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Abstract

This paper formally clarifies the relevant reasoning prob-
lems for temporal EER diagrams. We distinguish between
the following reasoning services: (a) Entity, relationship and
schema satisfiability; (b) Liveness and global satisfiability
for both entities and relationships; (c) Subsumption for ei-
ther entities or relationships; (d) Logical implication between
schemas. We then show that reasoning on temporal models
is an undecidable problem as soon as the schema language
is able to distinguish between temporal and atemporal con-
structs, and it has the ability to represent dynamic constraints
between entities.

1. Introduction

Temporally enhanced conceptual models have been devel-
oped to help designing temporal databases [12]. In this paper
we deal with Extended Entity-Relationship (EER) diagrams1

used to model temporal databases.
The temporal conceptual modelERV T has been intro-

duced both toformally clarify the meaning of the various
temporal constructs appeared in the literature [2, 3], and to
check the possibility to performreasoningon top of temporal
schemas [4].ERV T is equipped with both a linear and a graph-
ical syntax along with a model-theoretic semantics. It supports
valid time for entities, attributes, and relationships in the line of
TIMEER [10] and ERT [15], while supporting dynamic con-
straints for entities as presented in MADS [14].ERV T is able
to distinguish betweensnapshotconstructs—i.e. each of their
instances has a global lifespan—andtemporaryconstructs—
i.e. each of their instances have a limited lifespan. Dynamic
constructs capture theobject migrationfrom a source entity to
a target entity.

The contribution of this paper is twofold. Moving from the
formal characterization ofERV T given in [3] we clarify the
relevant reasoning problems for temporal EER diagrams. In
particular, we distinguish between six different reasoning ser-
vices, introducing two new services for both entities and rela-
tionships:liveness satisfiability—i.e. whether an entity or re-
lationship admits a non-empty extension infinitely often inthe
future—andglobal satisfiability—i.e. whether an entity or re-
lationship admits a non-empty extension at all points in time.
After a systematic definition of the various reasoning problems
we then show that all the satisfiability problems (i.e. schema,
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1 EER is the standard entity-relationship data model, enriched with ISA
links, generalized hierarchies with disjoint and coveringconstraints, and
full cardinality constraints [8].

entity and relationship satisfiability problems) togetherwith
the subsumption problem (i.e. checking whether two entities
or relationships denote one a subset of the other so that there is
an implicit ISA link between them) can be mutually reduced to
each other. On the other hand, checking whether a schemalog-
ically impliesanother schema is shown to be the more general
reasoning service.

The second contribution is to prove that reasoning on tem-
poral conceptual models is undecidable provided the dia-
grams are able to: (a) Distinguish between temporal and non-
temporal constructs; (b) Representdynamic constraintsbe-
tween entities, i.e. entities whose instances migrate to other en-
tities. To the best of our knowledge, this is the first time such a
result is proved. Indeed, the result presented in [4] showedthat
ERV T diagrams can be embedded into the temporal descrip-
tion logicDLRUS—whereU , S extendDLR with the until
andsincetemporal modalities—and that reasoning inDLRUS

was undecidable. Instead, here we prove that even reasoning
just onERV T schemas is undecidable. The undecidability re-
sult is proved via a reduction of the Halting Problem. In partic-
ular, we proceed by first showing that the halting problem can
be encoded as a Knowledge Base (KB) inALCF—whereF ex-
tendsALC with thefuturetemporal modality—and then prov-
ing that such a KB inALCF can be captured by anERV T di-
agram. Note that, in [9] the undecidability ofALCF is proved
using: (a) complex axioms—i.e. axioms can be combined us-
ing Boolean and modal operators—(b) bothglobal and local
axioms—i.e. axioms can be either true at all time or true at
some time, respectively. SinceERV T is able to encode just
simple global axioms, we modify the proof presented in [9]
by showing that checking concept satisfiability w.r.t. anALCF

KB made by just simple global axioms is an undecidable prob-
lem.

The paper in organized as follows. The temporal descrip-
tion logicALCF and the conceptual modelERV T are formally
presented in Sections 2 and 3, respectively. The various rea-
soning services for temporal conceptual modeling are defined
in Section 4 and their equivalence is proved. That reasoning
in presence of dynamic constraints is undecidable is provedin
Section 5. Section 6 makes final conclusions and mention an
interesting open problem.

2. The Temporal Description Logic

In this Section we introduce theALCF description
logic [16, 1, 9] as a the tense-logical extension ofALC. Ba-
sic types ofALCF are conceptsand roles. A concept is a
description gathering the common properties among a col-
lection of individuals; from a logical point of view it is
a unary predicate ranging over the domain of individu-
als. Inter-relationships between these individuals are repre-
sented by means of roles, which are interpreted as binary



C, D → A | (atomic concept)
> | (top)
⊥ | (bottom)
¬C | (complement)
C u D | (conjunction)
C t D | (disjunction)
∃R.C | (exist. quantifier)
∀R.C | (univ. quantifier)
3

+C | (Sometime in the Future)
2

+C | (Every time in the Future)

AI(t) ⊆ ∆I

>I(t) = ∆I

⊥I(t) = ∅

(¬C)I(t) = ∆I \ CI(t)

(C u D)I(t) = CI(t) ∩ DI(t)

(C t D)I(t) = CI(t) ∪ DI(t)

(∀R.C)I(t) = {a ∈ ∆I | ∀b.RI(t)(a, b) ⇒ CI(t)(b)}

(∃R.C)I(t) = {a ∈ ∆I | ∃b.RI(t)(a, b) ∧ CI(t)(b)}

(3+C)I(t) = {a ∈ ∆I | ∃v > t.CI(v)(a)}

(2+C)I(t) = {a ∈ ∆I | ∀v > t.CI(v)(a)}

Figure 1. Syntax and Semantics for the ALCF Description Logic

relations over the domain of individuals. According to the syn-
tax rules of Figure 1,ALCF concepts(denoted by the letters
C andD) are built out ofatomic concepts(denoted by the let-
ter A) andatomic roles(denoted by the letterR). Tense oper-
ators are added for concepts:3

+ (sometime in the future) and
2

+ (always in the future). Furthermore, while tense opera-
tors are allowed only at the level of concepts—i.e. no temporal
operators are allowed on roles—we will distinguish be-
tween so calledlocal—RL—andglobal—RG—roles.

Let us now consider the formal semantics ofALCF. A
temporal structureT = (Tp, <) is assumed, whereTp is a
set of time points and< is a strict linear order onTp—T
is assumed to be isomorphic to either(Z, <) or (N, <). An
ALCF temporal interpretationoverT is a triple of the form
I

.
= 〈T , ∆I , ·I(t)〉, where∆I is non-empty set of objects (the

domainof I) and ·I(t) an interpretation functionsuch that,
for everyt ∈ T , every conceptC, and every roleR, we have
CI(t) ⊆ ∆I andRI(t) ⊆ ∆I ×∆I . Furthermore, ifR ∈ RG,
then,∀t1, t2 ∈ T .RI(t1) = RI(t2). The semantics of con-
cepts is defined in Figure 1—note that the operator2

+ is the
dual of3+, i.e.2+C ≡ ¬3

+¬C.
A knowledge base(KB) in this context is a finite setΣ of

terminological axiomsof the formC v D. An interpretation
I satisfiesC v D if and only if the interpretation ofC is in-
cluded in the interpretation ofD at all time, i.e.CI(t) ⊆ DI(t),
for all t ∈ T . A knowledge baseΣ is satisfiableif there is a
temporal interpretationI which satisfies every axiom inΣ; in
this caseI is called amodelof Σ. Σ logically impliesan ax-
iomC v D (writtenΣ |= C v D) if C v D is satisfied by ev-
ery model ofΣ. In this latter case, the conceptC is said to be
subsumedby the conceptD in the knowledge baseΣ. A con-
ceptC is satisfiable, given a knowledge baseΣ, if there ex-
ists a modelI of Σ such thatCI(t) 6= ∅ for somet ∈ T , i.e.
Σ 6|= C v ⊥.

3. Temporal Conceptual Modeling

In this Section, the temporal EER modelERV T is briefly
introduced.ERV T supports valid time for entities, attributes,
and relationships in the line of TIMEER [10] and ERT [15],
while supporting dynamic constraints for entities as presented
in MADS [14]. ERV T is able to distinguish betweensnap-
shot(see the consensus glossary [11] for the terminology used)
constructs—i.e. each of their instances has a global lifespan—
temporaryconstructs—i.e. each of their instances have a lim-
ited lifespan—or implicitly temporal constructs—i.e. their in-
stances can have either a global or a temporary existence. Two
temporal marks,S (snapshot) andVT (valid time, i.e. tempo-
rary), are introduced inERV T to capture such temporal be-
havior.

Dynamic constructs capture theobject migrationfrom a
source entity to a target entity. If there is adynamic extension
between a source and a target entity (represented inERV T

by a dotted link labeled withDEX) models the case where in-
stances of the source entityeventuallybecome instances of the
target entity. On the other hand, adynamic persistency(rep-
resented inERV T by a dotted link labeled withPER) models
the dual case of instancespersistentlymigrating to a target en-
tity (for a complete introduction onERV T with a worked out
example see [3]).

ERV T is equipped with both a linear and a graphical syn-
tax along with a model-theoretic semantics as a temporal ex-
tension of the EER semantics [6]. Presenting theERV T linear
syntax, we adopt the following notation: given two setsX, Y ,
anX-labeledtuple overY is a function fromX to Y ; the la-
beled tupleT that maps the set{x1, . . . , xn} ⊆ X to the set
{y1, . . . , yn} ⊆ Y is denoted by〈x1 : y1, . . . , xn : yn〉, and
T [xi] = yi. In the following definition we refer to Figure 2 to
show the visual syntax associated to the variousERV T con-
structs.

Definition 3.1 (ERV T Syntax). An ERV T schema is a tu-
ple:
Σ = (L, REL, ATT, CARD, ISA, DISJ, COVER, S, T, KEY, DEX, PER),
such that

L is a finite alphabet partitioned into the sets:E (entity
symbols),A (attributesymbols),R (relationshipsymbols),U
(role symbols), andD (domainsymbols). We will call the tu-
ple (E ,A,R,U ,D) thesignatureof the schemaΣ. E is further
partitioned into: a setES of snapshot entities(the S-marked
entities in Figure 2), a setEI of implicitly temporal entities
(theunmarkedentities in Figure 2), and a setET of temporary
entities(the VT-markedentities in Figure 2). A similar parti-
tion applies to the setR.

ATT is a function that maps an entity symbol inE to anA-
labeled tuple overD, ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉.

REL is a function that maps a relationship symbol inR to
anU-labeled tuple overE , REL(R) = 〈U1 : E1, . . . , Uk : Ek〉,
andk is thearity of R.

CARD is a functionE ×R×U 7→ N× (N∪{∞}) denoting
cardinality constraints. IfREL(R) = 〈U1 : E1, . . . , Uk : Ek〉,
then CARD(E, R, U) is defined only if U = Ui and
E = Ei, for some i ∈ {1, . . . , k}. We denote with
CMIN(E, R, U) and CMAX (E, R, U) the first and sec-
ond component ofCARD. If not stated otherwise,CMIN is
assumed to be zero, andCMAX is assumed to be∞. In Fig-
ure 2,CARD(TopManager, Manages, man) = (1, 1).

ISA is a binary relationshipISA ⊆ (E × E) ∪ (R × R).
ISA between relationships is restricted to relationships with
the same arity.ISA is visualized with a directed arrow, e.g.
Manager ISA Employee in Figure 2.
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Figure 2. An ERV T diagram

DISJ, COVER are binary relations over2E × E , describ-
ing disjointness and covering partitions, respectively.DISJ is
visualized with a circled “d” andCOVER with a double di-
rected arrow, e.g.Department, InterestGroupare both dis-
joint and they coverOrganizationalUnit.

S, T are binary relations overE × A containing, respec-
tively, the snapshot and temporary attributes of an entity.Fur-
thermore, if〈E, A〉 ∈ S, T, thenA is between the attributes in
ATT(E) (seeS, T marked attributes in Figure 2).

KEY is a function that maps entity symbols inE to their key
attributes,KEY(E) = A. Furthermore, ifKEY(E) = A, then
A is between the attributes inATT(E). Keys are visualized as
underlined attributes.

BothDEX andPERare binary relations overE ×E describ-
ing the dynamic evolution of entities2. DEX and PERare visu-
alized with dotted directed lines labeled withDEX or PER, re-
spectively (e.g.AreaManager DEX TopManager).

The model-theoretic semantics associated with theERV T

modeling language adopts thesnapshot3 representation of ab-
stract temporal databases and temporal conceptual models [7].
Following this paradigm, the flow of timeT = 〈Tp, <〉, where
Tp is a set of time points (or chronons) and< is a binary
precedence relation onTp, is assumed to be isomorphic to ei-
ther 〈Z, <〉 or 〈N, <〉. Thus, a temporal database can be re-
garded as a mapping from time points inT to standard rela-
tional databases, with the same interpretation of constants and
the same domain.

Definition 3.2 (ERV T Semantics). Let Σ be an ERV T

schema, andBD =
⋃

Di∈D BDi be a set ofbasic domains
such thatBDi ∩BDj = ∅ for i 6= j. A temporal database state
for the schemaΣ is a tuple B = (T , ∆B ∪ ∆B

D, ·B(t)),
such that: ∆B is a nonempty set disjoint from∆B

D;
∆B

D =
⋃

Di∈D ∆B
Di

is the set of basic domain values used in
the schemaΣ such that∆B

Di
⊆ BDi—we call∆B

Di
the ac-

tive domain; ·B(t) is a function such that for eacht ∈ T ,
every domain symbolDi ∈ D, every entityE ∈ E , every re-
lationship R ∈ R, and every attributeA ∈ A, we have:

2 For ISA relations, we use the notationE1 ISA E2 instead of〈E1, E2〉 ∈
ISA. Similarly for DISJ,COVER,DEX,PER.

3 The snapshot model represents the same class of temporal databases as
the timestampmodel [12, 13] defined by adding temporal attributes to a
relation [7].

D
B(t)
i = ∆B

Di
, EB(t) ⊆ ∆B, RB(t) is a set ofU-labeled tu-

ples over∆B, andAB(t) ⊆ ∆B × ∆B
D.

B is a legal temporal database stateif it satisfies all of the in-
tegrity constraints expressed in the schema:

• For eachE1, E2 ∈ E , if E1 ISA E2, then,EB(t)
1 ⊆ E

B(t)
2 .

• For eachR1, R2 ∈ R, if R1 ISA R2, then,RB(t)
1 ⊆ R

B(t)
2 .

• For eachE ∈ E , if ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉,
then,e ∈ EB(t) → (∀i ∈ {1, . . . , h}, ∃!ai. 〈e, ai〉 ∈

A
B(t)
i ∧ ∀ai.〈e, ai〉 ∈ A

B(t)
i → ai ∈ ∆B

Di
).

• For eachR ∈ R, if REL(R) = 〈U1 : E1, . . . , Uk : Ek〉,
then,r ∈ RB(t) → (r = 〈U1 : e1, . . . , Uk : ek〉 ∧ ∀i ∈

{1, . . . , k}.ei ∈ E
B(t)
i ). In the following, we adopt the

convention:〈U1 : e1, . . . , Uk : ek〉 ≡ 〈e1, . . . , ek〉, and
r[Ui] ≡ r[i] to denote theUi/i-component ofr.

• For each cardinality constraintCARD(E, R, U), then,
e ∈ EB(t) → CMIN(E, R, U) ≤ #{r ∈ RB(t) | r[U ] =
e} ≤ CMAX(E, R, U).

• For each snapshot entityE ∈ ES , then,
e∈EB(t) → ∀t′∈T .e∈EB(t′).

• For each temporary entityE ∈ ET , then,
e∈EB(t) → ∃t′ 6= t.e 6∈EB(t′).

• For each snapshot relationshipR∈RS , then,
r∈RB(t) → ∀t′∈T .r∈RB(t′).

• For each temporary relationshipR∈RT , then,
r∈RB(t) → ∃t′ 6= t.r 6∈RB(t′).

• For each entityE ∈ E with a snapshot attributeAi, i.e.
〈E, Ai〉 ∈ S, then,

(e∈EB(t) ∧ 〈e, ai〉 ∈ A
B(t)
i ) → ∀t′∈T .〈e, ai〉 ∈ A

B(t′)
i .

• For each entityE ∈ E with a temporary attributeAi, i.e.
〈E, Ai〉 ∈ T, then,

(e ∈ EB(t)∧〈e, ai〉 ∈ A
B(t)
i ) → ∃t′ 6= t.〈e, ai〉 6∈ A

B(t′)
i .

• For E, E1, . . . , En ∈ E ,

– If {E1, . . . , En} DISJE, then,
∀i ∈ {1, . . . , n}.Ei ISA E∧

∀j ∈ {1, . . . , n}, j 6= i.EB(t)
i ∩ E

B(t)
j = ∅.



– If {E1, . . . , En} COVERE, then,

∀i ∈ {1, . . . , n}.Ei ISA E ∧ EB(t) =
⋃n

i=1 E
B(t)
i .

• For eachE ∈ E , A ∈ A such thatKEY(E) = A, then,
〈E, Ai〉 ∈ S—i.e. a key is a snapshot attribute—and∀a ∈
∆B

D.#{e ∈ EB(t) | 〈e, a〉 ∈ AB(t)} ≤ 1.

• For eachE1, E2 ∈ E ,

– If E1 DEXE2, then,e∈E
B(t)
1 → ∃t1 >t.e∈E

B(t1)
2 ;

– If E1 PERE2, then,e∈E
B(t)
1 → ∀t′ > t.e ∈ E

B(t′)
2 .

4. Reasoning on Temporal Models

Reasoning tasks over a temporal conceptual model include
verifying whether an entity, relationship, or schema aresatis-
fiable, whether asubsumptionrelation exists between entities
or relationships, or checking whether a new schema propertyis
logically impliedby a given schema. The model-theoretic se-
mantics associated withERV T allows us to formally define
these reasoning tasks. We start with the formal definition of
the relevant reasoning services in a temporal schema as pre-
sented in [3]. Based on this formal characterization we can
prove the first results of this paper concerning reasoning in
ERV T : a) Subsumption and satisfiability reasoning services
relative to entities are mutually reducible to each other; b) Sat-
isfiability problems relative to relationships are mutually re-
ducible; c) Satisfiability of relationships reduces to satisfiabil-
ity of entities and viceversa; d) Logical implication is themore
general service.

Definition 4.1 (Reasoning inERV T ). Let Σ be anERV T

schema,E ∈ E an entity, andR ∈ R a relationship. The fol-
lowing are the reasoning tasks overΣ:

1. E (R) is satisfiable if there exists a legal tempo-
ral database stateB for Σ such that EB(t) 6= ∅
(RB(t) 6= ∅), for somet ∈ T ;

2. E (R) is liveness satisfiableif there exists a legal tem-
poral database stateB for Σ such that∀t ∈ T .∃t′ >
t.EB(t′) 6= ∅ (RB(t′) 6= ∅), i.e. E (R) is satisfiable in-
finitely often;

3. E (R) is globally satisfiableif there exists a legal tempo-
ral database stateB for Σ such thatEB(t) 6= ∅ (RB(t) 6=
∅), for all t ∈ T ;

4. Σ is satisfiableif there exists a legal temporal database
stateB for Σ that satisfies at least one entity inΣ (B is
said amodelfor Σ);

5. E1 (R1) is subsumedby E2 (R2) in Σ if every legal
temporal database state forΣ is also a legal temporal
database state forE1 ISA E2 (R1 ISA R2);

6. A schemaΣ′ is logically impliedby a schemaΣ over the
same signature if every legal temporal database state for
Σ is also a legal temporal database state forΣ′.

We now prove that reasoning services (1-5) relative to enti-
ties and knowledge bases are mutually reducible to each other.

Proposition 4.2. There is a mutual reducibility between the
reasoning services (1-5) relative to entities inERV T .

Proof Proving the mutual reducibility between satisfiability
and subsumption inERV T can be done similarly to [5]. Then,
in the following we prove that given anERV T schemaΣ:

1. Entity satisfiability reduces to schema satisfiability;

2. Schema satisfiability reduces to entity liveness satisfiabil-
ity;

3. Entity liveness satisfiability reduces to entity global satis-
fiability;

4. Entity global satisfiability reduces to entity satisfiability.

(1) We prove that given an entityE0 ∈ E , then,E0 is satisfi-
able w.r.t.Σ iff a new schemaΣ′ is satisfiable.Σ′ is ob-
tained by adding toΣ the schema in figure 3(a), where
>, E1, E2 are new entities such that∀E ∈ E .E ISA >,
andR is a new binary relationship.

“ ⇐” Let Σ′ be satisfiable, then,Σ′ has a modelB
(which is a model forΣ, too) such that∃t ∈ T .∃e ∈
∆B.e ∈ >B(t) (by definition of schema satisfiability and
by construction of> as superclass of all entities inΣ′).
Because> is a snapshot entity, then,∀t ∈ T .e ∈ >B(t).
SinceE1, E2 form a disjoint covering of>, andE1, E2

are both temporary, then,∃t′ ∈ T .e ∈ E
B(t′)
1 . Fi-

nally, becauseE1 totally participates inR, then,∃e0 ∈

∆B.(〈e, e0〉 ∈ RB(t′) ∧ e0 ∈ E
B(t′)
0 ). Then,E0 is satisfi-

able w.r.t.Σ.
“ ⇒” Let E0 be satisfiable w.r.t.Σ, then,Σ has a model

B such that∃t0 ∈ T .∃e0 ∈ ∆B .e0 ∈ E
B(t0)
0 . We now

construct a modelB′ for Σ′. LetB andB′ coincide on all
constructs inΣ, and additionally, for allt ∈ T :

• >B′(t) =
⋃

v∈T

⋃

E∈E EB(v)

• E
B′(t)
1 =

{

>B′(t) if t = t0
∅ otherwise

• E
B′(t)
2 = >B′(t) \ E

B′(t)
1

• RB′(t) = {〈e, e0〉 | e ∈ E
B′(t)
1 }

It is easy to check thatB′ is a model forΣ′, then,Σ′ is
satisfiable.

(2) We prove that a given schemaΣ is satisfiable iff an en-
tity is liveness satisfiable w.r.t. a new schemaΣ′. Σ′ is
obtained by adding toΣ the schema in figure 3(b), where
>1,>2, E1, E2 are new entities andR is a new binary re-
lationship. Furthermore,{E | E ∈ E}COVER>2. In par-
ticular, we prove thatΣ is satisfiable iff>1 is liveness sat-
isfiable w.r.t.Σ′.

“ ⇐” Let >1 be liveness satisfiable w.r.t.Σ′. Then,
Σ′ has a model,B, such that∀t ∈ T .∃t′ > t.∃o ∈

∆B.o ∈ >
B(t′)
1 . Since>1 is a snapshot entity, then,

o ∈ >
B(t)
1 , for all t ∈ T . BecauseE1, E2 are a dis-

joint covering of>1 and they are both temporary, then,

∃t ∈ T .o ∈ E
B(t)
1 . BecauseE1 totally participates inR,

then,∃e ∈ ∆B .(〈o, e〉 ∈ RB(t) ∧ e ∈ >
B(t)
2 ). Then,>2

is a satisfiable entity and, because of the covering con-
straint,Σ is satisfiable.

“ ⇒” Let Σ be a satisfiable schema andB a model for
Σ. We now show how to build a model,B′, for Σ′ such
that >1 is liveness satisfiable.B′ agrees withB on all
constructs inΣ, and additionally, for allt ∈ T :

• >
B′(t)
1 =

⋃

v∈T >
B(v)
2

Note that, because by assumptionΣ is satisfiable,
then,>2 is satisfiable while>1 contains always at
least one element (i.e., it is globally, and then live-
ness, satisfiable).
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Figure 3. Reductions: (a) From Entity Sat to Schema Sat; (b) From Schema Sat to Entity Liveness Sat.

• Let t0 ∈ T an arbitrary time such that∃e0 ∈

∆B.e0 ∈ >
B(t0)
2 , then:

E
B′(t)
1 =

{

>
B′(t)
1 if t = t0

∅ otherwise

• E
B′(t)
2 = >

B′(t)
1 \ E

B′(t)
1

• RB′(t) = {〈e, e0〉 | e ∈ E
B′(t)
1 }

Then,B′ is a model ofΣ′ such that>1 is liveness satisfi-
able.

(3) We prove that given an entityE0 ∈ E , then,E0 is live-
ness satisfiable w.r.t.Σ iff an entity is globally satisfiable
w.r.t. a new schemaΣ′. Σ′ is obtained by adding toΣ
the new entityE1 as showed in figure 4(a). We prove that
E0 is liveness satisfiable w.r.t.Σ iff E1 is globally satisfi-
able w.r.t.Σ′.

“ ⇐” Let E1 be globally satisfiable w.r.t.Σ′. Then,Σ′

has a model,B, such that∀t ∈ T .∃o ∈ ∆B .o ∈ E
B(t)
1 .

Then, given the dynamic extension constraint betweenE1

andE0, E0 is liveness satisfiable.
“ ⇒” Let E0 be liveness satisfiable w.r.t.Σ. Then,Σ

has a model,B, such that∀t ∈ T .∃t′ > t.∃e ∈ ∆B.e ∈

E
B(t′)
0 . We now extendB to E1, such that for allt ∈ T :

• E
B(t)
1 = {e ∈ ∆B | ∃t′ > t.e ∈ E

B(t′)
0 }

Then,B is a model ofΣ′ such thatE1 is globally satisfi-
able.

(4) We prove that given an entityE0 ∈ E , then,E0 is globally
satisfiable w.r.t.Σ iff an entity is satisfiable w.r.t. a new
schemaΣ′. Σ′ is obtained by adding toΣ the schema in
figure 4(b), whereE1 is new snapshot entity andR is a
new binary relationship.

“ ⇐” Let E1 be satisfiable w.r.t.Σ′, then,Σ′ has a
modelB such that∃o ∈ ∆B.o ∈ E

B(t)
1 , for all t ∈ T (by

construction ofE1 as a snapshot entity). SinceE1 totally
participates inR, then,∃e ∈ ∆B.〈o, e〉 ∈ RB(t) ∧ e ∈

E
B(t)
0 . Since this must be true at all time, then,E0 is glob-

ally satisfiable w.r.t.Σ.
“ ⇒” Let E0 be globally satisfiable w.r.t.Σ. Then,Σ

has a model,B, such that∀t ∈ T .∃e ∈ ∆B.e ∈ E
B(t)
0 .

We now construct a model,B′, for Σ′ such thatE1 is sat-
isfiable.B′ agrees withB on all constructs inΣ, and ad-
ditionally, for all t ∈ T :

• E
B′(t)
1 =

⋃

v∈T E
B(v)
0

• RB′(t) = {〈o, e〉 | o ∈ E
B′(t)
1 ∧ e ∈ E

B(t)
0 }

Then,B′ is a model ofΣ′ such thatE1 is satisfiable.

2

We are now able to prove that satisfiability problems for re-
lationships are reducible to the same problems for entitiesand
viceversa.

Proposition 4.3. There is a mutual reducibility between the
reasoning services (1-4) relative to both relationships and en-
tities inERV T .

Proof We only prove that satisfiability of relationships can
be reduced to satisfiability of entities and viceversa. The other
mutual reductions easily follow from analogous results proved
in Proposition 4.2.

“R SAT reduces to E SAT.” We can verify whether a rela-
tionshipR is satisfiable inΣ by adding a new entity, sayAR

such that: (a)AR ISA E, with E an arbitrary entity participat-
ing in the relationship, and (b)AR totally participates in the
relationship. Then,R is satisfiable if and only ifAR is satisfi-
able.

“E SAT reduces to R SAT.” We can verify whether an en-
tity E is satisfiable inΣ by adding a new relationship, say
RE such that: (a)RE is a binary relationship with both argu-
ments restricted toE; (b) E totally participates inRE . Eas-
ily follows thatE is satisfiable if and only ifRE is satisfiable.

2

Finally, we show that all the reasoning problems can be re-
duced to a logical implication problem. Logical implication
accounts for checking properties of a schema whenever they
can be expressed in theERV T schema language. In particu-
lar, checking whether an entityE is satisfiable can be reduced
to logical implication by choosingΣ′ = {E ISA A, E ISA
B, {A, B}DISJC}, with A, B, C arbitrary entities. Then,E is
satisfiable iffΣ 6|= Σ′. Given the result of Proposition 4.2, then
the reasoning services (1-5) for entities are reducible to logi-
cal implication. Furthermore, given two relationshipsR1, R2,
checking for sub-relationship can be reduced to logical impli-
cation by choosingΣ′ = {R1 ISA R2}. This shows that logical
implication is the most general reasoning service.

5. Reasoning onERV T is Undecidable

We now show that reasoning on fullERV T is undecidable.
The proof is based on a reduction from the undecidable halting
problem for a Turing machine to the entity satisfiability prob-
lem w.r.t. anERV T schemaΣ. We apply ideas similar to [9]
(Sect. 7.5) to show undecidability of certain product of modal
logics. The proof can be divided in the following steps:

1. Definition of the halting problem;

2. Reduction of the halting problem to concept satisfiability
problem w.r.t. anALCF KB;

3. Reduction of concept satisfiability w.r.t. anALCF KB to
entity satisfiability w.r.t. anERV T schema.
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Figure 4. Reductions: (a) From Entity Liveness Sat to Entity Global Sat; (b) From Entity Global Sat to
Entity Sat.

The second step has been chosen as an intermediate step to bet-
ter understand the halting problem reduction by using the con-
ciseALCF linear syntax. Then, the final step will show how
ERV T is able to capture theALCF axioms used in the reduc-
tion.

Halting problem

We show here a formal representation of the halt-
ing problem for Turing machines as presented in [9]. A
single-tape right-infinite deterministic Turing machineM
is a triple 〈A, S, ρ〉, where:A is the tape alphabet(b ∈ A
stands for blank);S is a finite set ofstateswith the ini-
tial state, s0, and thefinal state, s1; ρ is the transition
function, ρ : (S − {s1}) × A → S × (A ∪ {L, R}).
A Configuration of M is an infinite sequence:
〈£, a1, . . . , ai−1, 〈si, ai〉, . . . , an, b, . . .〉, where, £ 6∈ A
is a symbol marking the left end of the tape,ai ∈ A, and
si ∈ S is the current state. The cell〈si, ai〉 is the ac-
tive cell. All the cells to the right ofan are blank.

Since a transition function can only modify the active cell
and its neighbors we introduce theinstruction function, δ, de-
fined on triples in(A∪{£})×((S−{s1})×A)×A, such that:

δ(ai, 〈s, aj〉, ak) =



























〈ai, 〈s′, a′
j〉, ak〉 if ρ(s, aj) = 〈s′, a′

j〉
〈〈s′, ai〉, aj , ak〉 if ρ(s, aj) = 〈s′, L〉

andai 6= £

〈£, 〈s′, aj〉, ak〉 if ρ(s, aj) = 〈s′, L〉
andai = £

〈ai, aj , 〈s′, ak〉〉 if ρ(s, aj) = 〈s′, R〉

A sequence〈c0, c1, . . . , ck, ck+1, . . .〉 of configurations of
M is said acomputationof M if the state ofc0 is s0 (the
initial state), and, for allk, ck+1 is obtained fromck by re-
placing the triple centered around the active cell ofck by its
δ-image and living the rest unaltered. We say thatM halts,
starting with the empty tape—i.e. with starting configura-
tion: 〈£〈s0, b〉, b, . . . , b, . . .〉—if there is a finite computation,
〈c0, c1, . . . , ck〉, such that the state ofck is s1 (the final state).

Reasoning onALCF is undecidable

Using a reduction from the halting problem we now prove
that reasoning involving anALCF knowledge base is undecid-
able. In [9] the undecidability ofALCF is proved using: (a)
complex axioms—i.e. axioms can be combined using Boolean
and modal operators—(b) bothglobal andlocal axioms—i.e.
axioms can be either true at all time or true at some time, re-
spectively. SinceERV T is able to encode just simple global
axioms, we modify the proof presented in [9]. The follow-
ing theorem proves that checking concept satisfiability w.r.t.
anALCF KB made by just simple global axioms is an unde-
cidable problem.

Proposition 5.1. Concept satisfiability w.r.t. anALCF knowl-
edge base is undecidable.

Proof Given a Turing machine,M = 〈A, S, ρ〉, we con-
struct anALCF KB, sayKBM , with a concept that is sat-
isfiable w.r.t.KBM iff the machineM does not halt. We start
by introducing some shortcuts. The implication,C → D, is
equivalent to the concept expression¬C t D. Given two con-
ceptsC, D we definenext(C, D) as the following axiom:
C v 3

+D u ¬3
+
3

+D. This axiom says that whenever
o ∈ CI(t0), then,o ∈ DI(t0+1) ∧ ∀t 6= t0.o 6∈ CI(t). Let
C, D1, . . . , Dn concepts,discover(C, {D1, . . . , Dn}) is de-
fined as the conjunction of the following axioms:

C v D1 t . . . t Dn

D1 v C u ¬D2 u . . . u ¬Dn

. . .
Dn−1 v C u ¬Dn

i.e., there is a disjoint covering betweenC andD1 . . . Dn.
Let A′ = A ∪ {£} ∪ (S × A). With eachx ∈ A′ we intro-
duce a conceptCx. We also use conceptsCs, Cl, Cr to de-
note the active cell, its left and right cells, respectively. The
conceptS1 denotes the final state. The halting problem re-
duces to satisfiability ofC0. Extra conceptsC, D1, D2, D3,
will be also used.R is a global role.KBM contains the fol-
lowing axioms:

C0 v C£ u 3
+C〈s0,b〉 (1)

discover(C, {Cx | x ∈ A′}) (2)
> v ∃R.> (3)

next(C£, D1) (4)
next(D1, D2) (5)
C〈s0,b〉 v D1 (6)

C〈s0,b〉 v 2
+Cb (7)

discover(Cs, {C〈s,a〉 | 〈s, a〉 ∈ S × A}) (8)
next(Cl, Cs) (9)
next(Cs, Cr) (10)
next(Cr , D3) (11)

C£ v Cl t 3
+Cl (12)

Cl v Cα → ∀R.Cα′ (13)
Cs v Cβ → ∀R.Cβ′ (14)
Cr v Cγ → ∀R.Cγ′ (15)

Ca v (¬Cl u ¬Cs u ¬Cr) → ∀R.Ca, ∀a ∈ A ∪ {£} (16)
discover(S1, {C〈s1,a〉 | a ∈ A ∪ {£}}) (17)

Cs v ¬S1 (18)

with axioms (13–15) for each instructionδ(α, β, γ) =
〈α′, β′, γ′〉. We now prove thatC0 is satisfiable w.r.t.KBM iff
M has an infinite computation starting from the empty tape.

“ ⇒” Let C0 be satisfiable, then,∃〈x0, t0〉 ∈ ∆I ×T .x0 ∈

C
I(t0)
0 . Then, by axiom (1),x0 ∈ C

I(t0)
£

, and∃t > t0.CI(t)
〈s0,b〉.

We now show thatt = t0 + 1. Indeed, ifC〈s0,b〉 is true, then,

by axiom (6),D1 must also be true, i.e.x0 ∈ D
I(t)
1 . On

the other hand, by axiom (4),C£ is true at just one point in
time andD1 is true next time and only there (by axiom (5)),
i.e. x0 ∈ D

I(t0+1)
1 . Thus,t = t0 + 1, x0 ∈ C

I(t0)
£

, x0 ∈

C
I(t0+1)
〈s0,b〉 , and, by axiom (7),∀t > t0 +1.x0 ∈ C

I(t)
b . Further-

more, by axiom (8),x0 ∈ C
I(t0+1)
s , while, by axioms (9–12),

x0 ∈ C
I(t0)
l , x0 ∈ C

I(t0+2)
r . Because by axiom (2), for all
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Figure 5. Encoding axioms: (a) C v ¬D; (b) C v D1 t . . . t Dn.

t ∈ T there is at most onex ∈ A′ such thatx0 ∈ C
I(t)
x , then,

the sequence〈〈x0, t0〉, 〈x0, t0 + 1〉, . . .〉 represents the start-
ing configuration ofM. Now, by axiom (3) and the assump-
tion thatR is global,∃x1 ∈ ∆I .∀t ∈ T .〈x0, x1〉 ∈ RI(t) (we
call x1 R-successor ofx0). Let 〈x0, x1, x2, . . .〉 be a chain of

R-successors satisfying axiom (2). Sincex0 ∈ C
I(t0)
£

, then,
by axioms (13) and (16), and the definition of the instruction
function,δ, xi ∈ C

I(t0)
£

, for all i. Then, given the axioms (12–
16), the chain ofR-successor,〈x0, x1, x2, . . .〉, represents a
computation ofM. Finally, axioms (17–18) guarantee thatM

never halts.
“ ⇐” Conversely, suppose thatM is a Turing machine

and 〈c0, . . . , ck, . . .〉 its infinite computation starting with the
empty tape. We construct a modelI

.
= 〈T , ∆I , ·I(t)〉 ofKBM

such thatC0 is satisfiable. In particular, we fixT = 〈N, <〉4,
∆I = N, RI = sucN (the successor function overN),
C

I(0)
0 = {0}, andC

I(j)
0 = ∅, for all j > 0. Furthermore,

∀j ∈ N:

• C
I(j)
x = {i ∈ N | thejth cell ofci containsx}, for all

x ∈ A′

• C
I(j)
s = {i ∈ N | thejth cell ofci is the active one}

• C
I(j)
l = C

I(j+1)
s

• C
I(j)
r = C

I(j−1)
s

• CI(j) =
⋃

x∈A′ C
I(j)
x

• D
I(j)
1 = C

I(j−1)
£

• D
I(j)
2 = D

I(j−1)
1

• D
I(j)
3 = C

I(j−1)
r

• S1I(j) =
⋃

a∈A C
I(j)
〈s1,a〉.

It is easy to verify thatI is a model ofKBM whereC0 is
satisfiable. 2

ReducingALCF concept sat toERV T entity sat

We now show how to capture the knowledge baseKBM

with anERV T schema,ΣM . The mapping is based on a sim-
ilar reduction presented in [5] for capturingALC axioms. For
each atomic concept and role inKBM we introduce an en-
tity and a relationship, respectively. To simulate the universal
concept,>, we introduce a snapshot entity,Top, that general-
izes all the entities inΣM . Additionally, the various axioms in
KBM are encoded inERV T as follows:

4 A similar proof holds ifT = 〈Z, <〉.

1. Axioms involvingdiscover are mapped using disjoint
and covering hierarchies inERV T .

2. Axioms of the formC v D, with C, D atomic concepts
are encoded asC ISA D.

3. For each axiom of the formC v ¬D we construct the
hierarchy in Figure 5(a).

4. For each axiom of the formC v D1 t . . .tDn we intro-
duce a new entity,D, and then we construct the hierarchy
in Figure 5(b).

5. Axioms of the formC v ∀R.D are mapped together
with the axiom> v ∃R.> by introducing a new sub-
relationship,RC , and consideringR as a functional role5.
Figure 6(a) shows the mapping whereR is a snapshot re-
lationship to capture the fact thatR is a global role in
KBM .

6. For each axiom of the formC v 2
+D (C v 3

+D) we
use a persistency (dynamic extension) constraint:C PER
D (C DEX D).

7. Axioms of the formnext(C, D) are mapped by using the
dynamic extension constraint to capture thatC v 3

+D.
To capture thatC v ¬3

+
3

+D we rewrite it asC v
2

+
2

+¬D, which, in turn, is encoded by the following
set of axioms:

C v 2
+C1

C1 v 2
+C2

C2 v ¬D
Figure 6(b) shows the portion of theERV T diagram

that mapsnext axioms.

The above reductions are enough to capture all axioms in
KBM . Indeed, axioms (13–15) have the form:C v ¬C1 t
∀R.C2. They can be split by introducing new conceptsC1, C2

as follows:
C v C1 t C2

C1 v ∀R.C1

C2 v ¬C2

We proceed in a similar way to encode axioms (16) which have
the form:Ca v Cl t Cs t Cr t ∀R.Ca, and the axiom (12).
We are now able to prove the main result of this paper.

Theorem 5.2. Reasoning inERV T using persistency and dy-
namic constructs is undecidable.

Proof Proving that the above reduction fromKBM to ΣM

is true can be easily done by checking the semantic equiva-
lence between eachALCF axiom and its encoding (for a sim-
ilar proof see [5]). Then, the conceptC0 is satisfiable w.r.t.
KBM iff the entityC0 is satisfiable w.r.t.ΣM . Thus, because

5 ConsideringR as a functional role does not change theALCF undecid-
ability proof.
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Figure 6. Encoding axioms: (a) C v ∀R.D and > v ∃R.>; (b) next(C, D).

of Proposition 5.1, the halting problem can be reduced to rea-
soning inERV T . 2

6. Conclusions

We formally discussed the relevant reasoning problems
for temporal conceptual models. We distinguished between
six different reasoning services: (a) Entity, relationship and
schema satisfiability; (b) Liveness and global satisfiability for
both entities and relationships; (c) Subsumption for either enti-
ties or relationships; (d) Logical implication between schemas.
While the problems (a-c) have been shown to be reducible to
each other, checking whether a schema logically implies an-
other schema has been shown to be the more general reason-
ing service.

We then investigated the complexity of reasoning on tem-
poral models and we found that such problem is undecidable
as soon as the schema language is able to distinguish between
temporal and atemporal constructs (in particular, whetherthe
language captures temporal relationships) and has the ability
to represent dynamic constraints between entities.

We finally mention an interesting open problem which will
be matter of a future work. Does reasoning onERV T become
decidable if we drop dynamic constraints? Without dynamic
constraints it is possible to encodeERV T using a combina-
tion between the description logicALCQI and the epistemic
modal logic S5. Decidability results have been proved for the
logic ALCS5 [9]. But, it is still an open problem whether this
result holds for the more complex logicALCQIS5.
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