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Describing Database Objects
in a Concept Language Environment

Alessandro Artale, Francesca Cesarini, and Giovanni Soda

Abstract—In this paper, we formally investigate the structural
similarities and differences existing between object database models
and concept languages establishing a correspondence between the
two environments. Object Databases Models deal with two kinds of
data: individual objects, which have an identity, and values, which can
be basic values or can have complex structures containing both basic
values and objects. Concept Languages only deal with individual
objects. The correspondence points out the different role played by
objects and values in both approaches and defines a way of properly
mapping database descriptions into concept language descriptions at
both a terminological and assertional ievel. Once the mapping is
achieved, object databases can take advantage of both the algorithms
and the results concerning their complexity developed in concept
languages. :

Index Terms—Concept languages, object databases, knowledge
representation.

*

1 INTRODUCTION

CONCEPT Languages [12], [18], [20] are developed in the Knowledge
Representation research area for representing object class knowl-
edge. They describe the structure of objects at a terminological
level by means of conceptsl (one place predicates) and roles (two
place predicates), and an external denotational semantics gives
meaning to the terms used in the descriptions. Concept languages
can also be used to make assertions about individual objects, i.e.,
to state that an object is in the extension of a concept and that a
pair of objects is in the extension of a role. Further, concepts can be
distinguished as primitive concepts, where the concept structure is
interpreted as a set of necessary conditions and defined concepts,
where the concept structure is interpreted as a definition, i.e., a set
of necessary and sufficient conditions that must be satisfied by
their instances. Thus the extension of a defined concept corre-
sponds to the domain object set whose structure conforms to that
description. Deductive reasoning at both a terminological and
assertional level is being widely studied: subsumption computation
determines whether a subset relationship exists between two con-
cept denotations. The subsumption computation provides a rea-
soning capability that can be used for investigating both the
structural characteristics of classes and the relationships between
them and specific objects; these subsumption based inferences
constitute what is called taxonomic reasoning. Concept languages
exploit taxonomic reasoning in a number of applications: it allows
to classify concepts into a taxonomic graph with subsumption as
partial order relation, to verify both the consistency of a set of class
descriptions and the consistency of instance assertions with re-
spect to their class definitions, or to find the most appropriate class
an object can belong to and to optimize query answering. Systems
like BACK [19], CANDIDE [5], CLASSIC [9], KRIS [4], KRIPTON [8],
LOOM [17], NIKL [21], YAK [11] describe a world of objects and re-

1. In the following, we will use the terms concept and class inter-
changeably.
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lationships among objects, and directly exploit the above men-
tioned features.

The structural aspects of Object database models [1], [15] tradi-
tionally refer to tuple-constructor-based class descriptions and isa
hierarchies. They are concerned with a world of individual objects
and values and their mutual relationships; values are explicitly
dealt with because object descriptions very often use complex val-
ues that are local to them [15]. The tuple constructor, specifying
relationships between instances of different types, captures an
expressive power similar to that of attaching roles to concept de-
scriptions; furthermore, this constructor allows to describe both
objects and values. An isa expresses a subset relationship between
classes; it is related to the subtyping notion (i.e., to syntactic con-
straints on class descriptions) but it must be explicitly stated: A isa
relationship cannot be inferred from the class structure. For this
reason, object databases only capture the semantics of primitive
classes, which description indicates only necessary conditions for
an object to belong to this class.

Recently, inference techniques derived from concept languages
have been applied to object database models [3], [6]. A common
aspect of these studies is that they consider object database models
enriched by the notion of defined classes. This allows to adapt
taxonomic reasoning to deal with the peculiarity of object database
model environments and therefore obtain a database equipped
with inference capabilities. Exploiting taxonomic reasonig in object
database models can be profitable for many database topics on
both intensional and extensional levels. As illustrated in [2], [3],
[6], [7], isa relationships which can be inferred from class descrip-
tions are made explicit; in other words, the user’s taxonomy is
enriched with implicit isa relationships; the user isa relationships
are checked with respect to the subsumption relations; the schema
consistency is checked by discovering cycles and incoherent
classes (i.e., classes with always empty extension); the schema can
be transformed into a minimal form where the redundancies with
respect to inheritance are removed; query evaluation can be opti-
mized finding the correct placement of a query object in a given
taxonomy; individual objects are recognized to belong to a class
abstracting their properties and classifying the resulting abstrac-
tion (this inference is called instance recognition). Taxonomic rea-
soning only refers to object structural characteristics, and many
other aspects, such as, methods, constraints, etc., are not dealt
with. Nevertheless, it is able to provide for a powerful reasoning
capability even if it only focuses on some object characteristics.

Since the integration of object and concept environments is being
fruitful, our study aims at formally investigating relationships be-
tween concept languages and object database models, in order to
point out the similarities and differences existing between the two
environments. Our work originates from the above mentioned stud-
ies, thus we only focus on the structural characteristics of objects. Our
view is a model-theoretic one, we illustrate how object database de-
scriptions can be transformed into concept language descriptions by a
suitable mapping, capable of maintaining satisfiability. This kind of
mapping provides a common framework for evaluating and com-
paring different object database models with respect to the corre-
sponding concept languages, and can be also exploited for analyzing
the nature of the features supported by both objects databases and
concept languages. Moreover, this mapping allows us to inherit re-
sults deriving from concept languages (which have been thoroughly
studied), such as complexity results and algorithm techniques.

The object database model and the concept language we refer
to are described in Sections 2 and 3. In Section 4, we define a way
of mapping database schema descriptions into concept language
descriptions while maintaining satisfiability, and an assertional
mapping that maintains consistency is discussed in Section 5. Sec-
tion 6 contains our concluding remarks.
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2 THE OBJECT DATABASE MODEL

We consider an Object Database Model that supports the main
structural features usually present in this field (see, for example
[11, [10], [15D. The main structure of our model is the Class that
denotes sets of Objects, each of which is identified by an Object
Identifier. Objects in classes can have a complex structure obtained
by repeatedly using the fuple and set constructors; therefore, the
type system is based on the most widely used type constructors.
Type names are provided for simplifying user declarations. The set
type allows us to distinguish between single and multivalued at-
tributes; furthermore, we consider set types with cardinality con-
straints, integrating in the schema description a kind of integrity
constraint in the database environment. As regards classes, we
distinguish between primitive and defined classes; introducing de-
fined classes allows us to use taxonomic reasoning for database
objects [3].

<declaration> := <type-declaration> | <class-declaration>

<type-declaration> := type <type-id> = <tuple-type>

<class-declaration> := T | class <class-id> <prim-def> isa <class-
id>’ <tuple-type>

<type> := <tuple-type> | <class-id> | <type-id> | <basic-type>

<tuple-type> := [<component> |

<component> := <label>:<type> | <label>:<set-type>

<set-type> := {<type>}

min, max
<basic-type> := string | integer | b;
<prim-def> =< | =

Fig. 1. Database syntax.

The database schema S can be defined by means of the syntax
in Fig. 1. Recursive definitions are not allowed. Basic types can
include other types besides string and integer; anyway, basic types
indicate countable and nonfinite sets. This syntax allows, for in-
stance, to describe the. concept of father as the set of all
“individuals who are persons with at least one child and all chil-
dren are persons”:

class Father = isa Person[child: {Person}, .1

Given a set of declarations, i.e., a database schema S, an interpreta-
tion I, = (V,8,® )consists of:

* Aset Vof values (the domain of 1), V=BU OU 'V, U Vo
with:

1) B=UL, B, B, set of values associated with each basic
type; B; N ZBI- =@, Vi, j, i#].

2) O is a countable set of symbols called object identifiers
disjoint from B.

3) VTis the set of tuple values: VT: {v, | v, is a mapping from
the set of labels to V). We denote by [1;: v; ... I : v] the
mapping defined on {I, ... ,} such that v(l) =v,€ V,i=
1, .k

4) Vis the set of set-values: V= (v, | v, = V. A set-value is
denoted by {vy, ..., v such thatv,e V,i=1, .., k.

¢ A mapping ¢ that associates a tuple value with each object-
identifier: 6: O — V.

¢ An interpretation function D that maps every syntactic
constructor to a subset of Vin such a way that:

(< basic - type >,.)I” =3

(< tuple - type >)'® = (U, :¢, .1, :1,D)'? =

tv, € V._|v, is defined atleaston {/;...[, Y and v (I,) € (t,)ID, i=1..k}
t T 1 1 k [N i

(< set - type >)lrﬂ = ({t}m’n)l’:’ ={v, € VS 1 m < ”vs c Pt H < n)

(< type - id >)" = (type type - id = < tuple - type >’
= (< tuple - type >)'»
(< class - id »)™? =
m? =0

(class C, =isa C,...C, < tuple - type Sk

(ﬂ](q)’ﬂ (o € 0] 6(0) € (TYP(C,) ™}
=1

Universal Class

1t

Defined Class
- I
(class C, < isa C,...C, < tuple - type >)”

ﬁ(ci)fv (ie € 0|80 e (TYP(Cp))Iﬂ}
i=1

N

Primitive Class

For the interpretation of TYP(C) we have the following recursive
definition. '

DEFINITION 1 (Interpretation of TYP(C)): Given the class declarations:

class C; <prim-def> <tuple-type>,
class C; <prim-def> isa C; <tuple-type>,

class C,,; <prim-def> isa C,... C, <tuple-type>

we have
(TYP(C,)'® = (< tuple - type >,)™®
(TYP(Cl))JD = (TYP(CO))ID M (< tuple - type >l)ID

(TYP(C,, )P = N (TYPC)™® N (< tuple - type > )P

This semantics, allows us to consider the isa relationship as an
inclusion between classes. Moreover, each value can have more
than one type [10}: When a value is of type ¢, then it is of type ¥,
too, in the case that ()™ < (#')’?. Remark that the interpretation
of a class is a set of objects-which have a value according to the
type of the class; furthermore, these objects must also belong to the
interpretation of the classes appearing in the isa clause.

As regards the notion of primitive/defined class, the interpre-
tation of a defined class consists of all the objects verifying the
above-mentioned constraints, while the interpretation of a primi-
tive class is a subset of them. For example, in the case of

class Person < [name:string birthdate: Date]

class Project = [proj - code: string description: string]

class Student = isa Person|regist - num:int enrolled:
College enrolled - course: string]

the interpretation of Person is a subset of the objects having a name
and a birthdate, while the interpretation of Project is the set of all
the objects having a proj-code and a description. Thus, an object
having a name and a birthdate must be explicitly asserted belonging
to the Person class, while an object having a proj-code.and a descrip-
tion always belongs to Project. The interpretation of Student con-
sists of all the objects that belong to Person, have a regist-num, are
enrolled to a College, and are enrolled to some courses. Because of the
recursive definition of the TYP's interpretation, these objects also
have a name and a birthdate (inherited from Person). As a matter of
fact, the tuple values of the Student objects are obtained by inter-
secting tuple values defined at least on the name and birthdate la-
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bels, and tuple values defined at least on the regist-num, enrolled
and enrolled-course labels. If we know that an object belongs to
class Person and its value is defined at least on labels name, birth-
date, regist-num, enrolled, and enrolled-course, we can deduce that
this object belongs to Student, too. In general, fixed the interpreta-
tion of the primitive classes, the interpretation of the defined
classes is unambigously determined.

An interpretation I, is a model for a class C if c 2. If a
class has a model, then it is satisfiable; otherwise it is unsatisfiable. A

class C is subsumed by a class D (written C C D) if C'» ¢ D' for

every interpretation I . The satisfiability notion can be extended
to generic syntactic constructors. Let ¢ be a syntactic constructor,

then ¢ is sutisfi}zble if there exists an interpretation ]D such that
' 2 .

In our framework, every isa clause corresponds to a subsump-
tion relationship: if C,isaC, then C, subsumes C;. The opposite is
not necessarily true; a class can subsume another one even if sub-
sumption is not explicitly defined by means of an isa clause. Be-
cause our interpretation function is totally based on structural
characteristics, the meaning of a structured description is only
determined by its internal structure. This allows us to make an
algorithm to deduce all the subsumption relationships among
classes implicitly given by the structural conditions appearing in
the class descriptions. The algorithm that computes subsumption
between classes is sound and complete, and is polynomial in the
size of a class [3].

3 THE CONCEPT LANGUAGE

We strictly follow the concept language formalism introduced by
[20] and further elaborated by [4], [12], [14], among others. We
examine the minimal concept language that covers our object da-
tabase model; concept terms (denoted by the letters C and D) are
built out of atomic concepts (denoted by the letter A), roles (denoted
by the letter R) and features (denoted by the letter f) according to
the following syntax rule:

C, D= A[lcnD|v, R f:C

[m,n]

Ic

An interpretation I. = (A'¢ "¢y consists of a set A'C (the domain

of I C) and a function ¢ (the interpretation function of I C) that maps

every concept term to a subset of Ale, every role to a subset of

AI

A'¢ (we denote the domain of flf as domf ) in such a way that
the following equations are satisfied:

Tie = Alc
(€ nDe =c’enp'
(f:0¢ ={a e domf'e | f'<(a) e CT¢}
RO ={ae A |m<|ibe&|@b)eR"|

¢ x A'¢ and every feature to a partial function f e from A to

v

[m,n}
<mAVh.(a,b) e RC> beC’c)

Features were recently introduced for distinguish between arbi-
trary binary relations (roles) and functions (features) [4], [14], [18].
The presence of roles and features allows us to distinguish be-
tween single-valued and multivalued attributes in investigating
the correspondence between object database models and concept
languages.

An interpretation I.is a model for a concept term C if cle 2 @.

If a concept term has a model, then it is satisfiable, otherwise it is
unsatisfiable. A concept term C is subsumed by a concept term D

(written C C D) if C¢ ¢ D¢ for every interpretation I.. Sub-

sumption can be reduced to satisfiability since C is subsumed by D
if and only if C M - D is not satisfied.”

Let A be an atomic concept and C be a concept term, one can
introduce descriptions for atomic concepts by terminological axioms

of the form A £ C and A = C. Aninterpretation I satisfies A < C
iff Afc =’ , while it satisfies A = C iff Afe =l Furthermore,
we denote as an undescribed concept an atomic concept that never
appears as the first argument of a terminological axiom. A termi-
nology Tis a finite set of terminological axioms with the additional
restriction that

1) every atomic concept may appear only once as the first ar-

gument of a terminological axiom in 7 and

2) T must not contain cyclic definitions.

Let Person be a concept, child be a role, and wife be a feature.
The following axioms

Female < Person
HappyFather = Person N Y, ;child. Person M wife: Person
VeryHappyFather = Person M V', ,child. Female M wife: Person

express that:
1) A Female is a Person;
2) A HappyFather is exactly a Person with at least one and at most
three children, that are Persons, and a wife that is a Person;
3) A VeryHappyFather is exactly a Person with at least one and at
most three chidren that are Females, and a wife that is a Person.

Furthermore, the concept HappyFather subsumes VeryHappyFather.

4 MAPPING

At this point we show how it is possible to translate a database
schema into a concept language description while maintaining
satisfiability during mapping. Each class declaration is translated
into a terminological axiom by mapping the isa clause to a con-
junction of concepts, while each tuple type gives rise to a conjunc-
tion of feature or role restrictions, according to whether or not the
label in the tuple type is single- or multivalued. Furthermore,
atomic disjoint concepts are introduced in order to preserve the
disjointness between classes, basic types and tuple types.

DEFINITION 2 (Syntactic Mapping): Let N 'be a function from database
class declarations to terminological axioms. Given the database class
declaration: class C <prim—def>isa C;... C, [l: t; ... [,: £;]; then
N <class—declaration>] is the terminological axiom:

A <prim-def > A. N NIC 1M ... n NIC,In NI ] .. 1 N ]
where the following equations hold:

o NIL:t]1=f : N1 if t; is not a set type
o NI:tl= V[m,n]RIi'N[tl,]} ift, = {t},,,
o For N[t;] we have:
1) Let t;=b;a basic type, then: Nt = N1b]= A,
2) Let t,= C;a class name, then: N[t;] = NIC]] = A;
and if A, is an undescribed concept then A, < A.
3) Lett; =l :t, .1, :t, 1, then:

2. Although C m = D does not belong to the original language, we
can use a modified set of rules, borrowed from a more expressive lan-
guage with existential quantification and negation of primitive con-
cepts. This leads to an algorithm for satisfiability (see [13] for more
details).
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NIt = A, N N[lli:tli] n..n N[lki:tki]
4) Let t;= T, be a type name described as:
type T, = [lli:t%‘”'l"i:tki]’
then NIT) = N it .. it ]

;o

e A, Abi , AVT are’ undescribed concepts pairwise disjoint.

As an example of the previously defined mapping, we examine
the following class declaration: )

class College = [name:string has - courses:{Course}Lw

address:[street :string  city :string]]

its translation via N'is therefore
College = A M name: String MV, _, has - courses. Coursen
address:(AVTﬂ street: String I city: String)

It is interesting to note that a mapping that maintains an isomor-
phism between these two environments has to introduce some
new primitive classes (A, AVT) in such a way that classes are dis-

joint from tuple types. As a matter of fact, classes are collections of
objects which are semantically different from tuple values, being O
and VTdisjoint sets. For example, given the class descriptions

class Organization = [name:string city:string]
class Employeel = isa Person[works.— at: Organization]
class Employee2 = isa Person[works — at:[name:string city:string]]

the interpretation of Employeel is different from the interpretation
of Employee2. In the former case, a class Employeel object is related,
by means of the works-at label, to a class Organization object, while
in the latter, a class Employee2 object is related to a locally defined
tuple value. Then, we do not associate to a locally defined value an
object identifier nor create a new membership class [15]. Given
that in the database environment a great effort is devoted to opti-
mize the amount of information to be stored, the possibility of
managing local information allows us to respect the above cited
principle. On the contrary, concept languages do not make this
distinction, dealing only with individuals. Then, the only way to
mantain disjoint the set of fillers for the works-at label after the
mapping of Employeel and Employee2, is to introduce the class A,
when mapping the database class Organization and the class Ay,
when mapping the tuple type [name : string city : string].

In order to formally introduce the disjoint concepts
Ac, Abi Ay, we extend the concept language syntax
R.C|f:C

{m,n}

C.D - AlAc|4, |4, [Tlc n D
adding the following equations to the semantics:

(A = A\ (4, ) U, (4,))
(A% = &\ (a0 U, 4,))

(4, = 8\ [(4,)" U4 Uy, (4, )" )

4.1 Consistency

In order to show that our mapping is consistency-preserving, it is
useful to define an expanded form for database class declarations.
Arbitrary class descriptions can be rewritten as equivalent ex-
panded class descriptions by applying the following expansion
procedure—EXP(C)—that maintains the equivalence in meaning to
the original class declaration.

3. In the following, we will use String and Int as undescribed con-
cepts mapping the set of basic values string and integer.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 2, APRIL 1996

1) Elimination of primitive definitions: Any partial class declara-
tion (i.e., any primitive class definition) is replaced by a
complete definition by means of a newly introduced class
name. For example, the primitive class:

class Person < [name:string birthdate: Date]

is replaced by the following defined class
class Person = isa Person * [name:string birthdate: Date]

where Person* is an undescribed class that stands for the
missing part of the definition of Person.

Expansion of classes in the isa clause: Any class present in the
isa clause is substituted by its description. In particular, we
replace each class name with its superclasses and we inherit
the labels. This process is iterated until only undescribed
class names are present in the isa clause. For example, given
the class description:

2

~

class Employee = isa Personlemp - code:string - salary :intl,
the Person class is replaced by its description so that the Em-
ployee class is described by
class Employee =
isa Person * [emp - code:string salary:int name:string birthdate: Date]
3) Elimination of type names: Each type name occurring in the

definion of classes is substituted by its definition. For exam-
ple, assuming that:

type Date = [day:int month:string year:int],
we obtain
class Employee = isa Person * [emp - code:string salary:int name:string
birthdate :[day :int month:string year :int]]
This process is iterated until the description of a‘class only con-
tains class or basic type names.
PROPOSITION 1. Let C be a database description class, then
C'2 = (EXP(C)'® for each interpretation I .

At the end of the expansion process, for each class we have the
following general expanded form:

cass C =isa C]...Cll sty Loty Loty Lty Dt Dt T (1)

where C;...C;, are undescribed class names, and t; are class names
or basic, tuple or set types.

Note that the expansion of our database desériptions differs a
great deal from the expansion procedures used in concept lan-
guages [18]: Given that classes and tuple types have disjoint de-
notations we cannot substitute a class name, restricting a label in a
tuple, with the corresponding tuple type that describes it.

At this point, we are able to prove the correctness of the mapping.

THEOREM 1. Let C be a database class description, then C is satisfiable
iff NIC] is satisfiable.

PROOF. <’ First we show that if C is unsatisfiable, then N[(C] is
also unsatisfiable. Without any loss of generality, let C be in
its expanded form, as showed in (1), and let £, = [I;: £;; ... [ :
bbby o Lty Lyt o Lyt ] The only source of un-
satisfiability in the C class description is f, the tuple type
that describe it. In fact, if ¢, is satisfiable then there is an in-
terpretation 7 such that (t,)™ # @. Then we can build an
interpretation I, = '('1_/,3,%) such that: (f, )TE = (tC)ID ,
with an object o€ O such that 8o e (tc)E and

Ip N " .
o€ ﬂ:':](Ci) P —because C;...C; are undescribed classes,
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denoting arbitrary sets of objects. Then o e CE, and C is
satisfiable. A tuple type is unsatisfiable iff:

1) For alabel J; there is an unsatisfiable type t,;
2) For alabel I; we have: I;: tips I;: tl-q,(tip)ID n (tl.q)jD =0.

Case 1. We only show the case with #; unsatisfiable class (the
proof of the other cases is similar). Since in this case

NU;:t31 = f, : Nt;l, assuming by induction that Nt] = Ay
is unsatisfiable, then A;C =, and
(f,: A4 = la e domf | f€ (@) e A} = 2.
Then N[C] is unsatisfiable.
Case 2. We show how, each time that
) N ()™ =@, Nl:t,1 1 Nt ]

is unsatisfiable.

a) t,and t, have different types.
If only one of them is a set type then the same label must
be both a relation and a feature; we then obtain unsatisfi-
ability. If both t, and f, are not set types, then:
NU:t, I N, ] = f,i (NI M N D, Assuming
that t;, is a class and f, is a tuple type, then
(N, D = (A while (NIt D' < (4,), and

(A n (Ay, )¢ = @; therefore, the thesis is true. The

case that ;, or £, is a basic type name is trivial.
b) Both £, and t, are set types: t, = {f}

ip miny, mazxy,

and

t. ={t;

iq }min,vqmaxiq ‘
I Ip _ s . Lo

(t,.p) 2N (tiq) D =, iff: 1) ming, > max;, or mm‘cip< min;
2) (t['p)lD n (ti;])]” = . In both cases, it’s easy to prove
the thesis.

¢) Botht,and ¢, are tuple types. 7
(t,.p)Il7 N (tiq)ID =, iff: 1) either t;, or t;, is unsatis-
fiable. This case is trivial; 2) ¢;, and £, have a common
label with an incompatible type. Let | be such a label,
then:

NU;:t ] 1 N1 = (N, 0N D =
fisGom NU:tIn Nz,

with (tp)“’ n (tq)hJ = (J; that corresponds to the hy-

pothesis of case 2. Then, assuming by induction that

(N[l_:tp] n .’N[l_:tq])IC =, we have the same situa-

tion as in case 1; therefore, the thesis is true.

d) Both t;, and #; are class names. The proof is similar to
the above case.

Thus we have shown that if N[C] is satisfiable, C is also
satisfiable. Now we show that if NM[C] is unsatisfiable, C is
unsatisfiable, too.

‘=’ Starting from an expanded class C, the general form of

MCl=Als:
A=ANC N ACTfiA N..1f A
N Y iR Ag 1V Ry Ay

then A is unsatisfiable iff: i) For a feature f; (or a role R),
Afv (Ag) is unsatisfiable; i) For f = f] =f (or for

R =R = R), A, MA, (A, N Ay ) is unsatisfiable; iii) For
t ] 1 ]

R;= R, then m; > n; or n; < m;. We only sketch the proof for
case ii.
Case ii. Let, for f, = f] = f, be Afi n Af,' unsatisfiable; thgn there

must be a label I in C such that: [.,.l—:til_:t. .1, with

e
.’N[ti].—_Afi and N[tj]zAfj and ¢, t; not set types. If

Afv n Afv is unsatisfiable, then for ¢, ¢; we have:
i i

a) t,t;have different types. The thesis is trivial

b) t,t;are class names.

Now, ([l_:ti Z-:t‘j])lD = ([l-:t’])]D, with ' =isa t]., but
NIl = Afi n A//-’ and (NI¥])’c = @, then we have the

same situation as in case i. Therefore, the thesis is true.
©) t,t;are tuple types. The proof is similar to the previous
case. O
The following corollaries naturally derive from the preceding
theorem:

COROLLARY 1. N is an isomorphism between the set C of database
classes and the set IN'[Cl, with the subsumption as an order rela-
tionship. Then ¥V C;, C, € C

1) C;#Cy= NICl# NMC,l;
2) C,EC, e NCC NG,

COROLLARY2.V C;, Gy e C, then C,~ C, (A~ Biff ALBABC A)
& NIC ] = MG,

5 ASSERTIONAL MAPPING

In the previous section, we discussed the possibility of mapping
syntactic descriptions from an object data model to a concept lan-
guage, i.e., schema descriptions into Tbox descriptions. Here we
show how to map a world description, while preserving its con-
sistency, by means of an extension of the syntactic mapping N
over the extensional level of the knowledge base. Before defining
the assertional mapping, we briefly sketch the assertional formal-
ism in the two languages.

Let a, b be individual names and C (R, f) be a concept (role,
feature); the assertional formalism generally used in concept lan-
guages allows us to state that individuals are instances of con-
cepts, and that pairs of individuals are instances of roles or fea-
tures, by means of the following assertional axioms: a : C, aRb, afb.
An interpretation I_safisfies the assertional axioms a: Ciff a € c’,
aRb iff (a,b) € RC, afb iff f¢(a) = b.

A finite set of assertional axioms is called Abox A. We say that
an interpretation I is a model of an Abox A wrt a Tbox Tif I_sat-
isfies all the assertional axioms in A and all the terminological
axioms in 7T; furthermore, an Abox A is consistent wrt a Tbox T if

A has a model.
The assertional formalism used in the object data model speci-
fies the class that an individual is instance of and the structured

value associated with it by means of the assertionso: Cando: [l;: v
.. L,:v,]. We say that an interpretation I satisfies the assertions 0: C
iffoeC™ando:[l:0,... L,:0]iff &) =[I,:0;... L,: 0]
Let a database DB be a finite set of assertions. 7 is a model of
DB wrt a schema S iff I satisfies all the descriptions in § and all
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the assertions in DB; a database DB is consistent wrt a schema S if it
has a model.
Before defining the assertional mapping, we give the definition

of value mapping that allows us to build a domain A’ from a ge-

neric set of values V.

DEFINITION 3 (Value Mapping): Let us extend the syntactic mapping
N over the set of values O U B U 'V to the domain A'¢ 5o that
it is injective and:

1) Yoe O.N[o]=0, 0, € (A.)C;
2) Vo, € B.Nlo, 1=0,, 0, €(4,);

3) Vy, e 'VT.J\[[vt] =0,/ 0,, € (AVT)IC. Further, let v, =
ooy .. Lo, then o, is such that:
&) Vo, & Vi(f)0,) = Nvl
b) Vv, eV, v ={v, A..Uim).(ouf,N[v,.k]) € (Rli e, for k
=1,..,m
DEFINITION 4 (Assertional Mapping): In order to define the assertional
mapping, we extend the mapping N so that it associates a corre-

sponding assertional axiom to each database assertion, in such a
way that:
1) No:C] = Nol: NCJ;
2) MNo:[ly: vy ... 1, v,]] is such that:
a) Nol:Ag
b) Vo, & Vs Nlolf Nlv,1;

o Vv, eV, v =1v,...0

i1 Yim

}AN[O]RII_N[UU(], for k =1,

Let us consider the following database assertions—for conven-
tion, we show Individual-Names in typewriter font:

Alex: Student, MIT : College
Alex: [name: “Alessandro” birthdate: [day: 20 month: “July” year: 1954}
regist-num: 128 enrolled: MIT enrolled-course: {“Database”}]
The corresponding Abox assertions are the following:
Alex: A, Alex: Student, MIT: A, MIT: College, O: AVT ,

Alessandro: String, Database: String, July: String, 20: Int, 1954:
Int, 128: Int,

Alex ngme Alessandro, Alex birthdate 0,, Alex regist-num 128,
Alex enrolled MIT, Alex enrolled-course Database,

0, day 20, 0, month July, O, year 1954.
Y Yy

Note that the mapping has introduced new individuals corre-
sponding to each basic value present in the database assertions
(e.g., Alessandro, 20, etc.) and the individual 0, belonging to the
class A"r in order to consider the tuple value associated with the

birthdate label in the database assertions concerning the individual
Alex.
The following theorem follows from the above definitions and

Theorem 1.

THEOREM 2. Given a schema S, let T be the Thox obtained by the N
mapping; analogously, let DB be a set-of database assertions and
A the Abox obtained by the N mapping. DB is consistent wrt S if
and only if A is consistent wrt T.

6 CONCLUDING REMARKS

In this paper, we discuss some similarities and differences existing
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between object database models and concept languages. In par-
ticular, we focus on their characteristics involved in defining ob-
jects and values and their mutual relationships. We illustrate how
object database descriptions can be transformed into concept lan-
guage descriptions by a suitable mapping, capable of preserving
satisfiability. In our opinion, this correspondence presents a formal
framework that can be used for treating common aspects of data-
base systems and knowledge representation systems. In particular,
it is possible for object databases to exploit both the algorithms
developed in concept language environments for performing sub-
sumption, consistency check, realization and retrieval and the
results concerning their complexity. The formal model-theoretic
semantics of concept languages provides means for investigating
soundness and completeness of inference algorithms. Further-
more, many studies in the concept language community concern
the computational complexity of the reasoning tasks offered. With
respect to the database model presented, it can be deduced that
the subsumption is polynomial (as we have already proven in [2]);
at an extensional level, assertion satisfiability and instance check-
ing are also polynomial in the size of the knowledge base [16].
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Correction to a Footnote in
“Theoretical and Practical Considerations
of Uncertainty and Complexity in
Automated Knowledge Acquisition”

Xiao-Jia M. Zhou and Tharam S. Dillon

1 INTRODUCTION

IN a footnote on p. 703 of our recent paper [2], we referred to the
distance measure by Lopez de Mantaras [1]. The footnote should
be corrected as follows:

Recently, Lopez de Mantaras [1] proposed a distance-based at-
tribute-selection measure as the “proper” normalization for
Quinlan’s information-gain criterion. It is proved by the contin-
gency subdividing test that this measure is not biased towards
attributes with more values.
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