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Abstract—We present commit graphs, a graph representation
of the commit history in version control systems. The graph
is structured by commonly changed files between commits. We
derive two analysis patterns relating to bug-fixing commits and
system modularity.

I. PROBLEM

One of the basic tenets of software engineering is modular-
ization to break down complexity and enable many developers
to work in parallel on the same system without having much
overlap in terms of concurrent modifications of files. The
manner in which these activities are carried out is reflected
in the structure of the history of (sets of) files. Consequently,
we can observe a lack of modularization from such histories as
well as identify particularly problematic parts of the code base
with respect to breakdowns in modularity and the incidence
of bug fixes in them. In turn, we can use such information
to focus manager and developer attention to improve product
quality.

II. SOLUTION

A. Defining Commit Graphs

Commit Graphs (CG) [1] offer a structured representation
of commit histories. Each commit is a node in the graph. We
add an edge between two nodes when they modify at least one
common file without any other commit in between these two
commits modifying that file as well. Formally [1], a commit
is a tuple (t,F) where t is a timestamp and F a set of files. A
commit graph CG is a directed graph that consists of

• a set of commits {(t,F)},
• a set of links between commits, {→i,j}, such that

(t1,F1) →1,2 (t2,F2) iff t1 < t2,F1 ∩ F2 6= ∅, and
∀(t,F) with t1 < t < t2 : F1 ∩ F2 ∩ F = ∅.

Figure 1 shows an example over five commits (7,8,12,14,17)
and four files (a,b,c,d).

On commit graphs we define root nodes as nodes with
outgoing edges, i.e. nodes that have no predecessors. Such
commits change no existing files, they exclusively add new
files. End nodes are nodes without incoming edges, i.e. nodes
without successors. Such commits change files that have not
been changed since in the commit histories.

B. Analyzing Commit Graphs

We retrieve commit histories from commit graphs and use
correlation to determine properties of these histories. The

Fig. 1. Commit history example.

retrieval of commit histories is essentially a search in the
commit graph, extracting a subgraph according to predefined
search rules. Search rules include the selection of nodes at
which to start the search, a search scheme, i.e. which edges
to follow and which to avoid, and a rule for ending the
search, e.g. when there are no edges left to visit. After the
search has finished and returned a (set of) path(s) or tree(s),
we can augment the returned data structure(s) with additional
information, e.g. weights determined by the age of a commit or
authorship information. This step may also include the addition
of information from secondary sources, e.g. the labeling of
nodes from an issue tracker into feature-introducing or bug-
fixing commits.

We analyze retrieved histories by correlating two of their
attributes to determine certain properties. We obtain attributes
by counting their occurrences over the histories and correlate
these counts over all retrieved histories. For instance, we
may correlate the number of bug fixes collected over the
histories of the files of a given namespace or package against
time-weighted intervals of these histories to determine the
occurrence of bug fixes over the number of commits.

Focusing on topological properties of nodes, we can identify
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commits that connect different strains of development. A com-
mit that has many preceding commits in the commit graph ties
together files that have previously been changed independent
of each other. Such changes may indicate breakdowns of
modularity.

III. DISCUSSION

Commit graphs are essentially a structured way to examine
logical couplings [2] over time. Additionally, they allow for
combining logical couplings with process metrics. Logical
couplings are dependencies between code entities inferred
from the commit history in a version control system (VCS).
They may complement code dependencies but not necessarily
so. Process metrics are measurements of the data in a VCS,
e.g. how many different authors a file has (had) or how many
times a given file has been changed.

As an extension to logical couplings, the same caveats
apply as for logical couplings. Co-change of files does not
necessarily indicate an actual ’coupling’, i.e. a dependency
between two files. A developer might just have submitted
two unrelated changes in a single commit. As we consider
single commits, time is an important factor as files are changed
differently over time, i.e. files are not changed with the same
frequency over time. In turn, if considering long histories,
appropriate steps have to be taken to account for changes
in frequency if necessary. For instance, depending on the
properties of interest in the analysis, two-year old commits
may be of less importance than the commits of the past week.
Weighting histories helps solve this issue.

Commit graphs provide a natural way for structuring process
metrics. Process metrics, i.e. process information gathered
from a VCS, can be added to a commit graph’s nodes and
edges. Foremost, we can augment nodes with the metadata of
the corresponding commit, e.g. its author. We can assign edge
weights, e.g., based on the time between the two commits or
on the number of files the commits have in common.

Commit graphs offer additional value over plain search in
unstructured commit history, as they allow for easy identifi-
cation of higher-order logical couplings. Higher-order logical
couplings are couplings between two files that are mediated by
a third file. In the example of Figure 1, files a and c are never
changed together. They do, however, share a common file in
commits 14 and 17, d. If, for example, d is an interface that
both a and c implement, we can infer this indirect relationship
between them through their higher-order logical coupling.

IV. EXAMPLES

We used commit graphs in [1] and [3]. In [1], we examined
the incidence of bug-fixing commits in commit histories and
the topological properties of commits in the commit graph.
Counting the number of files and commits in all commit his-

tories of a system and identifying the number of bug-fixing
commits in these histories, we obtained very high correlations
slightly below .9 (significant) between the length and size,
respectively, of histories and bug-fixing commits therein. In
other words, the longer or larger a history is, the more bug fixes
it will contain in that system. We interpret this result to indicate
that low(er) correlations mean uneven distributions of bug fixes
in the commit history. Such an uneven distribution may point
to a disparity in development, i.e. where different parts of
the system exhibit highly varying quantities of bug fixes. In
examining topological properties of commits, we found that
commits with a high node degree, i.e. an above-average count
of preceding and succeeding commits, are more likely to incur
bug fixes in subsequent commits.

A visual analysis of large commit graphs can reveal the
structure of the development history. We found for several
commit graphs, that the development of non-core modules was
typically situated in isolated parts of the overall graphs. Each
graph also had a dense core whose nodes were connected
by the files changed most often in the development history
- usually core infrastructure classes. We were also able to
identify regions of development supposedly independent from
the core parts of the system that were nevertheless closely tied
to these parts in the commit graphs. Inspection showed that an
initial lack in clear definition of interfaces and APIs required
subsequent changes on both ends to settle the interactions. We
are currently exploring automated, graph-theoretical means of
analyzing such structural properties.

An interpretation of a high node degree is that the commit is
connecting a number of files that are changed separately before
and after that commit. Previous work on logical couplings
has shown that they are valuable for suggesting possible or
necessary refactorings. A high degree in the commit graphs
identifies specific commits to recommend refactorings.

In [3] we examined the relationship between commits that
introduce features, improvements and fix bugs. We found that
feature commits that have other feature commits in their his-
tory are much more likely to be followed by improvement and
bug-fixing commits as well as overall code churn in subsequent
commits than feature commits that are not preceded by other
feature commits.
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