
Testing: are we building the
product right?

Advanced Programming

4/13/16 Barbara Russo 1

Problem
• The class Dates.java compiles, but the output is not

that we expected.

• Q: How do we ensure that the class Dates works right?

• A: We test its functionalities and its logic

• There are different ways to do it

Definition of Testing
• A process to ensure that a product meets its

specification (how it works)

4/13/16Barbara Russo 3

Definition of Testing
• In mathematics, we do not prove a theorem by testing

We use a formal proof
– It would be impossible to prove Pythagoras’ theorem by

testing all possible values
• Why don’t we do the same in software?

4/13/16Barbara Russo 4

Testing and formal methods
• This was what has been attempted with formal

methods
– We cannot prove that in general software meets its

requirements
• Halting problem: given a program and an input, it is

not decidable whether the program will eventually halt
when run with that input, or will run forever

4/13/16Barbara Russo 5

Good processes
• Exhaustive testing is not feasible:

– if a failure is detected then the software is a failure software,
– but this does not imply that if no failure has been detected

the software is correct

4/13/16Barbara Russo 6

Good processes
• Measuring and evaluating a software process may lead

to the only notion of “good” process we can define:
– a “good” process is correlated with the probability that no

failures occur in a given interval of time
-> Software reliability

4/13/16Barbara Russo 7

Who tests the software better??

4/13/16Barbara Russo 8

Understands the system
but, will test “gently”
and, is driven by “delivery”

Must learn about the
system, but, will attempt to
break it and, is driven by
quality

developer independent tester

Software testing: two perspectives
• Verification

– “How” – the process of building

– “Are we building the product right?”

• Validation
– Ensuring that the product meets the customer’s requirements
– “What” – the product itself

– “Are we building the right product?”

4/13/16Barbara Russo 9

Software testing: two perspectives
• Verification:

– A music player plays (it does play) the music when I press
“Play”

• Validation:
– A music player plays a music (it does not show a video)

when I press “Play”

4/13/16Barbara Russo 10

Strategies of testing
• White box testing (mainly Verification)

– Tester focuses on the internal structure of the code
– We use JUnit and TDD

• Black box testing
– Tester has no access to code
– We use acceptance tests

4/13/16Barbara Russo 11

Problems in testing
• The number of possible inputs is large:

– Black Box testing is hard
• The structure of the code is very complex

– White Box testing is hard

4/13/16Barbara Russo 12

Levels of testing

4/13/16 Barbara Russo 13

Testing Level Tests Based Upon Kind of
Testing

Unit Low-Level Design
Actual Code Structure

White Box

Integration Low-Level Design
High-Level Design
Smooth components integration

White Box
Black Box

Functional and
System

High-Level Design
Requirements Analysis
Functional: testing specific functionality
System: testing in different environment

Black Box

Acceptance Requirements
Performed by customers

Black Box

Regression Change Documentation
High-Level Design
Spot check throughout testing cycles

White Box
Black Box

Test Case
• A test case is a set of conditions under which a piece of

software works
– A good test case has a high probability of finding an as-yet

undiscovered error
– A successful test is one that uncovers an as-yet

undiscovered error
• Can be used TCs with WBT and BBT

• To design a test case we first need to reflect on its
input and expected output

4/13/16Barbara Russo 14

Black box testing

Black Box testing

* Barbara Russo 2

input output

Black Box testing
• Aka: Functional testing or behavioural testing

• Attempts to find 5 types of errors:
– Incorrect or missing functions
– Interface errors
– Errors in data structures used by interfaces
– Behaviour or performance errors
– Initialisation and termination errors

* Barbara Russo 3

Test case for BBT
• A test case consists of input-output paths

• Two types
– Success paths - no error conditions in test cases
– Failure paths - error conditions added in test cases

* Barbara Russo 6

Exercise
• Write a test case for an enrolment service of the

student information system that you use
– isolate the functionality
– identify all possible outputs
– identify all possible inputs
– identify boundaries of input (if any)
– associate input and output (success paths and failure paths)

* Barbara Russo 7

Example: log-in
» Input: user name and password

» Output: not/accessing the system

• Check actual behaviour against “access successful”

• If credentials are correct the access the student enters the system

• Then check the actual behaviour for “access not permitted”

• If credentials are wrong or do not correspond to existing user,
student cannot enter the system

• To test the reason of failure, for example, whether the user is already
logged in or the login session is expired we need WBT

20

Create a test case
• Isolate a functionality (e.g., log-in)

• Identify the input variables

• For each input variable describe the range of values and
divide them into classes of expected output (equivalence
partitioning)

• Select representatives for the classes or generate random
values for the input variables

• Combine the values you chose for all the variables and define
a test case

Example

* Barbara Russo 10

logInTest

Input Description Output (behaviors)
username= initials of
name+surname
password= characters,
alpha numeric, bounded
length (8)

environmental input (DB)
status= student

Preconditions: the user has
accessed to the general
site of the university

The user introduces
username and password

Postcondition: the user is
logged in

logged in

not logged in

Exercise
• Select representatives for the classes or generate

random values for the input variables

• Write the test cases

Equivalence partitioning
• The idea is to partition the input into classes that give

equivalent output
– To identify the equivalence classes
– To select an input from within the equivalence class and a set

from outside

* Barbara Russo 16

Three types of input
• Input: certain value(s)

– Valid class for each valid value and several invalid classes
• Input: a range of values

– Two invalid classes for both ends and one valid class for the
middle

• Input: membership of a set or a Boolean
– One valid class and one invalid class

* Barbara Russo 17

Examples
• Input: certain value(s)

– f(n)=1/cos(π/2 *n) , n = natural number is not defined for
odd n

• Input: a range of values
– f(x)= sqrt(1-x^2)

• Input: membership of a set or a Boolean
– xє{1,2,3}

* Barbara Russo 18

Boundary value testing
• Example:

– Range a..b
• test cases: a, b, just above a, just below b

– Number of values:
• test cases: max, min, just below min, just above max

• Boundaries of externally visible data structures shall
be checked (e.g. arrays)

* Barbara Russo 22

Black box test case automation
• FitNess tool http://www.fitnesse.org/
• You can find the Eclipse plug-in

* Barbara Russo 29

