
Test with annotation JUnit4

Advanced Programming

Installing JUnit at home
• Download from http://junit.org the jar file

• Read the API http://junit.org/junit4/javadoc/latest/

• Unzip or import the jar file

• Add to classpath of your project

– Project à Properties à Java Build Path

– Libraries tab

– Add library

2

Installing JUnit at home
Right click on the project folder in package explorer

– BuildPath à add Libraries tab

– Or

– BuildPath àin the library tab select add library

Installing JUnit

Example
public class Calculator {

 public int evaluate(String expression) {

 int sum = 0;

 for (String summand: expression.split("\\+"))

 sum += Integer.valueOf(summand);

 return sum;

 }

}

5

Example
import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class CalculatorTest {
 @Test
 public void evaluatesExpression() {
 Calculator calculator = new Calculator();
 int sum = calculator.evaluate("1+2+3");
 assertEquals(6, sum);
 }
}

6

setUp() & tearDown()
• When a test class contains multiple methods to test,

you can use the setup() and tearDown() methods to
initialise and release any common objects under test

7

Why annotations
• The traditional way to indicate test methods in JUnit 3

is by prefixing their names with “test”

• This is a very effective method for tagging certain
methods in a class as having a special meaning, but the
naming doesn’t scale very well and is rather inflexible
(what if we want to pass additional parameters to the
test?).

Benefits of Using Annotations
• Annotations were formally added to the Java language

in JDK 5

• Tagging methods with annotations

• Hence, method names are not restricted to any
pattern or format.

• We can pass additional parameters to annotations

Benefits of Using Annotations
• Annotations are strongly typed, so the compiler will

flag any mistakes right away

• Test classes no longer need to extend anything (such as
TestCase, for JUnit 3).

Basic annotations
• @Parameters Describes how to pass parameters to a

@Test method.

• @Test Marks a class or a method as a part of the test.

@Test
• It tells that the public method that returns void to

which it is attached can be run as a test case

• JUnit first constructs a new instance of the class then
invokes the annotated method

• Any exceptions thrown by the test will be reported as a
failure

• If no exceptions are thrown, the test succeeds

Example
public class Example {
 @Test
 public void method() {
 org.junit.Assert.assertTrue(new ArrayList().isEmpty());
 }

Test Fixtures
• A test fixture is a fixed state of a set of objects used as a

baseline for running tests.

• JUnit provides annotations so that test classes can have
fixture run before or after every test, or one time fixtures that
run before and after only once for all test methods in a class.

• There are four fixture annotations: two for class-level fixtures
and two for method-level ones. At the class level, you have
@BeforeClass and @AfterClass, and at the method (or test)
level, you have @Before and @After

Test Fixtures
• @BeforeClass The annotated method will be run

before any test method in the current class is invoked.

• @AfterClass The annotated method will be run after
all the test methods in the current class have run.

@After and @Before
• Annotating a public method that returns void with

@Before (or @After) causes that method to be run
before (or after) the Test method

• The @Before (or @After) methods of superclasses
will be run before (or after) those of the current class

• All @After methods are guaranteed to run even if a
Before or Test method throws an exception

Major annotations - test fixture
• @BeforeMethod The annotated method will be run

before each test method

• @AfterMethod The annotated method will be run
after each test method

Example
 public class Example {
 List myList;
 @Before
 public void initialize() {
 myList= new ArrayList();
 }
 @Test
 public void testSize() {
 //it uses myList
 }
 @Test
 public void testRemove() {
 //it uses myList
 }
 }

Optional parameters of @Test
• Expected and Timeout

• Expected: check a test method throws the expected
exception

• If it doesn't throw an exception or if it throws a
different exception than the one declared, the test fails

Example: test succeeds
@Test(expected=IndexOutOfBoundsException.class)

 public void outOfBounds() {

 new ArrayList<Object>().get(0);

 }

ExpectedException rule
• Careful! The @Test with expected exception will pass

if any code in the method throws
IndexOutOfBoundsException

• For longer tests,use the ExpectedException rule

ExpectedException rule
@Rule

public ExpectedException thrown = ExpectedException.none();

@Test

public void shouldTestExceptionMessage() throws
IndexOutOfBoundsException {

 List<Object> list = new ArrayList<Object>();
 thrown.expect(IndexOutOfBoundsException.class);

 thrown.expectMessage("Index: 0, Size: 0”);

 thrown.expectMessage(JUnitMatchers.containsString("Size: 0"));

 // JUnit matcher that finds a string in the exception message
}

Optional parameters of @Test
• Timeout causes a test to fail if it takes longer than a

specified amount of clock time (measured in
milliseconds)

 @Test(timeout=100)
 public void infinity() {

 while(true);

 }

Annotating a class with @RunWith
• When a class is annotated with @RunWith or extends

a class annotated with @RunWith, JUnit will invoke
the class it references to run the tests in that class
instead of the runner built into JUnit.

Barbara Russo

The test suite class with annotation

13/04/16 25

 import org.junit.runner.RunWith;
 import org.junit.runners.Suite;
 import org.junit.runners.Suite.SuiteClasses;

 @RunWith(Suite.class)
 @SuiteClasses(ATest.class, BTest.class, CTest.class)

 public class ABCSuite {
 }

@SuiteClasses
• The @SuiteClasses annotation specifies the classes to

be executed when a class annotated with
@RunWith(Suite.class) is run

• see code LECT8

Exercise
• Build test cases for class Bag

