjunctive query answering: given a KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, a CQ $q(\bar{x})$ and a tuple \bar{a} of individual names from \mathcal{A}, decide whether $\mathcal{K} \models q(\bar{a})$
Observations and examples

$\mathcal{E}\mathcal{L}$ can specify some **positive** information about types of points, viz:

- ✓ that a point belongs to a certain concept
 (but not that it **does not** belong to a concept);
- ✓ that there is an outgoing R-arrow which ends in a certain concept
 (but not that all outgoing R-arrows end in the concept);
- ✓ that some concepts are **disjoint**

Example. Describe the models of the following KBs:

$$
\begin{align*}
\mathcal{T} &= \{ A \sqsubseteq B_1, \ B_1 \sqsubseteq \exists R.B_1, \ \exists R.B_1 \sqsubseteq B_2, \ B_1 \sqcap B_2 \sqsubseteq \exists S.B_2 \}, \\
\mathcal{A} &= \{ A(a) \}
\end{align*}
$$

- **Finite** models are enough (finite model property)
- Tree model property (but infinite!)
- Not ‘local’ as DL-$Lite$; one-variable first-order formulas are not enough
Simulations for \mathcal{EL}

Let \mathcal{I} and \mathcal{J} be two interpretations.

A relation $\varrho \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{J}$ is called a simulation of \mathcal{I} in \mathcal{J} if

- **(concept)** for every concept name A, if $x \varrho y$ then $x \in A^\mathcal{I} \Rightarrow y \in A^\mathcal{J}$

- **(role)** for every role name R, if $x \varrho y$ then $(x, x') \in R^\mathcal{I} \Rightarrow \exists y' [(y, y') \in R^\mathcal{J} \text{ and } x' \varrho y']$

$(\mathcal{I}, x) \preceq (\mathcal{J}, y)$ if there is a simulation ϱ of \mathcal{I} in \mathcal{J} with $x \varrho y$

\mathcal{EL} concepts are preserved under simulations, that is,

if $(\mathcal{I}, x) \preceq (\mathcal{J}, y)$ then $x \in C^\mathcal{I} \Rightarrow y \in C^\mathcal{J}$, for every concept C

\mathcal{EL} concepts cannot distinguish between (\mathcal{I}, x) and (\mathcal{J}, y) if

$(\mathcal{I}, x) \preceq (\mathcal{J}, y)$ and $(\mathcal{J}, y) \preceq (\mathcal{I}, x)$

What are the differences between $DL-Lite$ and \mathcal{EL}?
Tree canonical models for \mathcal{EL}

(basically the same construction as for $\text{DL-Lite}_\text{horn}^N$)

For a consistent \mathcal{EL} KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, the **canonical model** $\mathcal{I}_\mathcal{K}$

is constructed as follows

1. ‘saturate’ the existing types (starting with \mathcal{A}) by applying the **rules** in \mathcal{T}

2. for every x, if $\exists R.C \in t(x)$ but no R-arrow from x leads to C,
 draw an R-arrow to a **fresh** point and add C to its type

3. go to Step 1

- If $\mathcal{I} \models \mathcal{K}$ then there is a map $h : \Delta_{\mathcal{I}_\mathcal{K}} \rightarrow \Delta_{\mathcal{I}}$ such that,
 for all $x, y \in \Delta_{\mathcal{I}_\mathcal{K}}$, concept and role names A and R,
 - if $x \in A_{\mathcal{I}_\mathcal{K}}$ then $h(x) \in A_{\mathcal{I}}$;
 - if $(x, y) \in R_{\mathcal{I}_\mathcal{K}}$ then $(h(x), h(y)) \in R_{\mathcal{I}}$

- $\mathcal{K} \models q(\vec{a})$ iff $\mathcal{I}_\mathcal{K} \models q(\vec{a})$

$\mathcal{I}_\mathcal{K}$ can be infinite
Compact canonical models for \mathcal{EL}

ABox \mathcal{A}

C_a

TBox \mathcal{T}

$\top \sqsubseteq \exists R.A, \quad \top \sqsubseteq \exists R.B$

Canonical model $\mathcal{I}_\mathcal{K}$

Compact canonical model $\mathcal{C}_\mathcal{K}$

$\mathcal{I}_\mathcal{K}$ is obtained by unravelling $\mathcal{C}_\mathcal{K}$: $(\mathcal{C}_\mathcal{K}, a) \preceq (\mathcal{I}_\mathcal{K}, a)$
Constructing C_K:

Compact canonical interpretation C_K:

\[
\begin{align*}
\text{Con}(K) &= \text{the set of all concepts in } K \\
\Delta^{c_K} &= \text{Ind}(A) \cup \{w_C \mid C \in \text{Con}(K)\} \\
A^{c_K} &= \{a \mid K \models A(a)\} \cup \{w_C \mid T \models C \sqsubseteq A\} \\
R^{c_K} &= \{(a, b) \mid R(a, b) \in A\} \cup \\
&\quad \{(a, w_C) \mid K \models \exists R.C(a)\} \cup \\
&\quad \{(w_C, w_D) \mid T \models C \sqsubseteq \exists R.D\}
\end{align*}
\]

w_C is a **witness for C**

A a concept name

R a role name

Construct C_K for K on page 31

- Can be constructed in polynomial time in the size of K
- Inconsistency can be detected during construction

\[\leadsto\text{Satisfiability of } \mathcal{E}\mathcal{L} \text{ KBs is PTime-complete}\]
$\mathcal{EL}++$ and OWL 2 EL

\mathcal{EL} can be extended, **without losing tractability**, with

- ✓ role implications $R_1 \circ \cdots \circ R_n \sqsubseteq R$ (e.g., $R \circ R \sqsubseteq R$ means transitivity)
- ✓ range restrictions $\top \sqsubseteq \forall R.C$
- ✓ domain restrictions $\top \sqsubseteq \forall R^-.C$
- ✓ nominals $\{a\}$, a an individual name

\approx OWL 2 EL

Extensions with any of the constructs

- $C \sqcup D$, $\forall R.C$, $\geq qR$, R^-, symmetric roles

result in **ExpTime-hard** reasoning

Exercise: construct an \mathcal{ELI} (\mathcal{EL} + inverse roles) KB \mathcal{K} with $C_\mathcal{K}$ of exponential size