
The Journal of Systems and Software 132 (2017) 85–97

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Patterns of developers behaviour: A 10 0 0-hour industrial study

Saulius Astromskis a , Gabriele Bavota

b , ∗, Andrea Janes a , Barbara Russo

a , Massimiliano Di
Penta

c

a Free University of Bozen-Bolzano, Bolzano, Italy
b Università della Svizzera italiana (USI), Lugano, Switzerland
c University of Sannio, Benevento, Italy

a r t i c l e i n f o

Article history:

Received 8 October 2015

Revised 8 June 2017

Accepted 27 June 2017

Available online 28 June 2017

Keywords:

Monitoring developers’ activities

Case study

a b s t r a c t

Monitoring developers’ activity in the Integrated Development Environment (IDE) and, in general, in their

working environment, can be useful to provide context to recommender systems, and, in perspective, to

develop smarter IDEs. This paper reports results of a long (about 10 0 0 h) observational study conducted

in an industrial environment, in which we captured developers’ interaction with the IDE, with various

applications available in their workstation, and related them with activities performed on source code

files. Specifically, the study involved six developers working on three software systems and investigated

(i) how much time developers spent on various activities and how they shift from one activity to an-

other (ii) how developers navigate through the software architecture during their task, and (iii) how the

complexity and readability of source code may trigger further actions, such as requests for help or brows-

ing/changing other files. Results of our study suggest that: (i) not surprisingly, developers spend most or

their time (∼ 61%) in development activities while the usage of online help is limited (2%) but intensive

in specific development sessions; (ii) developers often execute the system under development after work-

ing on code, likely to verify the effect of applied changes on the system’s behaviour; (iii) while working

on files having a high complexity, developers tend to more frequently execute the system as well as to

use more online help websites.

© 2017 Elsevier Inc. All rights reserved.

1

t

d

w

t

c

fi

e

t

t

a

o

d

M

R

S

S

i

d

w

s

2

M

i

f

g

2

l

w

s

h

0

. Introduction

While performing maintenance tasks, developers interact with

heir IDE and other applications following specific activity patterns

riven by the modification they want to perform. For example,

hen they need to modify a source code file, they might want

o look at other files to understand the context surrounding the

hange they have in mind or the impact of the change on those

les. Another example is when developers navigate across differ-

nt components or layers of the software architecture to update

he business logic or the user interface. Other activities may make

hem use applications outside the development platform. For ex-

mple, developers might need to browse internet pages to search

r provide help in on-line forums (e.g., Stack Overflow

1).

In past and recent years, several authors have observed how

evelopers perform comprehension or development activities (von

ayrhauser and Vans, 1994; Singer et al., 1997; Storey et al., 20 0 0;
∗ Corresponding author.

E-mail addresses: gabriele.bavota@usi.ch , gabriele.bavota@gmail.com (G. Bavota).
1 http://stackoverflow.com .

t

w

ttp://dx.doi.org/10.1016/j.jss.2017.06.072

164-1212/© 2017 Elsevier Inc. All rights reserved.
obillard et al., 2004; de Alwis and Murphy, 2006; Ko et al., 2006;

illito et al., 2008; Ying and Robillard, 2011; Bavota et al., 2013;

oh et al., 2013; Negara et al., 2013; Fuchs et al., 2014). These stud-

es allowed to learn precious insights about how developers behave

uring their task, what they need to know when performing them,

hat tool they use, and what their navigational patterns are. Such

tudies were performed in vitro (Fronza et al., 2011; Storey et al.,

0 0 0; Robillard et al., 2004; Ko et al., 2006; Bavota et al., 2013;

inelli et al., 2014c; Fuchs et al., 2014), by mining software repos-

tories (Soh et al., 2013), by using reading-writing task monitoring

rom the IDE (Ying and Robillard, 2011), and observing, at a fine-

rained level of detail, real-world development tasks (Janes et al.,

008; Johnson, 2001).

In general, most of the studies have been conducted over a

imited interval of time (von Mayrhauser and Vans, 1994; de Al-

is and Murphy, 2006) 2 ; when longer projects were observed, the

tudies were mainly conducted from a qualitative standpoint by in-

erviewing developers (Singer et al., 1997; Sillito et al., 2008), or by
2 These studies lasted less than 30 h, compared to the over 10 0 0 collected in our

ork.

http://dx.doi.org/10.1016/j.jss.2017.06.072
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.06.072&domain=pdf
mailto:gabriele.bavota@usi.ch
mailto:gabriele.bavota@gmail.com
http://stackoverflow.com
http://dx.doi.org/10.1016/j.jss.2017.06.072

86 S. Astromskis et al. / The Journal of Systems and Software 132 (2017) 85–97

o

t

f

o

s

d

w

p

w

c

a

2

v

i

t

m

t

w

(

a

b

t

2

only collecting quantitative effort data (Astromskis et al., 2014), by

focusing on specific aspects of the developers’ interaction, e.g., how

IDE features are used (Murphy et al., 2006), tools are exploited in

pair programming (Fronza et al., 2011), or specific activities such

as refactorings are performed (Negara et al., 2013).

Paper contribution. Motivated by such literature, we con-

ducted a study in which we observed how professional developers

performed their activities during a time window of about 10 0 0 h.

The study has been run at a company developing real-time soft-

ware for controlling mechanical devices used in the manufacturing

and agriculture domains. 3 The study involved six professional de-

velopers working on three software projects. Using the Prom tool, 4

we were able to capture all interaction events that developers per-

formed with their IDE and with any other application installed in

their workstation. For example, we were able to gather information

about which source code class a developer is working on right be-

fore she goes on a web site and reads about a discussion on how

to solve the problem related to her code. Using the available in-

formation, we contributed to enhance knowledge on behaviour of

professional developers during software maintenance and, in par-

ticular, we investigate (i) the amount of time they spend in do-

ing different kinds of activities (e.g., coding/browsing source code,

using utility tools, communicating with teammates, searching for

help on the Internet, etc.), and (ii) their transitions across the dif-

ferent kinds of activities and the software architecture when cod-

ing.

Relevance of the study. A deep understanding of developers’

navigation/editing patterns in the source code and in the work-

ing environment can be of a paramount importance for various

purposes. First, it can be useful to monitor in detail the develop-

ment process in an organisation and more in particular in specific

projects to understand where there can be room for improvement

in the software documentation or in the set of resources a devel-

oper has available for performing certain tasks. Also, some specific

navigation patterns can reveal issues in the software structure or

readability, and therefore suggest re-documentation and refactor-

ing activities. This holds for both navigation patterns across activ-

ities (e.g., observing that when working on a specific code file de-

velopers tend to ask help to their teammates might indicate the

need for refactoring/re-documenting the file) as well as across ar-

chitectural layers (e.g., some patterns might indicate the violation

of the intended architecture). Last, but not least, understanding

what triggers certain developers’ activities can be useful to develop

better IDEs and recommenders, able to guide developers in their

code browsing and providing help/support considering the current

context. Previous work has shown that contextual information is

particularly useful to filter recommendations to developers (Fritz

et al., 2007; Kersten and Murphy, 2006; Murphy et al., 2006), and

that embedding online help in the IDE can improve productivity

and code quality (Rahman et al., 2014; Holmes et al., 2005; Pon-

zanelli et al., 2014). A deeper knowledge of typical navigation pat-

terns mined from past developers’ activity can have great potential

to further refine recommendations and better guide developers on

what to do in certain contexts.

Main findings. While coding, developers tend frequently to

communicate with other developers and/or using some kind of

utilities supporting their activity (e.g., tools for remotely control-

ling a server). While they rarely look for online help (this happens

in 6% of the working sessions in our dataset), such activity is par-

ticularly intense in specific sessions, in which developers formulate

multiple queries on search engines to find what they need and,
3 Due to confidentiality reasons, we cannot reveal the name of the company nor

the specific applications.
4 Developed at the Free University of Bozen-Bolzano (Astromskis et al., 2014).

nce found the appropriate resource, start going back and forth be-

ween the code and the online help page in the browser. We also

ound that while working on highly complex/coupled files, devel-

pers tend to execute their code more frequently as compared to

impler files, likely to check whether the applied changes intro-

uced errors. This might indicate less confidence of developers on

orking on highly coupled/complex files.

Paper structure. Section 2 provides the study definition and

lanning. Study results are reported and discussed in Section 3 ,

hile threats to its validity are discussed in Section 4 . After a dis-

ussion of related work (Section 5), Section 6 concludes the paper

nd outlines directions for future work.

. Study design

The goal of the study is to gather a deep understanding of de-

elopers’ navigation patterns in the source code and in the work-

ng environment the purpose of investigating (i) the amount of

ime they dedicate to different kinds of activities (e.g., develop-

ent, looking for online help, etc.) and what the transitions be-

ween these activities are; (ii) how developers navigate across soft-

are architecture layers during their code change activities; and

iii) the influence of specific code characteristics (i.e., size, read-

bility, complexity, and coupling) on the likelihood of transitions

etween different activities (e.g., is complex code more likely to

rigger a “looking for online help ” activity?).

.1. Research questions

We aim at answering the following research questions:

• RQ 1 : How much time do developers spend on different kinds of ac-

tivities and how do they transit between them? In our settings,

we were able to collect six different types of developers’ activ-

ities: (i) working on a source code file (i.e., a code file is read

and/or modified), (ii) executing the system under development,

(iii) using utilities (e.g., tools for remotely controlling a server,

file compression tools, etc.), (iv) using external programs un-

related with code development (e.g., interacting with a music

player or playing video games), (v) communicating with other

developers, and (vi) looking for online help (e.g., accessing Stack

Overflow). A better understanding of the time spent in such

different activities, and how developers switch from one activ-

ity to the other, can help project managers to develop strate-

gies aimed at optimising the maintenance process, e.g., by de-

veloping tools and methods that provide appropriate support

or identifying activities that can be avoided (Janes and Succi,

2014).
• RQ 2 : How do developers navigate the system architecture during

code change activities? This research question analyses the nav-

igational patterns among the architectural layers followed by

developers while reading and/or modifying code files. All sys-

tems involved in our study are three-tier applications consist-

ing of presentation, application logic, and data layer. Archi-

tectural layers may represent contextual boundaries for devel-

opers’ activities. Activities in the presentation layer (e.g., test-

ing event triggers from the GUI) may be significantly different

than the ones performed in the business logic layer (e.g., test-

ing algorithms) as they require different knowledge. In addi-

tion, changes in one layer can trigger changes in another (e.g.,

changes to the GUI may require developers to browse the busi-

ness logic or model). Stationariness (i.e., focusing on a specific

layer) or transition across such boundaries can characterise dif-

ferent types of development and maintenance processes (e.g.,

changes to the GUI’s design are expected to only affect the

presentation layer, while the implementation of a new feature

S. Astromskis et al. / The Journal of Systems and Software 132 (2017) 85–97 87

2

a

w

u

s

C

h

r

p

p

t

t

l

w

d

p

r

i

W

e

s

r

d

s

t

p

w

s

d

t

o

o

t

p

s

t

u

s

i

l

c

m

t

Table 1

Examples of events captured by Prom .

Id Timestamp Application Object

3a04 806733100 Visual Studio C:/workspace/Main.cpp

3a04 807183800 Chrome C + + Overloading - StackOverflow

3a04 821019090 Skype Mario Rossi - Skype

t

t

a

r

t

i

o

c

2

t

i

w

i

b

w

fi

s

t

e

W
likely results in traversing architectural layers) and navigational

patterns can help construct models of development or mainte-

nance based on such architectural boundaries.
• RQ 3 : How does the internal quality of code components influ-

ence the likelihood of transitioning toward specific activities? Size,

readability, complexity, and coupling of a code component may

impact the likelihood of transitioning toward a specific activity

while working on a code component. For example, a developer

working on a very complex code file might need to frequently

search online help.

.2. Context selection and data collection procedure

Our study has been conducted in 2013 in an industrial context,

nd in particular in a software company developing real-time soft-

are aimed at controlling mechanical devices used in the man-

facturing and agriculture domains. We studied the activities of

ix developers working on the development and evolution of three

++ software systems (all related to the company’s core business),

aving a size of 209, 157, and 88 classes, and 74, 34, and 12 KLOC,

espectively. At the time of the study, these were the only three

rojects the involved developers’ were working on.

The three projects subject of this study are embedded systems

rocessing sensor data in real time to control industrial manufac-

uring processes. The requirement to process data in real time, led

o the decision to use C++ for the development. The presentation

ayer of the embedded software consists of a simple user interface,

hich can be operated using a touch display. The sensors collect

ata about various properties of the monitored objects. The main

rogramming task in this case is to develop the image and feature

ecognition components and on storing the identified properties

nto a file. The second part of the produced software is a Microsoft

indows application that can connect to the device running the

mbedded software component and visualises the collected data

uperimposing it onto the scanned object providing an augmented

eality view. Using this visualisation, the operator is then able to

efine the next production steps.

The development approach of the company did not follow a

pecific method with steps or phases. Development tasks were dis-

ributed among the different developers by a project manager. The

roject manager of all three systems was the software developer

ith the longest experience in the company and the most product-

pecific knowledge. He was responsible for the architecture of the

eveloped tools, the long-term planning of the development, and

he communication with the management.

Each developer worked on different products alternating peri-

ds of development with external activities like customer relation

r software deployment.

We employed the Prom tool 5 to monitor their interactions with

he IDE 6 and with any other application (e.g., web-browsers, word

rocessors, mail clients, music players, etc.) installed in their work-

tation in a six-month time span.

Prom consists of various components that capture the interac-

ions of a user (in our case a developer) with the programs she

ses. Interactions are stored in logs as events. The tool includes

pecific and general components. Specific components capture the

nteractions with specific applications of interest at a high detail

evel. For example, Prom includes a specific component for Mi-

rosoft Visual Studio 7 able to log on which part of the code (the

ethod, class, file, and project) a user works at a given point in

ime. Other specific components for the Microsoft Office suite 8 log
5
Prom was developed by two of the authors (Astromskis et al., 2014).

6 All involved developers used Microsoft Visual Studio as IDE.
7 https://www.visualstudio.com/ .
8 https://products.office.com .

a

r

e

m

(

he currently focused document (the document name and proper-

ies, file name) on which a user is working. General components

re background processes of the operating system and log the cur-

ently focused application by reporting the process name and the

itle of the window opened within the application (if any).

Overall, for each event the tool allowed us to collect the follow-

ng information:

• The workstation id on which the interaction event was captured .

Each of the workstations on which we installed Prom was uni-

vocally identified by an alphanumeric id. Note that, while we

are able to univocally identify each workstation, we do not have

information on the specific developer who is using a worksta-

tion in a specific moment. This limitation is the result of pri-

vacy constraints set by the company when agreeing on host-

ing our study. Nonetheless, for the period we monitor the ac-

tivities, one single computer was in fact shared among devel-

opers: Two developers alternate themselves in the use of the

computer (e.g., one developer working in the morning and one

in the afternoon or in different days). This means that the two

developers did not use the workstation at the same time. The

other workstations were instead used exclusively by a single

developer during the period we monitored the activities.
• The time stamp of the event, expressed with a precision of mil-

liseconds.
• The name of the software application on which the event has been

captured . As said before, this could be any software application

installed on the monitored workstation.
• The name of the “object” involved in the event . The object (if any)

opened with the application: it can be the path of a source

code file if the application is an IDE, the path of a textual doc-

ument if it is a word processor, the title of a visited webpage if

it is a Web-browser, the email subject if it is a mail client etc.

Table 1 reports three examples of events as captured by Prom .

We also had access to the SVN repositories on which the three

bject systems were hosted. This gave us access to the source code

omponents on which the developer worked.

.3. Activities and working sessions

To address RQ 1 , we started defining an activity as an event in

he logs and the activity duration as the time difference between

ts timestamp and the timestamp of the subsequent event. Then,

e removed all activities shorter than three seconds. By observ-

ng developers in action, we assumed that such short activities can

e mainly due to non-relevant actions like scrolling across various

indows. Then, we clustered logs into working sessions. We de-

ned a working session as a sequence of events captured on the

ame workstation in which two subsequent events occur in less

han λ minutes. As such, a new working session starts with an

vent that occurs more than λ minutes after the preceding event.

ith this heuristic, we aim at (i) associating a working session to

 single task performed by a single developer and (ii) mitigate the

isk of assigning a single task to multiple developers (e.g., develop-

rs that use the same workstation during the day) or connecting

ultiple unrelated or non-development activities to a single task

 e.g., developers’ activities interleaved by long meetings).

https://www.visualstudio.com/
https://products.office.com

88 S. Astromskis et al. / The Journal of Systems and Software 132 (2017) 85–97

Fig. 1. Sensitivity analysis: changes in the number of sessions as the result of

changes in the splitting threshold (i.e., λ).

l

a

-

s

o

f

r

e

9 The formulated query is reported as part of the window title.
Defining the value for λ is not trivial, and almost any choice

is likely to introduce imprecisions in the data. Also, to the best

of our knowledge, there is not agreement in the literature on the

time limit (λ in our case) separating working sessions. For this rea-

son, we deeply looked into the data in order to identify a suitable

λ value. In particular, we analysed the sensitivity with which the

number of working sessions (dependent variable) changes in re-

sponse to changes to λ (independent variable). We varied λ be-

tween 1 and 120 min at steps of 1 minute (thus experimenting

with 120 different values). The plot depicting the obtained data

is shown in the Fig. 1 , with the number of working sessions on

the y -axis and the λ values on the x -axis. The number of sessions

strongly drops when increasing λ from 1 to 10 min, indicating a

very low stability of the number of sessions in this interval. In

particular, at each one unit threshold increase from 1 to 10, the

number of sessions decreases, on average, of 22%. Selecting any of

these thresholds would clearly strongly influence the results, given

the very high instability in the number of sessions. For this reason,

we selected as a suitable threshold λi for our dataset the lowest

threshold ensuring a +/ −5% stability with respect to its neighbours.

In other words, the number of sessions obtained by applying λi as

splitting threshold does not change of more than 5% with respect

to λi −1 and λi +1 . This ensures stability in the data and a limited

impact of the threshold’s choice on the obtained results. In our

case, the first λi value that satisfies this condition is 14 min. This is

the value we used to split developers’ activities into working ses-

sions.

2.3.1. Activity classification

We then classified the activities performed by the developers

into the six types reported in Section 2.1 . Worth noticing that such

types have been defined (i) by observing the behaviour of devel-

opers in the company, (ii) being as much descriptive as possible

while considering the limitations imposed by the events captured

with the Prom tool, and (iii) by avoiding to speculate on activities,

such as “testing”, that have a clear definition in the literature and

cannot be precisely captured with the events we have available.

1. Code-related activities (C) . As for similar automated tools, Prom

is not able to report if a file opened in an application is mod-

ified or just read, without directly interrogating developers. As

such, we do not discriminate between “writing” and “reading”

code activities.

2. Executing the system under development (X) . An activity is classi-

fied as such if the developer runs the system she is developing.

While the running of the system is likely due to testing pur-
poses, we do not speculate by referring to such operations as

“testing activities”, since testing is a well-defined and formal

process.

3. Using utilities (U) . This type includes all activities involving an

application related to the development process (e.g., tools for

remotely controlling a server, file compression tools, image pro-

cessing/manipulation tools, etc.). We manually identified them

from the Prom ’s log. In our case, developers used rather fre-

quently image processing tools while developing their soft-

ware. This was due to the fact that many products that the

company produces are based on image processing technologies,

from general image acquisition to the recognition of objects and

properties of objects, e.g., the colour and properties a surface.

The data that image processing components collect are used to

control industrial manufacturing processes, e.g., to decide which

production step to take, depending on the determined quality

of the surface of the recognised item. Developers often use im-

age processing programs to manually verify the correct func-

tioning of one of the tools under development.

4. Using external programs (E) . This type refers to all activities in-

volving an application unrelated to development activities. We

manually identified them from the Prom ’s log. For example,

this category includes all browser-based activities not falling in

the H category.

5. Communicating with other developers (M) . An activity is classi-

fied as such if it (i) involves a mail client (e.g., Outlook), a mes-

saging program (e.g., Skype), or a browser window opened on a

mail Web-client (e.g., GMail), and (ii) reports the name of one

of the developers or its email address (as mined from the SVN

change log) in the string representing the object captured by

Prom . For example, the last row of Table 1 shows a Skype chat

with Mario Rossi. Such an event is classified in this category if

Mario Rossi is the name of a developer. Otherwise, the activity

is classified as U. We extracted all applications acting as a mail

client, messaging program, and mail Web-client by analysing

manually the complete set of 371 applications present in the

Prom ’s log.

6. Looking for online help (H) . An activity is classified as such if

it is performed in a browser and has as object a window ti-

tle indicating: (i) the browsing of a Question & Answer website

(e.g., Stack Overflow), or (ii) a search-engine run with a query 9

clearly referring to the look for online help (e.g., “how to use”).

To manually tagged browsing activities as belonging to the H

group. In particular, we started by considering all 14,766 brows-

ing activities in our data. Then, we filtered out those lasting less

than three seconds as well as those clearly do not related to on-

line help (e.g., those related to web addresses of online news-

papers). We defined the set of browsing activities to exclude by

manually looking into the set of visited websites. After this au-

tomatic filtering, we obtained 2098 browsing activities possibly

related to searches for online help. One of the authors manually

inspected these 2098 activities tagging the ones actually related

to online help (i.e., 327).

Each working session can be represented as a sequence of type

abels with repetition. For example, a sequence CHCHC represents

 set of five acti vities “coding - online help - coding - online help

 coding” performed by a developer in a session. Each activity in a

ession has a its own duration.

Overall, we analysed 1038 working sessions for a total of 1008 h

f developers’ activity (i.e., on average, each working session lasted

or 59 min). These sessions include 86,835 activities distributed as

eported in Table 2 . Considering that (i) two of the six develop-

rs were part-time, (ii) the six-months monitoring period included

S. Astromskis et al. / The Journal of Systems and Software 132 (2017) 85–97 89

Table 2

Descriptive statistics per activity type.

C ode-related e X ecuting co M municating online using E xternal

the system with developers H elp U tilities programs

Total number of activities 46,890 16,460 7531 327 14,868 759

Avg. activities duration (s) 51 20 57 27 30 33

Number of sessions with at least one instance of activity 1038 497 703 63 647 107

Percentage of sessions with at least one instance of activity 100% 49% 68% 6% 62% 10%

Avg. activities per session 45.10 15.87 7.25 0.30 14.26 0.73

Avg. activities per session (excluding sessions with zero instances) 45.10 33.12 10.71 5.19 22.98 7.09

Table 3

Descriptive statistics per session.

Mean Median St. Dev. Min Max

Sessions per workstation 258 213 190 97 508

Sessions per system 424 272 431 89 910

Session length (# activities) 84 51 94 1 649

Session duration (min) 59 41 60 1 538

t

v

v

2

c

i

t

o

s

t

P

a

l

r

p

d

2

c

.

i

fi

s

p

c

(

s

1

m

a

l

i

p

m

m

Fig. 2. RQ 1 : Session time percentage spent for each activity over working sessions..

Table 4

RQ 1 : Mean transition frequencies between activities.

From/To C X M H U E

C 33% 32% 1% 30% 4%

X 58% 21% 1% 17% 3%

M 45% 17% 0% 34% 4%

H 70% 12% 4% 14% 0%

U 41% 16% 33% 6% 4%

E 41% 15% 19% 0% 25%

Table 5

RQ 1 : Top activity patterns by percentage of

working sessions.

Pattern #Occ. #Sessions %Sessions

MC 2031 458 44%

CX 3364 431 42%

CM 1819 410 39%

UC 1883 407 39%

CXC 976 277 27%

XCX 869 259 25%

CMC 458 186 18%

MX 721 168 16%

XM 700 161 16%

MCM 221 91 9%

CMU 177 80 8%

MCU 167 76 7%

2

s

s

d

i

p
ypical vacation periods in Italy (July and August), and (iii) the de-

elopers frequently travel for business reasons, the 1008 h of de-

elopers’ work is a substantial amount of time.

.4. Architecture and its layers

To answer RQ 2 , we identified which class belonged to which ar-

hitectural layer. Following the naming convention for namespaces

n C++, (e.g., a “GUI” namespace indicates the classes belonging to

he presentation layer) and manually looking into every class, one

f the authors assigned each class to one of the three layers: pre-

entation (P), application logic (A), or data (D) layer. This informa-

ion, combined with the developers activity monitored by using

rom , allows us to analyse how developers navigate the system

rchitecture during code change activities.

Each working session can be represented as a sequence of layer

abels with repetition. For example, a sequence PAPAD would rep-

esent the five file changes at “presentation - application logic -

resentation - application logic - data” layer made by a developer

uring a working session.

.5. Code quality

To collect data for RQ 3 , we developed a tool that measures size,

omplexity, coupling, and readability of each source code file (only

cpp files) in the three object systems after each commit in which

t has been involved (i.e., we extracted the metrics’ values for all

les at each system’s snapshot in the change history of the three

ystems).

We measured (i) file size as the total lines of code (LOC) com-

osing it, including comments but excluding blank lines, (ii) file

omplexity as the sum of the McCabe’s cyclomatic complexity

 McCabe, 1976) of the methods it contains, (iii) file coupling as the

um of the Coupling Between Objects (Chidamber and Kemerer,

994) of the classes it contains, and (iv) file readability with the

etric proposed by Buse and Weimer (2010) . This metric combines

 set of low-level code features (e.g., identifiers length, number of

oops, etc.) and has been shown to be 80% effective in predict-

ng developers’ readability judgments. We used the authors’ im-

lementation of such a metric. 10 Given a code file, the readability

etric takes values between 0 (lowest readability) and 1 (maxi-

um readability).
10 Available at http://tinyurl.com/kzw43n6 .

t

a

w
.6. Method of analysis

The sample for the analysis consists of the set of working ses-

ions of the three object systems. Working sessions can be repre-

ented as sequences of activity types or sequence of layer types as

escribed in Sections 2.3 and 2.4 . For each file changed in a work-

ng session, we extracted quality metrics described in Section 2.5 .

To answer RQ 1 , we first analysed the percentage of time spent

er activity type in a working session (Fig. 2). Then, we measured

he proportion of different activity transitions (Table 4). Addition-

lly, we identified the most frequent activity transition patterns in

orking sessions (Table 5). This was done by matching regular ex-

http://tinyurl.com/kzw43n6

90 S. Astromskis et al. / The Journal of Systems and Software 132 (2017) 85–97

Table 6

RQ 2 : Mean transition frequencies be-

tween layers in working sessions.

From/To P A D

P 49% 32% 19%

A 16% 56% 29%

D 12% 42% 46%

Table 7

RQ 2 : Top architectural patterns by frequency or-

dered by percentage of sessions (all systems).

Pattern #Occ. #Sessions %Sessions

DA 2784 419 40%

AD 2765 414 40%

ADA 1155 287 28%

DAD 913 247 24%

AP 1305 223 21%

PA 1287 217 21%

DP 616 122 12%

APA 396 117 11%

PAP 375 109 11%

DPD 190 60 6%

(DA) + 123 55 5%

Table 8

RQ 3 : Spearman correlation between qual-

ity metrics and likelihood of transiting to-

ward a specific activity.

Metric X M H

Size 0.07 0.11 0.11

Readability −0.13 0.01 −0.05

Complexity 0.27 0.11 0.29

Coupling 0.21 0.14 0.03

3

fi

3

a

t

a

a

w

t

t

s

p

s

s

t

a

a

w

h

s

s

o

e

w

i

s

t

t

a

t

s

h

G

i

t

E

g

o

s

l

a

s

d

i

s

f

u

c

t

f

a

m

i
pressions of length varying from two to five 11 onto a file repre-

senting activities performed by a developer during a working ses-

sion (e.g., a sequence CHCHC represents a set of five activities per-

formed by a developer in a session) and determining for each pat-

tern whether it was iterated (e.g., in the sequence CHCHC the pat-

tern CH is iterated multiple times).

We used the same approach to address RQ 2 and extract the

navigation patterns followed by developers across the architec-

tural layers in working sessions. In this case, we computed the

percentage of navigations between two layers in working sessions

(Table 6), and the most frequent navigation patterns in working

sessions of length from two to five (Table 7).

Finally, to address RQ 3 we computed the Spearman correlation

(Cohen, 1988) between size, readability, coupling, and complex-

ity of a file F and the percentage of times that developers tran-

sited toward a specific activity while working on F (Table 8). It is

worth noting that, since F can change over time, also the values

for its size, readability, coupling, and complexity can change. Hav-

ing available the value for the four metrics measured after each

commit in which F has been involved, we considered the median

value of each metric as the variable to correlate with the percent-

age of times that developers transited toward a specific activity

while working on F . We preferred the median over the mean since

the latter is strongly influenced by outliers. Cohen (1988) provided

a set of guidelines for the interpretation of the correlation coeffi-

cient. It is assumed that there is no correlation when 0 ≤ ρ < 0.1,

small correlation when 0.1 ≤ ρ < 0.3, medium correlation when

0.3 ≤ ρ < 0.5, and strong correlation when 0.5 ≤ ρ ≤ 1. Similar

intervals also apply for negative correlations.
11 Note that we did not match regular expressions longer than five since, as will

be clearer during the results’ discussion, long transition patterns are unfrequent.

p

s

. Results discussion

In this section, we discuss the study results and summarize the

ndings for each research question.

.1. RQ 1 : How much time do developers spend on different kinds of

ctivities and how do they transit between them?

Table 2 shows descriptive statistics per activity type and in par-

icular: (i) the total number of activities per type, (ii) the average

ctivities duration (in seconds), (iii) the number of sessions with

t least one instance of each activity type, (iv) the percentage of

orking sessions containing at least one instance of each activity

ype, (v) the average number of activity type per session, and (vi)

he average number of activity type per session when excluding

essions do not having that specific type. In addition, Table 3 re-

orts descriptive statistics related to the characteristics of the con-

idered sessions, i.e., their distribution per workstation and per

ystem as well as their length/duration in terms of number of ac-

ivities (of all types) and minutes.

Table 2 shows that 100% of working sessions include coding

ctivities (C), which includes both modifying a code file as well

s just opening it in the IDE. Activities related to communicating

ith other developers (M) and using some kind of utilities (U) are

ighly spread, being present in 68% and 62% of the monitored ses-

ions, respectively. This means that during most of the working

ession, developers communicate among them and use some kind

f utility application. Also, almost half of the sessions include the

xecution of the system under development (X, 49%).

The limited proportion of online help (H) activities (6% of the

orking sessions) is balanced with the frequency of such activities

n each session (on average, five H activities per session when con-

idering only sessions with at least one instance of H). Altogether,

his indicates that, while a low percentage of implementation ac-

ivities trigger online help, developers generally need multiple iter-

tions (e.g., multiple Google search/Stack Overflow page readings)

o locate the solution they need. For example, in one of the ses-

ions we analysed, the developer was looking for online help on

ow to set the colours of a combobox in C++. This required a

oogle query (i.e., “set combobox backcolour c++”) and the read-

ng of two different Stack Overflow discussions (i.e., “c++ - Change

he item background colour of a combobox in MFC?”, and “c++ -

dit control border and WM_CTLCOLOREDIT?”) multiple times (18)

oing back and forth from the source code. Manually inspecting

ur data, we had the perception that the online help was mainly

ought when developers had to use a library (in the example re-

ated to UI) for which the online help was expected to be available,

nd the developer had limited experience with that.

The box-plots in Fig. 2 show the percentage of time per working

ession spent by developers across the six activity types 12 (filled

ots indicate mean values). A large proportion of the overall time

s dedicated to source code files (C, mean = 61%). Percentage ses-

ions’ time across the other activities is distributed, on average, as

ollows: 8% to execute the system under development (X), 16% to

se utilities (U), 2% to look for online help (H), 14% to communi-

ate with other developers (M), and 1% to perform external activi-

ies (E).

Table 4 reports the mean percentage of transitions between dif-

erent types of activities (the most frequent transition(s) from each

ctivity type is highlighted in bold). From a C activity, there is al-

ost equal chance of moving toward a X, M, or U activity, while

t is very unlikely to reach a H or an E activity. Interesting is es-

ecially to see as in 32% of cases developers execute the system
12 Note that the boxplots refer to all sessions, not just to the ones in which a

pecific activity type occurred.

S. Astromskis et al. / The Journal of Systems and Software 132 (2017) 85–97 91

u

c

o

u

w

(

o

i

o

T

h

w

r

t

t

v

c

e

s

p

a

s

t

b

t

i

s

3

t

o

t

3

c

l

T

w

m

(

fi

c

t

r

t

t

r

c

d

q

(

f

t

p

0

t

t

(

t

s

t

r

i

p

t

t

S

2

t

o

n

r

m

f

t

t

fi

t

m

f

t

a

D

q

D

n

d

p

l

D

t

t

t

a

t

b

w

v

s

t

b

d

n

b

t

i

f

t

3

i

r

w

p

p

s

r

w

c
nder development (X) right after modifying or simply reading

ode (C). This might indicate that (i) developer verify the impact

f their changes on the system’s behaviour, and/or (ii) developers

se the running system as a support for program comprehension

hile reading the source code.

The most likely transition (70%) is from browsing online help

H) to working on source code (C). This may indicate that devel-

pers have often found online hints that soon want to incorporate

nto their code. Communication with other developers (M) and use

f utilities (U) are also likely to occur in sequence (34% and 33%).

his can happen for various reasons. For example, both M and U

ave a high probability to appear in a working session (Table 2),

hich increases the probability they occur in sequence. Another

eason might be related to the definition of U activities. In our set-

ings, U activities also contain communication exchanges with ex-

ernal people (i.e., communication with non-developers). So if de-

elopers tend to dedicate specific periods of the day to communi-

ate with people, the likelihood they communicate with develop-

rs and external people in the same working session and even in

equence can be high.

Table 5 shows the number of occurrences of the most frequent

atterns we observed (column #Occ), and the number (#Sessions)

nd percentage (%Sessions) of sessions containing them ordered by

uch percentage. Results in Table 5 indicate that, developers of-

en transit from code-related to communication activities forward,

ack, and forward again (see patterns CM, MC, CMC, MCM). Al-

hough transitions between execution the system and working on

ts code (CX, CXC, XCX) are less generally present in working ses-

ions, the number of such transitions is the highest (e.g., we found

364 instances of the CX pattern). On average, the sessions con-

aining CX have 7 repetition of this pattern, indicating that devel-

pers repeatedly work on the code, execute the system, and even-

ually work on the code again.

.2. RQ 2 : How do developers navigate the system architecture during

ode change activities?

Table 6 reports the transition frequencies between architectural

ayers performed by developers during code change activities while

able 7 shows the most frequent architectural transition patterns

e found. The notation (P)+ means that the pattern P was present

ultiple times in sequence with no interleaving of other activities

 e.g., PPP).

When we classified working sessions by the layer in which the

rst code-related activity occurs, we observed that in 61% of the

ases the code-related activity started in A, 25% in D, and 14% in

he P layer. Thus, it is unlikely that developers start their code-

elated activities by navigating the system’s architecture from the

op layer (i.e., P), while they rather start from within the applica-

ion logic layer.

The diagonal values in Table 6 additionally show that code-

elated activities occurring in one layer are likely to trigger other

ode-related activities in the same layer. This is particularly evi-

ent for the application logic layer (56%). Such layer is also a fre-

uent target of code-related activities triggered by any other layer

column A in the table).

To analyze the prevalence of the patterns across the three dif-

erent systems, we used Kendall’s τ correlation after having ranked

he architectural patterns in decreasing order of frequency. The

attern rankings highly correlate, and the results indicate a τ =
 . 86 (which can be considered a strong correlation) between Sys-

em1 and System2, a τ = 0 . 72 (moderate to strong) between Sys-

em1 and System3, and τ = 0 . 70 between System2 and System3

moderate to strong). These values suggest homogeneity of the pat-

ern prevalence in the three systems.
To understand how these transitions occurred in the studied

ystems, we looked into the events involving the different presen-

ation layers. In particular, we manually analysed both the events

ecorded by Prom as well as the commits performed by developers

n the versioning system to identify the type of activity (e.g., im-

lementation of new feature) developers were carrying out when

ransitioning across architectural layers. For example, let us assume

hat we observe developers working on files A . cpp and B . cpp from

ystem1 in a working session recorded by Prom on January 7th

014. A . cpp and B . cpp do not exist in the System1’s versioning sys-

em until January 8th 2014, when they are added in the context

f a commit mentioning in the commit message “Implemented the

ew sorting feature ”. In such a scenario, we infer that the session

ecorded by Prom concerns coding activities related to the imple-

entation of a new feature. This analysis has been manually per-

ormed to discuss some qualitative examples helping in explaining

he transitions we observed. For example, we observed that transi-

ions P → P (i.e., subsequent activities performed to different code

les in the presentation layer) mainly occur when: (i) a new fea-

ure is added to the system, and all the source code files imple-

enting its GUI are created one after the other; (ii) the look-and-

eel of the GUI is changed, requiring an update to multiple files in

he P layer; and (iii) logically coupled GUIs (e.g., those belonging to

 wizard) are updated, to reflect changes applied to the A and/or

 layer. The implementation of new features is also the most fre-

uent reason why developers perform writing activities in A and

 after changes in P. For instance, during the implementation of a

ew feature (that we will call Sort for confidentiality reasons) the

eveloper performed 17 P → A transitions between the class im-

lementing the Sort GUI and the class implementing its business

ogic. Also, the implementation of the Sort feature required 11 P →
 transitions, aimed at the modelling of the information gathered

hrough the GUI forms in the corresponding data objects.

Table 7 shows that very high frequency of transitions between

he application logic and the data layer (DA and AD). These transi-

ions are also quite recurring in the sessions containing them (on

verage 13 transitions per working session). The pattern DA+ fur-

her illustrates that developers iteratively move back and forward

etween the two layers.

Such behaviour can be explained by the peculiar type of soft-

are systems (i.e., real-time software controlling mechanical de-

ices) developed by the company. Namely, the data objects of these

ystems mostly represent real parts of the mechanical devices con-

rolled by algorithms in the application logic layer (e.g., a square

oard with n × n wells containing material manipulated by the

evice). Thus, changes to code components in D (e.g., the value of

 is modified) are very likely to result in changes needed in the

usiness logic manipulating such objects. Differently, the classes in

he P layer are only linked to D by the data objects modelling the

nformation collected in the GUI’s forms that, however, are very

ew (i.e., no much user interaction is required by this type of real

ime software).

.3. RQ 3 : How does the internal quality of code components

nfluence the likelihood of transitioning toward specific activities?

Table 8 reports the Spearman correlation between quality met-

ics and the likelihood of transiting (percentage of transitions) to-

ard specific activity types. The statistically significant results (i.e.,

 -value < 0.05), on which we will focus our discussion, are re-

orted in bold face. We excluded activities C, E, and U since no

ignificant results were found for any of the investigated metrics.

We first notice that there are no statistically significant cor-

elations for the size and readability metrics. For file complexity,

e found two moderate correlations. Namely, when code files are

omplex, there is a moderate likelihood that developers work on

92 S. Astromskis et al. / The Journal of Systems and Software 132 (2017) 85–97

a

f

a

a

v

5

i

c

5

i

e

i

t

c

p

w

s

m

b

u

T

s

e

c

t

o

s

y

b

t

s

t

e

p

p

l

t

c

u

t

f

p

t

h

i

h

t

m

t

t

s

m

e

o

them and, right after, execute their code (0.27) or seek for online

help (0.29). Inspecting individual files, we found a very complex

file (complexity = 9474) that triggered an execution activity in 76%

of the cases. In other words, almost after every activity performed

on this file, developers checked the system correctness.

In terms of coupling, the more a file is coupled the more de-

velopers execute their systems (0.21) or communicate with other

developers (0.14). While this correlations are quite low, this might

indicate less confidence of developers on working on high coupled

files, e.g., because changes could cause unwanted ripple effects.

4. Threats to validity

Threats to construct validity concern the relation between the

theory and the observation. In our study, this threat can mainly

be due to errors in the construction of the working sessions, the

definition of development activities, and the association of code

classes to architecture layers of the application. When collecting

data to build working sessions, we discarded cases of short-time

events (less than three seconds) that are unlikely to be an indica-

tion of development activities, but for example of moving the focus

among different windows. This might have meant loosing some

quick, but valid, activity. We also allowed up to 14 min of elapsing

time between two activities in a working session in order to take

into account idle time related to non-computer-interaction activi-

ties associated with development (e.g., long code readings). Thus,

time for non-development activities, like coffee breaks, could be

accounted for development. Working sessions are also associated

with workstations’ and not with developers’ ID. Thus, we might

not have been able to isolate the single developer’s activity in case

of concurrent use of more machines by one developer or in case of

more developers using the same machine. Nonetheless, according

to feedback provided by company’s employees, we can assert that

a workstation is being used almost always by a single developer.

Prom does only capture the interactions of the developer with

the “active window” (i.e., the window having the active focus),

even when multiple windows are shown on the screen. This clearly

limits our monitoring data. Indeed, if a developer is debugging

code in the IDE (active window) while discussing with a colleague

on Skype on how to fix a bug (non-active window), we only ob-

serve her interaction with the IDE.

Finally, heuristics used for the classifications of developers’ ac-

tivities have been defined by manually analysing the Prom ’s logs.

Although the information included in each event we collected is

rich, we cannot exclude the misclassification of some activity types

(e.g., a Google query looking for online Help was not recognised

as a help (H) activity by our manual inspection, and thus classi-

fied as an External activity). Also, the association of code classes to

the three-tier architectural layers has been done manually, and it

might have implied some misclassification.

Threats to internal validity concern any confounding factor that

could influence our results. In principle, internal policies of the

company, like access to specific resources, or the awareness of em-

ployees about the data collection might have had some effects on

our results. For instance developers might have not navigated spe-

cific resources on the Web knowing that the navigation was being

monitored. However, the over 10 0 0 h of monitoring make us con-

fident on the reliability of the observed developers’ behaviour.

Threats to conclusion validity concern the relationship between

the treatment and the outcome. Although most of the analyses

performed in this paper mainly have an observational nature, we

used, where appropriate (RQ 3 in particular), statistical procedures

to support our claims.

Threats to external validity concern the generalisation of our

findings. This study has been conducted with employees of one

company, and for this reason the obtained results may not gener-
lise to other companies, which, for example, might have used dif-

erent policies in accessing applications external to the IDE. Also,

s already stressed in our results discussion, some of our findings

re possibly dictated by the specific type of software systems de-

eloped by the company.

. Related work

This section describes related work mainly concerning (i) stud-

es investigating the developers’ behaviour, and (ii) existing data

ollection (monitoring) tools.

.1. Studying developers’ behaviour

Roughly speaking, studies on developers’ behaviour are divided

nto two kinds: the ones that collect data by visual observations,

ye tracking, survey, and interviews and the ones that install tools

n the work station of developers to collect data automatically from

he software environment. While our work belongs to the latter

ategory, the majority of the studies performed in the literature

ertain to the former.

von Mayrhauser and Vans (1994) published one of the first

orks on the analysis of developer’s behaviour. They visually ob-

erved the behaviour of five professional developers in two-hours

aintenance sessions. They found that programmers use to switch

etween different applications as well as different sources of doc-

mentation while they try to understand their source code.

Singer et al. (1997) studied the daily activities of developers.

hey performed three separate analyses on applications’ usage by

tudying single individuals, teams, and the whole company. Inter-

stingly, they found that search tools (e.g., variations of the grep

ommand) are the most frequently used tools by developers. With

his study they provided new guidelines for tool designers based

n users’ cognitive processes and mental models with the empha-

is on usability.

Robillard et al. (2004) performed an exploratory study to anal-

se the factors that contribute to effective program investigation

ehaviour. They observed that effective developers exploit a me-

hodical approach during program investigation, trying to under-

tand the high-level structure of the system before designing and

hen implementing the change. In contrast, non-effective develop-

rs employ an opportunistic approach, skimming the code com-

onents during code understanding (Robillard et al., 2004). In this

aper, we found that developers move among different abstraction

ayers (e.g., between application and data layer) in a more oppor-

unistic way motivated by the type of product developed at the

ompany.

Sillito et al. (2008) performed two qualitative studies aimed at

nderstanding what pieces of information programmers seek when

hey need to modify code components, how they collect such in-

ormation and how well today’s programming tools help in that

rocess. As output of these studies they proposed a catalog of 44

ypes of questions programmers ask while coding. These questions

ave been categorised into four categories expressing the type of

nformation needed to answer the question (Sillito et al., 2008).

Eye tracking systems have been used to investigate the compre-

ension of UML diagrams (Guéhéneuc, 2006; Yusuf et al., 2007),

he effect of the layout on the comprehensibility of software docu-

entation (Sharif and Maletic, 2010), and the effect of design pat-

erns on comprehension (Jeanmart et al., 2009). These studies have

he power to collect data at low-level granularity (e.g., identify the

pecific part of the code observed by the developer in a given mo-

ent), but cannot automatically detect interactions among differ-

nt events generated in applications running on the work station

r tracking the developers’ activities in parallel.

S. Astromskis et al. / The Journal of Systems and Software 132 (2017) 85–97 93

c

g

a

v

r

p

t

I

i

o

g

t

w

d

a

a

v

u

T

g

a

t

l

t

p

t

f

o

c

c

e

t

a

p

s

p

t

m

p

t

(

I

a

e

s

c

t

p

g

2

s

t

b

a

r

A

b

p

r

t

g

p

t

w

t

a

p

a

r

p

I

2

g

m

e

s

s

fi

p

i

o

o

t

c

f

u

t

t

3

I

t

d

t

s

s

t

i

o

t

g

i

i

a

r

m

v

d

r

r

d

t

c

e

t

a

s

t

g
Our study differs from these studies because, while we can not

apture the level of granularity ensured by eye-tracking technolo-

ies, we can afford to capture complex interactions with the IDE

nd with a wide set of software applications (e.g., browsers) de-

elopers use everyday. Also, none of the previous studies has been

un for a period of time comparable to the study presented in this

aper.

Studies based on the automated collection of data by relying on

ools installed on the developers’ work stations generally focus on

DE/utilities usage during maintenance activities. In this category,

t falls research that aims at understanding what tool and source

f information developers need in their maintenance activities. In

eneral, data collection in such papers focusses on the sole IDE.

Ko et al. (2006) performed a study in which 31 developers had

o implement changes for 70 min to an already existing system,

hich they have not worked on previously. Authors captured the

evelopers’ activities by recording the screen of the workstation,

nd analysed how did the subjects search for the relevant code,

nd how the changes were implemented. They observed that de-

elopers often start their coding activity by searching (either man-

ally or with a tool) for the code components they need to change.

hen, they start modifying the identified code component, by navi-

ating back and forth towards its dependencies. Our study involves

 wider context (i.e., we focus on a wider set of development ac-

ivities), it is performed in an industrial context, and lasted a much

onger time.

Soh et al. (2013) analysed how the developers effort is dis-

ributed during the maintenance activities, and whether the com-

lexity of the code artefact influences the amount of effort needed

o implement or fix it. Moreover, the authors analysed how the ef-

ort is distributed during the exploration phase, and find out that

n average 62% of files opened during this phase are not signifi-

antly related to the final implementation of the task. This issue

an be addressed by analysing the behaviour of software develop-

rs with the final aim of defining approaches which would be able

o reduce the information overload (e.g., number of artefacts to be

nalysed) of developers by filtering and ranking the information

resented by the development environment (Fritz et al., 2007; Ker-

ten and Murphy, 2006; Murphy et al., 2006). The findings of our

aper can complement the body of knowledge in this field. Indeed,

he usage patterns identified in our study can be used to comple-

ent such approaches providing a more effective support during

rogram comprehension.

Bavota et al. (2013) performed a controlled experiment to inves-

igate how developers navigate different sources of documentation

 i.e., javadoc, sequence diagrams, and use cases) available in the

DE while performing program comprehension and change impact

nalysis activities. The study was conducted with computer sci-

nce students, and found that although participants spend a con-

picuous proportion of the available time by focusing on source

ode, they browse back and forth between source code and ei-

her static (class) or dynamic (sequence) diagrams. Less frequently,

articipants—especially more experienced ones—follow an “inte-

rated” approach by using different kinds of artefacts (Bavota et al.,

013).

Another study monitoring the developers’ behaviour was pre-

ented by Singh et al. (2014) , who monitored developers activities

o analyse the technical debt payments of developers. They com-

ine code maintainability and comprehension effort data to create

 framework supporting real-time prioritisation of technical debt

emoval effort s. The proposed framework has been evaluated with

BB developers, showing its applicability. Data about developers’

ehaviour have been also used to measure the costs per activity or

er code artefacts (Astromskis et al., 2014).

de Alwis and Murphy (2006) analysed how programmers expe-

ience disorientation when using Eclipse, identifying three factors
hat may lead to disorientation: the absence of connecting navi-

ation context during program exploration, thrashing between dis-

lays to view necessary pieces of code, and the pursuit of some-

imes unrelated subtasks.

Storey et al. (20 0 0) performed a study aimed at analysing

hether program understanding tools enhance or change the way

hat programmers understand programs. Based on the results

chieved the authors suggested that tools should support multi-

le strategies (top-down and bottom-up, for example) and should

im to reduce cognitive overhead during program exploration. The

esults of our work can be used to produce smarter IDEs, limiting

rogrammers disorientation.

Several works have been carried out by relying on the Eclipse

DE interaction data collected by the Mylyn tool (Murphy et al.,

006). Ying and Robillard (2011) studied data from over 40 0 0 pro-

ramming sessions of open source projects using the Mylyn task

onitoring mechanism. Their study aimed at investigating differ-

nt editing styles when working on source code. The achieved re-

ults showed that the developers’ editing style changes on the ba-

is of the specific task they need to perform. For example, when

xing bugs developers tend to edit source code earlier during the

rogramming session with respect to what they do while enhanc-

ng existing features. In this paper, we found that although devel-

pers might change their style for specific tasks, in general they

ften move from looking for on-line help to coding related activi-

ies and, within a working session, from code related activities to

ommunication with other developers or code execution back and

orward.

Murphy et al. (2006) used Mylyn to investigate how developers

se the Eclipse IDE. As the result of this analysis they reported: (i)

he most used views (1st package explorer, 2nd the console, 3rd

he search), (ii) the most used perspectives (1st Java, 2nd Debug,

rd Team synchronisation), (iii) the most used commands in the

DE (1st delete, 2nd save, 3rd past), and (iv) the most used refac-

oring operations (1st rename, 2nd move, 3rd extract).

Parnin and Rugaber (2011) used similar data to investigate how

evelopers resume their activities after interruptions. They found

hat quite rarely (in 10% of the monitored sessions) developers re-

ume coding in less than one minute. Indeed, developers mostly

tart their coding sessions by focusing on activities helping them

o rebuild their task context.

Murphy-Hill et al. (2011) analyzed eight different datasets try-

ng to understand how developers perform refactoring. Examples

f the exploited datasets are usage data from 41 developers using

he Eclipse environment, data from the Eclipse Usage Collector ag-

regating activities of 13,0 0 0 developers for almost one year, and

nformation extracted from versioning systems. Some of the several

nteresting findings they found were (i) almost 41% of development

ctivities contain at least one refactoring session, (ii) programmers

arely (almost 10% of times) configure refactoring tools, (iii) com-

it messages do not help in predicting refactoring, since rarely de-

elopers explicitly report their refactoring activities in them, (iv)

evelopers often perform floss refactoring , namely they interleave

efactoring with other programming activities, and (v) most of the

efactoring operations (close to 90%) are manually performed by

evelopers without the help of any tool.

Negara et al. (2013) collected and analysed IDE interaction data

o detect manual refactoring activities, and investigate them in

omparison with automatic refactorings. They found that develop-

rs perform refactoring 11% more manually than automatically and

hat refactoring operations have different “popularity” in manual

nd automated refactoring.

Fuchs et al. (2014) performed a study where they monitored

tudents’ interaction with the IDE and browsing data to assess

heir behaviour during a programming task. They provide a cate-

orisation of the types queries performed by students on search

94 S. Astromskis et al. / The Journal of Systems and Software 132 (2017) 85–97

t

G

w

T

a

d

i

o

e

p

w

t

6

r

r

i

t

c

o

t

t

i

c

T

s

m

b

s

i

w

n

i

t

g

t

f

I

m

c

t

i

p

a

h

c

v

t

d

c

h

c

s

n

W
engines while programming (e.g., troubleshooting, basic program-

ming, etc.). Also, they show the most visited websites, with the

first in the ranking being Stack Overflow.

While we share with such works the analysis of code browsing

and writing activities, we also observe other kinds of activities de-

velopers perform within the IDE (e.g., executing the program) and

outside it. Also, we relate the activities being performed with the

architectural layers being navigated and with the code readability

and complexity.

In a related research thread, (Mark et al., 2005) observed 24 in-

formation workers showing that they frequently switch between

tasks and 57% of their activities are interrupted. Table 3 reports

similar findings: we found that a work session lasts 59 and in-

volves 84 activities on average.

Finally, studies have explicitly focused the attention on the

identification of IDE’s weaknesses. DeLine et al. (2005) identified

several usability issues of conventional development environments

when a developer has to update a software system, including

maintaining the number and layout of open text documents and

relying heavily on textual search for navigation. As previously said,

our study has a different focus, and expands to developers’ activi-

ties performed outside the IDE.

5.2. Data collection tools

The research area of developer behaviour analysis has been

constantly growing, therefore new tools and methods to collect

and analyse developer behaviour data emerged. Kersten and Mur-

phy (2005) created the Mylar tool, which monitor the usage of

Eclipse IDE 13 to analyse which are its most used features. My-

lar evolved into Mylyn, which has been used in many studies

analysing the developer interactions with the Eclipse IDE (Ying and

Robillard, 2011; Murphy et al., 2006; Murphy-Hill et al., 2009; Ne-

gara et al., 2013; Fuchs et al., 2014).

Robbes and Lanza (2007) presented the SpyWare tool, able to

capture the set of events during a development session. SpyWare

has implementations for the Eclipse and Squeak 14 development en-

vironments.

Minelli et al. (2014a, 2014b, 2014c) presented the DFlow tool

to collect and visualise data about developers activities within the

Pharo IDE. 15

Johnson et al. (2003) developed the Hackystat platform, to col-

lect software product and process data. The platform is composed

of sensors collecting data from various sources. Authors also de-

veloped the Zorro tool (Johnson and Kou, 2007), which uses the

data collected by Hackystat to automatically identify whether Test

Driven Development (TDD) practices are applied within the devel-

opment work.

Snipes et al. (2013, 2014) present the Blaze tool to automatically

infer best practices in developer behaviour, and use this informa-

tion to gameify the development process, by rewarding the devel-

opers with points and badges. The tool works in Visual Studio IDE,

and uses other tools (e.g., Mylyn, Hackystat) to collect the data.

There also exist commercial tools, such as Codealike 16 or Waka-

Time 17 which monitor developer behaviour within IDE’s.

In our work, we chose to use Prom , a monitoring tool devel-

oped at the Free University of Bozen-Bolzano (Sillitti et al., 2003;

Remencius et al., 2009; Coman et al., 2009; Sillitti et al., 2011). Like

Hackystat it uses sensors to collect data from various development

environments (Eclipse, Visual Studio, Netbeans, etc.), operating sys-
13 www.eclipse.com .
14 www.squeak.org .
15 www.pharo.org .
16 www.codealike.com .
17 www.wakatime.com .

a

b

s

e

s

o
ems (OS X, Windows, Linux), source code versioning systems (Svn,

it), and productivity software (MS Office, Open Office). In Table 9

e compare Prom with the other available data collection tools.

he comparison shows as most of the tools which collect the data

bout developer behaviour from the IDE, do not integrate other

ata sources, like source code management (SCM) systems, brows-

ng history, e-mail systems, productivity software. For instance, no

ne of the available tools is able to capture browsing events from

very web browser. Also, no one monitors events generated inside

roductivity suites (e.g., Microsoft Office). These features, together

ith our high knowledge of the Prom tool, driven our choice of

he tool to use in our study.

. Conclusion and lessons learned

This paper reported results of an exploratory study aimed at

ecording how six developers—working in three industrial projects

elated to the development and evolution of real-time software—

nteracted with their working environment (IDE and other applica-

ions in the workstation) for a period of over 10 0 0 h. More specifi-

ally, we analysed (i) the proportion of time spent in various kinds

f activities and the likelihood of transition between different ac-

ivities, (ii) how developers navigated across the software architec-

ure during a development activity, and (iii) how the size, complex-

ty, coupling, and readability of source code might have triggered

ertain activities such as browsing other files or searching for help.

he achieved results provide several valuable findings for the re-

earch community:

Lesson 1 . The identification of useful sources of (informal) docu-

entation when looking for online help is far from trivial, and should

e better supported, possibly with integration in the IDE . Our results

howed that the usage of online help is fairly limited (2%), but

t is pretty intense during specific sessions, in which developers

orked on parts of the systems—such as the GUI—for which they

eeded (and expected) to find online help available. In these work-

ng sessions, developers formulate multiple queries to find what

hey need and, once found the appropriate resource, they tend to

o back and forth between the code and the online help page in

he browser. This continuous context switching could negatively af-

ect their productivity. Recommender systems integrated with the

DE and able to automatically identify (informal) sources of docu-

entation useful for a task at hand (see e.g., Ponzanelli et al., 2014)

ould really make the difference in such a context.

Lesson 2 . Monitoring developers’ activities both inside and outside

he IDE can provide interesting insight on code components creating

ssues to software developers . For example, we observed a very com-

lex file that triggered the execution of the code in 76% of cases

fter the developers work on it (i.e., likely to check the correct be-

aviour of the system after the applied changes). This information,

ombined with standard quality metrics, can be exploited to de-

elop a new family of quality checkers, possibly identifying symp-

oms of poor design and implementation choices (similarly to what

one by code smells detectors (Palomba et al., 2015)), as well as

ustomised practices of development modelled on developers’ be-

aviour. Indeed, while in the specific example discussed above, the

omplexity metric might be enough to identify the quality issue,

ome classes might represent maintainability issues even if they do

ot exhibit worrying quality metrics profiles (Palomba et al., 2015).

e plan to investigate in the future the usage of developers’ inter-

ction data to identify poor design and implementation choices.

Lesson 3 . Characteristics of the code under development can

e exploited to generate contextual recommendation . Our results

howed that changes to files having a high complexity have a mod-

rate correlation with the likelihood of executing the system or

earching for help. This result can be potentially useful for the pri-

ritisation of contextual recommendations in the IDE (Ponzanelli

http://www.eclipse.com
http://www.squeak.org
http://www.pharo.org
http://www.codealike.com
http://www.wakatime.com

S. Astromskis et al. / The Journal of Systems and Software 132 (2017) 85–97 95

T
a

b
le

9

C
o

m
p

a
ri

so
n

o

f
d

e
v

e
lo

p
e

r
b

e
h

av
io

u
r

d
a

ta

co

ll
e

ct
io

n

to

o
ls

.

P
r

o
m

(S

il
li

tt
i

e
t

a
l.

,
2

0
0

3
;

R
e

m
e

n
ci

u
s

e
t

a
l.

,
2

0
0

9
;

C
o

m
a

n

e

t
a

l.
,

2
0

0
9

;
S

il
li

tt
i

e
t

a
l.

,
2

0
11
)

H
a

ck
y

st
a

t

(J
o

h
n

so
n

e

t
a

l.
,

2
0

0
3
)

M
y

ly
n

(Y

in
g

a

n
d

R

o
b

il
la

rd
,

2
0

11
;

M
u

rp
h

y

e
t

a
l.

,
2

0
0

6
;

M
u

rp
h

y
-H

il
l

e
t

a
l.

,
2

0
11

;

N
e

g
a

ra

e

t
a

l.
,

2
0

1
3

;
Fu

ch
s

e
t

a
l.

,
2

0
1

4
)

S
p

y
W

a
re

(R

o
b

b
e

s

a
n

d

La

n
za

,
2

0
0

7
)

D
F

lo
w

(M

in
e

ll
i

e
t

a
l.

,

2
0

1
4

a
;

2
0

1
4

b
;

2
0

1
4

c)

C
o

d
e

a
li

k
e

W
a

k
a

T
im

e

T
y

p
e

A
ca

d
e

m
ic

A
ca

d
e

m
ic

Fr
e

e
,

p
ro

fe
ss

io
n

a
l

A
ca

d
e

m
ic

A
ca

d
e

m
ic

C
o

m
m

e
rc

ia
l

C
o

m
m

e
rc

ia
l

O
S

S

N
o

Y
e

s
Y

e
s

N
o

Y
e

s
N

o

S
o

m
e

ID
E

E
cl

ip
se

,
N

e
tb

e
a

n
s,

In

te
ll

iJ
,

V
is

u
a

l
S

tu
d

io

E
m

a
cs

,
E

cl
ip

se
,

JB
u

il
d

e
r,

V

is
u

a
l

S
tu

d
io

E
cl

ip
se

E
cl

ip
se

,
S

q
u

e
a

k

P
h

a
ro

V
is

u
a

l
S

tu
d

io

V
is

u
a

l
st

u
d

io
,

S
u

b
li

m
e

,
B

ra
ck

e
ts

,

E
cl

ip
se

,
V

im
,

X
co

d
e

,

E
m

a
cs

,
In

te
ll

iJ

B
ro

w
se

rs

A
n

y

N
o

N
o

N
o

N
o

C
h

ro
m

e

N
o

S
C

M

S
v

n
,

G
it

C
V

S

N
o

N
o

N
o

N
o

G
it

h
u

b
,

B
it

b
u

ck
e

t,

S
la

ck

B
u

il
d

sy

st
e

m
s

N
o

A
n

t
N

o

N
o

N
o

N
o

N
o

T
e

st
in

g

sy

st
e

m
s

N
o

n
e

JU
n

it

N
o

N
o

N
o

N
o

N
o

Is
su

e

tr

a
ck

e
rs

B
u

il
t

in
,

B
u

g
zi

ll
a

,
T

ra
c,

IB

M

Ja

zz

Ji
ra

B
u

g
zi

ll
a

,
T

ra
c,

G

it
h

u
b

,
Ji

ra

N
o

N
o

N
o

N
o

M
a

il
in

g

sy

st
e

m
s

M
S

O

u
tl

o
o

k

N
o

N
o

N
o

N
o

N
o

N
o

P
ro

d
u

ct
iv

it
y

sy
st

e
m

s

M
S

O

ffi
ce

,
O

p
e

n

o

ffi
ce

N
o

N
o

N
o

N
o

N
o

N
o

P
lu

g
in

s
Y

e
s

Y
e

s
N

o

N
o

N
o

N
o

Y
e

s

e

c

f

p

(

i

r

v

s

R

A

B

B

C

C

C

d

D

F

F

F

G

H

J

J

J

J

J

J

K

K

K
t al., 2014), making such recommendations more “talkative” when

hanges in complex code occur. Also, this result confirms the use-

ulness of approaches that based on the characteristics (e.g., com-

lexity) of a change indicate whether it is likely to induce a fix

 Kim et al., 2008), and therefore whether analysis or testing activ-

ties are highly desirable after the change.

These lessons learned represent the main input for our future

esearch agenda on the topic, mainly focused on designing and de-

eloping recommenders integrated in the IDEs, such as those de-

cribed above.

eferences

stromskis, S. , Janes, A. , Sillitti, A. , Succi, G. , 2014. An approach to non-invasive cost
accounting. In: Proceedings of the Euromicro Conference on Software Engineer-

ing and Advanced Applications (SEAA), Verona, Italy .

avota, G. , Canfora, G. , Di Penta, M. , Oliveto, R. , Panichella, S. , 2013. An empirical
investigation on documentation usage patterns in maintenance tasks. In: 2013

IEEE International Conference on Software Maintenance, Eindhoven, The Nether-
lands, September 22–28, 2013, pp. 210–219 .

use, R.P. , Weimer, W.R. , 2010. Learning a metric for code readability. IEEE Trans.
Software Eng. 36 (4), 546–558 .

hidamber, S.R. , Kemerer, C.F. , 1994. A metrics suite for object oriented design. IEEE

Trans. Software Eng. (TSE) 20 (6), 476–493 .
ohen, J. , 1988. Statistical Power Analysis for the Behavioral Sciences, second ed.

Lawrence Earlbaum Associates .
oman, I., Sillitti, A., Succi, G., 2009. A case-study on using an automated in-process

software engineering measurement and analysis system in an industrial envi-
ronment. In: IEEE 31st International Conference on Software Engineering, 2009.

ICSE 2009, pp. 89–99. doi: 10.1109/ICSE.2009.5070511 .
e Alwis, B. , Murphy, G.C. , 2006. Using visual momentum to explain disorientation

in the Eclipse IDE. In: Proceedings of the IEEE Symposium on Visual Languages

and Human-Centric Computing. IEEE Computer Society, Brighton, UK, pp. 51–54 .
eLine, R. , Khella, A. , Czerwinski, M. , Robertson, G.G. , 2005. Towards understanding

programs through wear-based filtering. In: Proceedings of the ACM 2005 Sym-
posium on Software Visualization. ACM, St. Louis, Missouri, USA, pp. 183–192 .

ritz, T. , Murphy, G.C. , Hill, E. , 2007. Does a programmer’s activity indicate knowl-
edge of code? In: Proceedings of the 6th Joint Meeting of the European Soft-

ware Engineering Conference and the ACM SIGSOFT International Symposium

on Foundations of Software Engineering. ACM, Dubrovnik, Croatia, pp. 341–350 .
ronza, I. , Sillitti, A. , Succi, G. , Vlasenko, J. , 2011. Analysing the usage of tools in

pair programming sessions. In: Agile Processes in Software Engineering and Ex-
treme Programming - 12th International Conference, XP 2011, Madrid, Spain,

May 10–13, 2011. Proceedings, pp. 1–11 .
uchs, M., Heckner, M., Raab, F., Wolff, C., 2014. Monitoring students’ mobile app

coding behavior data analysis based on IDE and browser interaction logs. In:

2014 IEEE Global Engineering Education Conference (EDUCON), pp. 892–899.
doi: 10.1109/EDUCON.2014.6826202 .

uéhéneuc, Y.-G. , 2006. TAUPE: towards understanding program comprehension.
In: Proceedings of the 2006 Conference of the Centre for Advanced Studies on

Collaborative Research (CASCON 2006), October 16–19, 2006, Toronto, Ontario,
Canada. IBM, pp. 1–13 .

olmes, R. , Walker, R.J. , Murphy, G.C. , 2005. Strathcona example recommendation

tool. In: Proceedings of ESEC/FSE 2005, pp. 237–240 .
anes, A. , Sillitti, A. , Succi, G. , 2008. Non-invasive software process data collection for

expert identification. In: Proceedings of the International Conference on Soft-
ware Engineering & Knowledge Engineering (SEKE). Knowledge Systems Insti-

tute, San Francisco, CA, USA .
anes, A. , Succi, G. , 2014. Lean Software Development in Action. Springer .

eanmart, S. , Guéhéneuc, Y.-G. , Sahraoui, H.A. , Habra, N. , 2009. Impact of the vis-

itor pattern on program comprehension and maintenance. In: Proceedings of
the 3rd International Symposium on Empirical Software Engineering and Mea-

surement, Lake Buena Vista, Florida, USA, pp. 69–78 .
ohnson, P. , 2001. You can’t even ask them to push a button: toward ubiquitous,

developer-centric, empirical software engineering. In: Proceedings of the NSF
Workshop for New Visions for Software Design and Productivity: Research and

Applications, Nashville, TN, USA .

ohnson, P., Kou, H., 2007. Automated recognition of test-driven development with
Zorro. In: Agile Conference (AGILE), 2007, pp. 15–25. doi: 10.1109/AGILE.2007.16 .

ohnson, P., Kou, H., Agustin, J., Chan, C., Moore, C., Miglani, J., Zhen, S., Doane, W.,
2003. Beyond the personal software process: metrics collection and analysis for

the differently disciplined. In: 25th International Conference on Software Engi-
neering, 2003. Proceedings, pp. 641–646. doi: 10.1109/ICSE.2003.1201249 .

ersten, M. , Murphy, G.C. , 2005. Mylar: a degree-of-interest model for ides. In: Pro-
ceedings of the 4th International Conference on Aspect-Oriented Software De-

velopment, AOSD 2005, Chicago, Illinois, USA, March 14–18, 2005, pp. 159–168 .

ersten, M. , Murphy, G.C. , 2006. Using task context to improve programmer pro-
ductivity. In: Proceedings of the 14th ACM SIGSOFT International Symposium

on Foundations of Software Engineering. ACM, Oregon, USA, pp. 1–11 .
im, S. , Jr., E.J.W. , Zhang, Y. , 2008. Classifying software changes: clean or buggy?

IEEE Trans. Software Eng. 34 (2), 181–196 .

http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0002
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0003
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0005
http://dx.doi.org/10.1109/ICSE.2009.5070511
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0008
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0010
http://dx.doi.org/10.1109/EDUCON.2014.6826202
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0017
http://dx.doi.org/10.1109/AGILE.2007.16
http://dx.doi.org/10.1109/ICSE.2003.1201249
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0022

96 S. Astromskis et al. / The Journal of Systems and Software 132 (2017) 85–97

R

S

S

S

S

S

S

S

S

S

v

Y

Y

Ko, A., Myers, B., Coblenz, M., Aung, H., 2006. An exploratory study of how develop-
ers seek, relate, and collect relevant information during software maintenance

tasks. IEEE Trans. Software Eng. 32 (12), 971–987. doi: 10.1109/TSE.2006.116 .
Mark, G. , González, V.M. , Harris, J. , 2005. No task left behind? Examining the nature

of fragmented work. In: Proceedings of the 2005 Conference on Human Fac-
tors in Computing Systems, CHI 2005, Portland, Oregon, USA, April 2–7, 2005,

pp. 321–330 .
McCabe, T. , 1976. A complexity measure. IEEE Trans. Software Eng. SE-2 (4),

308–320 .

Minelli, R., Baracchi, L., Mocci, A., Lanza, M., 2014. Visual Storytelling of develop-
ment sessions. In: 2014 IEEE International Conference on Software Maintenance

and Evolution (ICSME), pp. 416–420. doi: 10.1109/ICSME.2014.65 .
Minelli, R., Mocci, A., Lanza, M., Baracchi, L., 2014. Visualizing developer interactions.

In: 2014 Second IEEE Working Conference on Software Visualization (VISSOFT),
pp. 147–156. doi: 10.1109/VISSOFT.2014.31 .

Minelli, R., Mocci, A., Lanza, M., Kobayashi, T., 2014. Quantifying program compre-

hension with interaction data. In: 2014 14th International Conference on Quality
Software (QSIC), pp. 276–285. doi: 10.1109/QSIC.2014.11 .

Murphy, G.C. , Kersten, M. , Findlater, L. , 2006. How are java software developers us-
ing the eclipse IDE? IEEE Software 23 (4), 76–83 .

Murphy-Hill, E. , Parnin, C. , Black, A.P. , 2011. How we refactor, and how we know it.
Trans. Software Eng. 38 (1), 5–18 .

Murphy-Hill, E.R. , Parnin, C. , Black, A.P. , 2009. How we refactor, and how we know

it. In: 31st International Conference on Software Engineering, ICSE 2009, May
16–24, 2009, Vancouver, Canada, Proceedings, pp. 287–297 .

Negara, S. , Chen, N. , Vakilian, M. , Johnson, R.E. , Dig, D. , 2013. A comparative study
of manual and automated refactorings. In: Castagna, G. (Ed.), ECOOP 2013 Ob-

ject-Oriented Programming. In: Number 7920 in Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, pp. 552–576 .

Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshyvanyk, D., De Lucia, A., 2015.

Mining version histories for detecting code smells. IEEE Trans. Software Eng. 41
(5), 462–489. doi: 10.1109/TSE.2014.2372760 .

Parnin, C. , Rugaber, S. , 2011. Resumption strategies for interrupted programming
tasks. Software Quality J. 19 (1), 5–34 .

Ponzanelli, L. , Bavota, G. , Di Penta, M. , Oliveto, R. , Lanza, M. , 2014. Mining Stack-
Overflow to turn the IDE into a self-confident programming prompter. In: 11th

Working Conference on Mining Software Repositories, MSR 2014, Proceedings,

May 31, - June 1, 2014, Hyderabad, India, pp. 102–111 .
Rahman, M. , Yeasmin, S. , Roy, C. , 2014. Towards a context-aware ide-based meta

search engine for recommendation about programming errors and exceptions.
In: Proceedings of CSMR/WCRE 2014, p. Toappear .

Remencius, T. , Sillitti, A. , Succi, G. , 2009. Using metric visualization and sharing tool
to drive agile-related practices. In: Abrahamsson, P., Marchesi, M., Maurer, F.

(Eds.), Agile Processes in Software Engineering and Extreme Programming. In:

Number 31 in Lecture Notes in Business Information Processing. Springer Berlin
Heidelberg, pp. 255–256 .

Robbes, R., Lanza, M., 2007. Characterizing and understanding development ses-
sions. In: 15th IEEE International Conference on Program Comprehension, 2007.

ICPC ’07, pp. 155–166. doi: 10.1109/ICPC.2007.12 .
obillard, M.P. , Coelho, W. , Murphy, G.C. , 2004. How effective developers investigate
source code: an exploratory study. IEEE Trans. Software Eng. 30 (12), 889–903 .

Sharif, B. , Maletic, J.I. , 2010. An eye tracking study on the effects of layout in under-
standing the role of design patterns. In: Proceedings of the 26th IEEE Interna-

tional Conference on Software Maintenance. IEEE Computer Society, Timisoara,
Romania, pp. 1–10 .

illito, J. , Murphy, G.C. , Volder, K.D. , 2008. Asking and answering questions during a
programming change task. IEEE Trans. Software Eng. 34 (4), 434–451 .

illitti, A., Janes, A., Succi, G., Vernazza, T., 2003. Collecting, integrating and analyz-

ing software metrics and personal software process data. In: Euromicro Confer-
ence, 2003. Proceedings. 29th, pp. 336–342. doi: 10.1109/EURMIC.2003.1231611 .

illitti, A., Succi, G., Vlasenko, J., 2011. Toward a better understanding of tool us-
age (NIER track). In: Proceedings of the 33rd International Conference on Soft-

ware Engineering. ACM, New York, NY, USA, pp. 832–835. doi: 10.1145/1985793.
1985917 .

inger, J. , Lethbridge, T.C. , Vinson, N.G. , Anquetil, N. , 1997. An examination of soft-

ware engineering work practices. In: Proceedings of the 1997 Conference of the
Centre for Advanced Studies on Collaborative Research. IBM, Toronto, Ontario,

Canada, p. 21 .
ingh, V., Snipes, W., Kraft, N., 2014. A framework for estimating interest on tech-

nical debt by monitoring developer activity related to code comprehension. In:
2014 Sixth International Workshop on Managing Technical Debt (MTD), pp. 27–

30. doi: 10.1109/MTD.2014.16 .

nipes, W. , Augustine, V. , Nair, A.R. , Murphy-Hill, E. , 2013. Towards recognizing and
rewarding efficient developer work patterns. In: Proceedings of the 2013 Inter-

national Conference on Software Engineering. IEEE Press, Piscataway, NJ, USA,
pp. 1277–1280 .

nipes, W., Nair, A.R., Murphy-Hill, E., 2014. Experiences gamifying developer adop-
tion of practices and tools. In: Companion Proceedings of the 36th International

Conference on Software Engineering. ACM, New York, NY, USA, pp. 105–114.

doi: 10.1145/2591062.2591171 .
oh, Z., Khomh, F., Gueheneuc, Y.-G., Antoniol, G., 2013. Towards understanding

how developers spend their effort during maintenance activities. In: 2013 20th
Working Conference on Reverse Engineering (WCRE), pp. 152–161. doi: 10.1109/

WCRE.2013.6671290 .
torey, M.-A.D. , Wong, K. , Müller, H.A. , 20 0 0. How do program understanding tools

affect how programmers understand programs? Sci. Comput. Program 36 (2–3),

183–207 .
on Mayrhauser, A. , Vans, A.M. , 1994. Comprehension processes during large scale

maintenance. In: Proceedings of the 16th International Conference on Software
Engineering. IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 39–48 .

ing, A.T.T. , Robillard, M.P. , 2011. The influence of the task on programmer be-
haviour. In: The 19th IEEE International Conference on Program Comprehension,

ICPC 2011, Kingston, ON, Canada, June 22–24, 2011. IEEE, pp. 31–40 .

usuf, S. , Kagdi, H.H. , Maletic, J.I. , 2007. Assessing the comprehension of UML class
diagrams via eye tracking. In: Proceedings of the 15th International Confer-

ence on Program Comprehension. IEEE Computer Society, Banff, Alberta, Canada,
pp. 113–122 .

http://dx.doi.org/10.1109/TSE.2006.116
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0026
http://dx.doi.org/10.1109/ICSME.2014.65
http://dx.doi.org/10.1109/VISSOFT.2014.31
http://dx.doi.org/10.1109/QSIC.2014.11
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0031
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0033
http://dx.doi.org/10.1109/TSE.2014.2372760
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0037
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0037
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0037
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0037
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0038
http://dx.doi.org/10.1109/ICPC.2007.12
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0042
http://dx.doi.org/10.1109/EURMIC.2003.1231611
http://dx.doi.org/10.1145/1985793.1985917
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0045
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0045
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0045
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0045
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0045
http://dx.doi.org/10.1109/MTD.2014.16
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0047
http://dx.doi.org/10.1145/2591062.2591171
http://dx.doi.org/10.1109/WCRE.2013.6671290
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0025
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0051
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0051
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0051
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0052
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0052
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0052
http://refhub.elsevier.com/S0164-1212(17)30136-X/sbref0052

S. Astromskis et al. / The Journal of Systems and Software 132 (2017) 85–97 97

S -Life. He received his PhD degree from University of Bolzano in 2015. His main research
i ware development, process mining, software measurement, and data visualisation.

G izzera italiana (USI), Switzerland. He received the PhD degree in computer science from

t tenance, empirical software engineering, and mining software repository. He is author of
o erved as a Program Co-Chair for ICPC’16, SCAM’16, and SANER’17. He also serves and has

s in the field of software engineering, such as ICSE, ICSME, MSR, ICPC, SANER, SCAM, and
o

A . His research interests include Lean software development, value-based software engi-

n nformatics from the University of Klagenfurt, Austria.

B ence of the Free University of Bozen-Bolzano. She got her PhD in Mathematics from the
U Mathematik in Bonn, DE and Marie Curie fellow at the University of Liverpool, UK. She

h ternational journals including Bulletin of the London Mathematic Society and Journal of
E ored the book Adopting Open Source Software, A Practical Guide, MIT Press, 2011. She

p P5, FP6, and FIRB programmes and educational projects in TEMPUS and Erasmus Mundus

p for the best example of Public-Private collaboration with the project Bachelor studies for
w gic Information System, Elsvier in 2015. Her research interest is in the field of empirical

s data mining and modelling for software reliability.

M sity of Sannio, Italy. His research interests include software maintenance and evolution,
m e engineering, and service-centric software engineering. He is author of over 190 papers

a served in the organizing and program committees of over 100 conferences such as ICSE,
F of various events, including SCAM 2010, SSBSE 2010, and WCRE 2008. Also, he has been

p CRE 2006, WCRE 2007, SSBSE 2009, and other workshops. He is currently member of the
s eering committee member of other conferences, including ICPC, SCAM, and WCRE. He is

i oftware Engineering Journal edited by Springer, and of the Journal of Software: Evolution

a

aulius Astromskis Saulius Astromskis currently is a software engineer at Vertical
nterests are empirical software engineering, software processes, agile and lean soft

abriele Bavota Gabriele Bavota is an Assistant Professor at the Università della Sv

he University of Salerno, Italy, in 2013. His research interests include software main
ver 80 papers appeared in international journals, conferences and workshops. He s

erved as organizing and program committee member of international conferences
thers.

ndrea Janes Andrea Janes is a researcher at the Free University of Bolzano-Bozen

eering, and empirical software engineering. Dr. Janes holds a doctorate degree in i

arbara Russo Barbara Russo is associate professor at the Faculty of Computer Sci
niversity of Trento, Italy. She was visiting researcher at the Max-Planck Institut fr

as more than sixty publications both in mathematics and computer science in in
mpirical Software Engineering and Journal of Software Systems. She has co-auth

articipated to several national and international projects (research projects in EU F

rogrammes). Barbara Russo was awarded by the Italian Association for Enterprises
orking students and Reviewer of the Yearå for the International Journal of Strate

oftware engineering and software maintenance. Her technical competences are in

assimiliano Di Penta Massimiliano Di Penta is associate professor at the Univer
ining software repositories, empirical software engineering, search-based softwar

ppeared in international journals, conferences and workshops. He serves and has
SE, ASE, ICSM, ICPC, GECCO, MSR WCRE, and others. He has been general co-chair

rogram chair of events such as the ICSM 2012, ICPC 2013, MSR 2012, MSR 2013, W
teering committee of ICSME, MSR, SSBSE, and PROMISE. Previously, he has been st

n the editorial board of IEEE Transactions on Software Engineering, the Empirical S

nd Processes edited by Wiley.

	Patterns of developers behaviour: A 1000-hour industrial study
	1 Introduction
	2 Study design
	2.1 Research questions
	2.2 Context selection and data collection procedure
	2.3 Activities and working sessions
	2.3.1 Activity classification

	2.4 Architecture and its layers
	2.5 Code quality
	2.6 Method of analysis

	3 Results discussion
	3.1 RQ1: How much time do developers spend on different kinds of activities and how do they transit between them?
	3.2 RQ2: How do developers navigate the system architecture during code change activities?
	3.3 RQ3: How does the internal quality of code components influence the likelihood of transitioning toward specific activities?

	4 Threats to validity
	5 Related work
	5.1 Studying developers’ behaviour
	5.2 Data collection tools

	6 Conclusion and lessons learned
	 References

