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Abstract

This paper formally clarifies the relevant reasoning prob-

entity and relationship satisfiability problems) togethgth
the subsumption problem (i.e. checking whether two estitie
or relationships denote one a subset of the other so thatither

lems for temporal EER diagrams. We distinguish betweenan implicitiSA link between them) can be mutually reduced to

the following reasoning services: (a) Entity, relatiornslaind
schema satisfiability; (b) Liveness and global satisfigpili
for both entities and relationships; (c) Subsumption for ei
ther entities or relationships; (d) Logical implication tveen

each other. On the other hand, checking whether a sclagma
ically impliesanother schema is shown to be the more general
reasoning service.

The second contribution is to prove that reasoning on tem-

schemas. We then show that reasoning on temporal modelporal conceptual models is undecidable provided the dia-
is an undecidable problem as soon as the schema languagg@rams are able to: (a) Distinguish between temporal and non-

is able to distinguish between temporal and atemporal con-

structs, and it has the ability to represent dynamic coristea
between entities.

1. Introduction

temporal constructs; (b) Represahtnamic constraintbe-
tween entities, i.e. entities whose instances migrateteran-
tities. To the best of our knowledge, this is the first timetsac
resultis proved. Indeed, the result presented in [4] shahetd
ERyr diagrams can be embedded into the temporal descrip-
tion logic DLRy s—whereld, S extendDLR with the until
andsincetemporal modalities—and that reasonin@id R /s

was undecidable. Instead, here we prove that even reasoning

Temporally enhanced conceptual models have been develjust on€R v+ schemas is undecidable. The undecidability re-
oped to help designing temporal databases [12]. In thisrpapesult is proved via a reduction of the Halting Problem. In jgart

we deal with Extended Entity-Relationship (EER) diagrams
used to model temporal databases.

The temporal conceptual modélRy has been intro-
duced both toformally clarify the meaning of the various
temporal constructs appeared in the literature [2, 3], @and t
check the possibility to performeasoningon top of temporal
schemas [4ER v is equipped with both a linear and a graph-
ical syntax along with a model-theoretic semantics. It sutsp
valid time for entities, attributes, and relationshipgia line of
TIMEER [10] and ERT [15], while supporting dynamic con-
straints for entities as presented in MADS [18R 1 is able
to distinguish betweesnapshotonstructs—i.e. each of their
instances has a global lifespan—athporaryconstructs—
i.e. each of their instances have a limited lifespan. Dymami
constructs capture thabject migratiorfrom a source entity to
a target entity.

The contribution of this paper is twofold. Moving from the
formal characterization of Ry given in [3] we clarify the

ular, we proceed by first showing that the halting problem can
be encoded as a Knowledge Base (KBYBC—whereF ex-
tendsALC with thefuturetemporal modality—and then prov-
ing that such a KB indLCg can be captured by &R di-
agram. Note that, in [9] the undecidability g#fCr is proved
using: (a) complex axioms—i.e. axioms can be combined us-
ing Boolean and modal operators—(b) bgtlobal andlocal
axioms—i.e. axioms can be either true at all time or true at
some time, respectively. SinéRyr is able to encode just
simple global axioms, we modify the proof presented in [9]
by showing that checking concept satisfiability w.r.t . 46C

KB made by just simple global axioms is an undecidable prob-
lem.

The paper in organized as follows. The temporal descrip-
tion logic ALCk and the conceptual mod€R 1 are formally
presented in Sections 2 and 3, respectively. The various rea
soning services for temporal conceptual modeling are d&fine
in Section 4 and their equivalence is proved. That reasoning

relevant reasoning problems for temporal EER diagrams. Inin presence of dynamic constraints is undecidable is prioved

particular, we distinguish between six different reasgrsar-
vices, introducing two new services for both entities arld-re
tionships:liveness satisfiability-i.e. whether an entity or re-
lationship admits a non-empty extension infinitely oftethia
future—andglobal satisfiability—i.e. whether an entity or re-
lationship admits a non-empty extension at all points iretim
After a systematic definition of the various reasoning peais
we then show that all the satisfiability problems (i.e. schem

* The author has been partially supported by the EU projecizaSe,
KnowledgeWeb, and Interop.

1 EER is the standard entity-relationship data model, badcwith ISA
links, generalized hierarchies with disjoint and coveraagstraints, and
full cardinality constraints [8].

Section 5. Section 6 makes final conclusions and mention an
interesting open problem.

2. The Temporal Description Logic

In this Section we introduce thedLCr description
logic [16, 1, 9] as a the tense-logical extension£fC. Ba-
sic types of ALCg are conceptsand roles A concept is a
description gathering the common properties among a col-
lection of individuals; from a logical point of view it is
a unary predicate ranging over the domain of individu-
als. Inter-relationships between these individuals aprere
sented by means of roles, which are interpreted as binary



C,D — A (atomic concept) AT® ¢ AT
T (top) TIO = AT
1] (bottom) 1I®0 = ¢
-C | (complement) -C)Z(1) = AT\ CTM®)
CnD| (conjunction) (cnD)I® = CZ(t) N pIM)
CuD]| (disjunction) (CuD)I® = It ypI®
JR.C'|  (exist. quantifier) (VR.O)Z® = {a e AT | Vb.RT() (a,b) = CT(1)(b)}
VR.C'|  (univ. quantifier) (AR.C)I® = {a e AT | Ib.RZ®) (a,b) A CT(D)(b)}
ot O | (Sometime in the Future) (orC)T® = {ae AT |3 > t_CI(U)(a)}
ot | (Every time in the Future) (D+C)I(t) = {aeAT|vw> t_CI(v)(a)}

Figure 1. Syntax and Semantics for the ALC¢ Description Logic

relations over the domain of individuals. According to thia-s
tax rules of Figure 1,ALCg conceptgdenoted by the letters
C andD) are built out ofatomic conceptédenoted by the let-
ter A) andatomic roles(denoted by the letteR). Tense oper-
ators are added for conceptst (sometime in the future) and
O* (always in the future). Furthermore, while tense opera-
tors are allowed only at the level of concepts—i.e. no terapor
operators are allowed on roles—we will distinguish be-
tween so calletbcal—R L—andglobal—RG—roles.

Let us now consider the formal semantics 4£Cg. A
temporal structurel’ = (7,,<) is assumed, wherg, is a
set of time points and< is a strict linear order or,—7
is assumed to be isomorphic to eithé, <) or (N, <). An
ALCk temporal interpretatiorover 7 is a triple of the form
T = (T,A”, 2®) whereA? is non-empty set of objects (the
domainof 7) and-Z® an interpretation functionsuch that,
for everyt € 7, every concep€, and every role’, we have
CT®) C AT andRT(® C AT x AZ. Furthermore, ifR € RG,
then,Vt,,t, € 7.R*(") = RZ(t2) The semantics of con-
cepts is defined in Figure 1—note that the operatoris the
dual of &1, i.e.0FC = 01T -C.

A knowledge baséB) in this context is a finite setl of
terminological axiom®f the formC' T D. An interpretation
7 satisfiesC' C D if and only if the interpretation of” is in-
cluded in the interpretation db at all time, i.e CZ®) C DZT(®),
forall t € 7. A knowledge bas&: is satisfiableif there is a
temporal interpretatiod which satisfies every axiom if; in
this caseZ is called amodelof 3. ¥ logically impliesan ax-
iomC C D (writtenX = C C D) if C C D is satisfied by ev-
ery model of¥. In this latter case, the conceptis said to be
subsumedby the concepD in the knowledge baskg. A con-
ceptC is satisfiable, given a knowledge baseif there ex-
ists a modell of ¥ such thatCZ(*) £ () for somet € T, i.e.
YHCOLC L.

3. Temporal Conceptual Modeling

In this Section, the temporal EER mod&R 1 is briefly
introduced £ER v supports valid time for entities, attributes,
and relationships in the line ofiNEER [10] and ERT [15],
while supporting dynamic constraints for entities as pnesg
in MADS [14]. ERyr is able to distinguish betweesnap-

Dynamic constructs capture tlabject migrationfrom a
source entity to a target entity. If there islgnamic extension
between a source and a target entity (representetiRig
by a dotted link labeled witlnEx) models the case where in-
stances of the source entigyentuallypecome instances of the
target entity. On the other hand,dgnamic persistencrep-
resented ir€ Ry by a dotted link labeled witlER) models
the dual case of instancpersistentlymigrating to a target en-
tity (for a complete introduction o6R v with a worked out
example see [3]).

ERvr is equipped with both a linear and a graphical syn-
tax along with a model-theoretic semantics as a temporal ex-
tension of the EER semantics [6]. Presentingdif&, r linear
syntax, we adopt the following notation: given two satsy’,
an X-labeledtuple overY is a function fromX to Y’; the la-
beled tupleT’ that maps the sdtzy,...,z,} C X to the set
{y1,...,yn} C Y is denoted byz; : y1,..., 2, : yn), and
T[z;] = y;. In the following definition we refer to Figure 2 to
show the visual syntax associated to the variéf&s,  con-
structs.

Definition 3.1 ((Ryr Syntax). An ERyr schema is a tu-
ple:

Y = (£, REL, ATT, CARD, ISA, DISJ, COVER, S, T, KEY, DEX, PER),
such that

L is a finite alphabet partitioned into the setS: (entity
symbols).A (attributesymbols);R (relationshipsymbols)i/
(role symbols), and> (domainsymbols). We will call the tu-
ple (£, A, R,U, D) thesignatureof the schem&.. £ is further
partitioned into: a set€® of snapshot entitie@the s-marked
entities in Figure 2), a sef’ of implicitly temporal entities
(theunmarkecentities in Figure 2), and a sét’ of temporary
entities(the vT-markedentities in Figure 2). A similar parti-
tion applies to the seR.

ATT is a function that maps an entity symboldro an.4-
labeled tuple oveD, ATT(E) = (A1 : D1,...,Ap : Dy).

REL is a function that maps a relationship symbol/ito
anl-labeledtuple ove€, REL(R) = (U; : E1,..., Uy : Ey),
andk is thearity of R.

CARD s a functionf x R x U — N x (NU{oo}) denoting
cardinality constraints. IREL(R) = (U : E,..., Uy : Eg),
then cARD(E, R,U) is defined only ifU U; and
E E;, for somei € {1,...,k}. We denote with

shot(see the consensus glossary [11] for the terminology used)CMIN(E, R,U) and CMAX(E,R,U) the first and sec-

constructs—i.e. each of their instances has a global kfesp
temporaryconstructs—i.e. each of their instances have a lim-
ited lifespan—or implicitly temporal constructs—i.e. thia-

stances can have either a global or a temporary existenee. Tw

temporal markss (snapshot) andT (valid time, i.e. tempo-
rary), are introduced i€Ry to capture such temporal be-
havior.

ond component oEARD. If not stated otherwisecMIN is
assumed to be zero, amAX is assumed to bec. In Fig-
ure 2,CARD(TopManager, Manages, man) = (1,1).

ISA is a binary relationshipsa C (£ x &) U (R x R).
ISA between relationships is restricted to relationships with
the same arityisA is visualized with a directed arrow, e.g.
Manager ISA Employee in Figure 2.
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Figure 2. An ERyr diagram

DISJ, COVER are binary relations overé x &, describ-
ing disjointness and covering partitions, respectivel\sJ is
visualized with a circled “d” andcoveRr with a double di-
rected arrow, e.gDepartment, InterestGroup are both dis-
joint and they covebrganizationalUnit.

S, T are binary relations ove€ x A containing, respec-
tively, the snapshot and temporary attributes of an erfity-
thermore, if(E, A) € s, T, thenA is between the attributes in
ATT(E) (sees, T marked attributes in Figure 2).

KEY is a function that maps entity symbolsirio their key
attributes,KEy (E) = A. Furthermore, ifkEY(E) = A, then
A is between the attributes T T(E). Keys are visualized as
underlined attributes.

BothDEX andPERare binary relations ove€ x £ describ-
ing the dynamic evolution of entittDEX and PERare visu-
alized with dotted directed lines labeled witlx or PER re-
spectively (e.gAreaManager DEX TopManager).

The model-theoretic semantics associated with&Re
modeling language adopts teeapshct representation of ab-
stract temporal databases and temporal conceptual m@gels [
Following this paradigm, the flow of tim& = (7,, <), where
7, is a set of time points (or chronons) ardis a binary
precedence relation dfj, is assumed to be isomorphic to ei-

ther (Z, <) or (N, <). Thus, a temporal database can be re-

garded as a mapping from time pointsZnto standard rela-
tional databases, with the same interpretation of corstard
the same domain.

Definition 3.2 (ERyr Semantics). Let ¥ be an ERyr
schema, and3D = (Jp, . BD; be a set obasic domains
such thatBD; N BD; = () for i # j. Atemporal database state
for the schemaX is a tuple B = (7,A8 U A5 .B),
such that: AB is a nonempty set disjoint from\2;
AP = Up,ep A, is the set of basic domain values used in
the schema such thatA?, C BD;,—we callAF the ac-
tive domain -2 is a function such that for each € 7,
every domain symbdD; € D, every entityE! € £, every re-
lationship R € R, and every attributeA € A, we have:

2 ForisArelations, we use the notatidfi ISA E- instead of( E1, E2) €
ISA. Similarly for DIS3JCOVERDEX,PER

3 The snapshot model represents the same class of temptabbsles as
the timestampmodel [12, 13] defined by adding temporal attributes to a
relation [7].

DFW = AB  EB® C AB, RB( is a set of/-labeled tu-
ples overA®, and A3 C AB x AB,

B is alegal temporal database stifté@ satisfies all of the in-
tegrity constraints expressed in the schema:

e ForeachE, E, € &, if Ey ISA E, then, ) ¢ g5,

e ForeachR;, R; € R, if Ry ISA Ry, then,RP™") ¢ R5®).

e ForeachE € &,if ATT(E) = (A1 : D1,...,Ap : Dp),
then,e € EB® — (Vi € {1,...,h},a;. (e,a;) €
A?(t) AVa;.(e,a;) € A?(t) — a; € Agi).

e ForeachR € R, if REL(R) = (U; : E1,...,Ux : Eg),
then,r € RBW — (r = (Uy 1 eq,...,Up : ex) AVi €
{1,...,k}.e; € Ef(t)). In the following, we adopt the

convention:U; : e1,..., Uy : ex) = (e1,...,ex), and
r[U;] = r[i] to denote théJ; /i-component of.

e For each cardinality constraintARD(E, R, U), then,
e € EB®) — cMIN(E, R, U) < #{r € RBY | r[U] =
e} < CcMAX(E,R,U).
e For each snapshot entitiy € £°, then,
e€EB®) v’ eT.ec BB,
e For each temporary entitf € €7, then,
ec EBW) 3t/ Lt egd EBI),
e For each snapshot relationshipc R*, then,
re RB®) — vt e T.re REW),
e For each temporary relationshig ¢ R7', then,
reRBM — 3t/ £t g RB(),
e For each entityF € £ with a snapshot attributed;, i.e.
(E, A;) € s, then,
(e€ EB® A (e, a;) € APY) S v €T (e, a;) € AP,
e For each entityE’ € £ with a temporary attributed;, i.e.
(E, A;) € T, then,
(e € EBOA(e,a;) € APW) 3¢ £ t.(e, a;) ¢ AP,
e FOrE.Ey,...,E, €&,

— If{Ey,...,E,} DISJE, then,
Vie{l,...,n}.E;1SA EA
Vie{l,....n},j#iE Y nENY =0,



— If{F;,...,E,} COVERE, then,
Vie{l,...,n}.Ei1sA E A EB®O = (J | EPO)
e ForeachE € £, A € A such thatkey(E) = A, then,
(E, A;) € s—i.e. akeyis a shapshot attribute—ande
AB #{e € EBM | (e,a) € AB®Y <1,
e ForeachE,, E> € &,
— If B\ DEXE,, thenec B — 3t; > t.ee E5™);

— If By PERE,, then,ec EP® — Wt/ > t.e € BB,

4. Reasoning on Temporal Models

Reasoning tasks over a temporal conceptual model include
verifying whether an entity, relationship, or schema sats-
fiable, whether asubsumptiomelation exists between entities
or relationships, or checking whether a new schema projgerty
logically impliedby a given schema. The model-theoretic se-
mantics associated witiRy allows us to formally define
these reasoning tasks. We start with the formal definition of
the relevant reasoning services in a temporal schema as pre-
sented in [3]. Based on this formal characterization we can
prove the first results of this paper concerning reasoning in
ERvyr: a) Subsumption and satisfiability reasoning services
relative to entities are mutually reducible to each othpBdu-
isfiability problems relative to relationships are mutyaik-
ducible; c) Satisfiability of relationships reduces to S#bil-
ity of entities and viceversa; d) Logical implication is tmere
general service.

Definition 4.1 (Reasoning in€Ryr). Let ¥ be anERyr
schemaF € £ an entity, andR € R a relationship. The fol-
lowing are the reasoning tasks over

1. £ (R) is satisfiableif there exists a legal tempo-
ral database stateB for ¥ such that EB(®) £
(RB(®) £ (), for somel € T;

2. E (R) is liveness satisfiablé there exists a legal tem-
poral database stat® for ¥ such thatvt € 7.3t >
t.EB) £ 0 (RBW) £ ), i.e. E (R) is satisfiable in-
finitely often;

3. E (R) is globally satisfiablef there exists a legal tempo-
ral database statés for X such thatEB®) £ () (RB®) £
M), forall t € T;

4. ¥ is satisfiableif there exists a legal temporal database
stateB for ¥ that satisfies at least one entity ¥a (3 is
said amodelfor ¥);

5. E1 (Ry) is subsumeddy Es> (Rg) in X if every legal
temporal database state faf is also a legal temporal
database state faF; I1SA F5 (R I1ISA Ry);

6. A schem& islogically impliedby a schema: over the
same signature if every legal temporal database state for
Y is also a legal temporal database state 0.

We now prove that reasoning services (1-5) relative to enti-
ties and knowledge bases are mutually reducible to each othe

Proposition 4.2. There is a mutual reducibility between the
reasoning services (1-5) relative to entitiessiR 7.

Proof Proving the mutual reducibility between satisfiability
and subsumption iRy can be done similarly to [5]. Then,
in the following we prove that given &Ry schemax:

1. Entity satisfiability reduces to schema satisfiability;

2. Schema satisfiability reduces to entity liveness satitfia

ity;

3. Entity liveness satisfiability reduces to entity glotsls

fiability;

4. Entity global satisfiability reduces to entity satisfiéii

(1) We prove that given an entity, € £, then,E, is satisfi-

able w.r.t.Y iff a new schema’ is satisfiableX'’ is ob-
tained by adding to- the schema in figure 3(a), where
T, Eq, E5 are new entities such thatE € £.F ISA T,
and R is a new binary relationship.

“«<" Let X' be satisfiable, theny’ has a model3
(which is a model for¥, too) such thatit € 7.3e €
AB e ¢ TBM (by definition of schema satisfiability and
by construction ofT as superclass of all entities ).
BecauseT is a snapshot entity, theki} € T.e € TB®),
SinceF,, F» form a disjoint covering ofT, and £y, F»
are both temporary, thent’ € T.e € Ef(t ). Fi-
nally, becausdy; totally participates inR, then,3ey €
AB ((e, e0) € RE®) neg € EPM)). Then,E, is satisfi-
able w.r.t.3.

“="Let E, be satisfiable w.r.t, then,X has a model
B such that3t, € 7.3ey € AB.ey € Eég(t”). We now
construct a modeB’ for ¥/, Let 8 and B’ coincide on all
constructs i, and additionally, for allt € 7:

o TH = UuET UEeg EB®)
B [ TE® i t=t¢,

* by = { 0 otherwise

° EQB/(t) _ TB'(t) \ElB/(t)

o RE'® = {{e,e0) | e € EF' )}

It is easy to check tha’ is a model forY’, then,X’ is
satisfiable.

(2) We prove that a given schemais satisfiable iff an en-

tity is liveness satisfiable w.r.t. a new schelfa ¥’ is
obtained by adding t& the schema in figure 3(b), where
T1, To, F1, Fo are new entities and is a new binary re-
lationship. Furthermore{E | E € £} COVERT 5. In par-
ticular, we prove thak is satisfiable iffT; is liveness sat-
isfiable w.r.t.5'.

“«" Let T; be liveness satisfiable w.rE’. Then,
3’ has a modelB, such thatvt € 7.3t > t.do €

ABo € Tf(t/). Since T, is a snapshot entity, then,

o € Tf(t), for all ¢t € 7. BecauseE, E, are a dis-
joint covering of T; and they are both temporary, then,

JdeToc Ef ®, Becauser; totally participates inR,

then,3e € AB.((o,¢) € RED pe e TED) Then,T,
is a satisfiable entity and, because of the covering con-
straint, X is satisfiable.

“="Let X be a satisfiable schema aftia model for
Y. We now show how to build a mod#,, for >’ such
that T is liveness satisfiable3’ agrees with3 on all
constructs i, and additionally, for allt € 7:

TB(U)

B(t) _
LI =U,er T2 ) o
Note that, because by assumptiaris satisfiable,
then, T is satisfiable whileéT; contains always at
least one element (i.e., it is globally, and then live-
ness, satisfiable).
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Figure 3. Reductions: (a) From Entity Sat to Schema Sat; (b) From Schema Sat to Entity Liveness Sat.

e Letty € 7 an arbitrary time such thafle, €
AB ey € TE®) then:

550 _ Tf,(t) if t=to
1 0 otherwise

° E2B/(t) _ TlB/(t) \Efl(t)
o RE'® = {(e,ep) | e € Ef,(t)}

Then,B’ is a model o2’ such thatT; is liveness satisfi-
able.

(3) We prove that given an entitiy € &, then, Ey is live-
ness satisfiable w.r.k iff an entity is globally satisfiable
w.rt. a new schem&’. ¥’ is obtained by adding t&:
the new entity; as showed in figure 4(a). We prove that
Ey is liveness satisfiable w.rX iff £ is globally satisfi-
able w.r.t.>.

“ <" Let E; be globally satisfiable w.r.&2’. Then >’
has a model3, such thatvt € 7.30 € AB.o € Ef(t).
Then, given the dynamic extension constraint betwgen
and Eg, Ejq is liveness satisfiable.

“=" Let E; be liveness satisfiable w.rf. Then,X
has a modelB, such thatvt € 7.3t' > t.3e € ABe €
Eg"(t ). We now extens$ to FE4, such thatforalk € 7

. Ef(t) ={ecAB |3t >tec Eég(t/)}
Then,B is a model o’ such thatE; is globally satisfi-
able.

(4) We prove that given an entify, € £, then,Ej is globally
satisfiable w.r.t3 iff an entity is satisfiable w.r.t. a new
schemay’. ¥’ is obtained by adding t& the schema in
figure 4(b), wherel; is new snapshot entity anfl is a
new binary relationship.

“«" Let E; be satisfiable w.rtY’, then,>’ has a
modelB such thatlo € AB.o € EPY) forallt € T (by
construction off/; as a snapshot entity). Sinég totally
participates inR, then,3e € AB.(0,e) € RBEM Ne €
E(lf(t). Since this must be true at all time, the, is glob-
ally satisfiable w.r.t3.

“=" Let Ey be globally satisfiable w.r.&2. Then,X
has a modelB, such thatvt € 7.3e € AB.e € Ef(t).
We now construct a modéds;, for X2’ such that?; is sat-
isfiable.3” agrees withB on all constructs i, and ad-
ditionally, forallt € 7

o B =Uer B

o RE® = {(oe)|oc EX U nee EPOY
Then,B’ is a model o8>’ such thatF); is satisfiable.

We are now able to prove that satisfiability problems for re-
lationships are reducible to the same problems for entities
viceversa.

Proposition 4.3. There is a mutual reducibility between the
reasoning services (1-4) relative to both relationshipd an-
titiesiNnERy .

Proof We only prove that satisfiability of relationships can
be reduced to satisfiability of entities and viceversa. Ttheio
mutual reductions easily follow from analogous resultsve

in Proposition 4.2.

“R SAT reduces to E SAT.” We can verify whether a rela-
tionship R is satisfiable in> by adding a new entity, sajyr
such that: (a)Ag ISA E, with E an arbitrary entity participat-
ing in the relationship, and (b}l totally participates in the
relationship. ThenR is satisfiable if and only ifA ; is satisfi-
able.

“E SAT reduces to R SAT.” We can verify whether an en-
tity E is satisfiable inX by adding a new relationship, say
Rpg such that: (a)Rg is a binary relationship with both argu-
ments restricted tdv; (b) E totally participates inRg. Eas-
ily follows thatF is satisfiable if and only iRy is satisfiable.

a

Finally, we show that all the reasoning problems can be re-
duced to a logical implication problem. Logical implicatio
accounts for checking properties of a schema whenever they
can be expressed in tER 1+ schema language. In particu-
lar, checking whether an entity is satisfiable can be reduced
to logical implication by choosing@’ = {FE I1SA A, E ISA
B,{A, B} DIsiC}, with A, B, C arbitrary entities. Ther¥ is
satisfiable iffY [~ X’. Given the result of Proposition 4.2, then
the reasoning services (1-5) for entities are reducibledgd |
cal implication. Furthermore, given two relationshifds, Ro,
checking for sub-relationship can be reduced to logicaliimp
cation by choosing’ = { R; 1ISA R }. This shows that logical
implication is the most general reasoning service.

5. Reasoning or€ Ry is Undecidable

We now show that reasoning on féliR /1 is undecidable.
The proofis based on a reduction from the undecidable lgaltin
problem for a Turing machine to the entity satisfiability pro
lem w.rt. an€R v schemaX. We apply ideas similar to [9]
(Sect. 7.5) to show undecidability of certain product of mlod
logics. The proof can be divided in the following steps:

1. Definition of the halting problem;

2. Reduction of the halting problem to concept satisfigbilit
problem w.r.t. andLCg KB;

3. Reduction of concept satisfiability w.r.t. abC¢ KB to
entity satisfiability w.r.t. af’ Ry schema.
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Figure 4. Reductions: (a) From Entity Liveness Sat to Entity Global Sat; (b) From Entity Global Sat to

Entity Sat.

The second step has been chosen as an intermediate step to b&roof Given a Turing machineM = (A, S, p), we con-

ter understand the halting problem reduction by using time co
cise ALCr linear syntax. Then, the final step will show how
ERyr is able to capture thel LCr axioms used in the reduc-
tion.

Halting problem

We show here a formal representation of the halt-
ing problem for Turing machines as presented in [9]. A
single-tape right-infinite deterministic Turing machind
is a triple (4, S, p), where: A is thetape alphabe(b € A
stands for blank);S is a finite set ofstateswith the ini-
tial state sg, and thefinal state s;; p is the transition

function p (S — {s1}) x A — S x (AU {L,R}).
A Configuration of M is an infinite sequence:
<£,a1,...,ai,l,<si,ai>,...,an,b,...>, where, £ ¢ A

is a symbol marking the left end of the tapg, € A, and
s; € S is the current state. The celk;,a;) is the ac-
tive cell All the cells to the right of.,, are blank.

Since a transition function can only modify the active cell
and its neighbors we introduce thestruction functiond, de-
fined on triples iNAU{£}) x ((S—{s1}) x A) x A, such that:

if p(saaj) = <S/7a_/j>
if p(saaj) = <5/7L>
anda; # £
if p(saaj) = <5/7L>
anda; = £
(@i, aj,(s"ar)) if p(s,a;) = (s',R)

A sequenc€cy,c1, . . ., Ck, Ckt1, - - ) OF configurations of
M is said acomputationof M if the state ofcy is sy (the
initial state), and, for alk, cx,1 is obtained fronc; by re-
placing the triple centered around the active celtpby its
d-image and living the rest unaltered. We say thathalts
starting with the empty tape—i.e. with starting configura-
tion: (£(so,b),b,...,b,...)—if there is a finite computation,
(o, c1, ..., k), Such that the state of, is s; (the final state).

<a’ia <S/7 a;’>7 ak’>
<<5/7 ai>7 aj, ak’>

5(ai,<s,aj>;ak) = <£,<5'7aj>,ak>

Reasoning onALC is undecidable

Using a reduction from the halting problem we now prove
that reasoning involving ad LC¢ knowledge base is undecid-
able. In [9] the undecidability ofALC is proved using: (a)

complex axioms—i.e. axioms can be combined using Boolean ~©

and modal operators—(b) botiobal andlocal axioms—i.e.

struct an ALCg KB, sayKB,,, with a concept that is sat-
isfiable w.r.t. KB, iff the machinéM does not halt. We start
by introducing some shortcuts. The implicatian,— D, is
equivalent to the concept expressie@’ LI D. Given two con-
ceptsC, D we definenext(C, D) as the following axiom:
C C OtD n —-o+to+D., This axiom says that whenever
o € CT() then,o € DT+t AVt +£ tg.0 ¢ CTM), Let
C,Dy,...,D, conceptsdiscover(C,{D,...,D,}) is de-
fined as the conjunction of the following axioms:

CCDiu...uD,

Dy CCMN=DyM...M=D,

D, ,CCnNn=D,
i.e., there is a disjoint covering betweéhand D; . .. D,,.
LetA’ = AU{£} U (S x A). With eachz € A’ we intro-
duce a concepC,. We also use concepts;, C;, C,. to de-
note the active cell, its left and right cells, respectivaljze
conceptS1 denotes the final state. The halting problem re-
duces to satisfiability o€y. Extra concepts’, Dy, D», D3,
will be also usedR is a global role. KB, contains the fol-
lowing axioms:

Co CCenOTCry iy
discover(C,{Cy | z € A’})

TC3RrRT

next(c;;, Dl)

next(Dl, Dg)

Clsouby E D1

Csoby E 0*Cy

discover(Cs, {C(s.q) | (s,a) € S x A})
next(Cy, Cs)

next(Cs, Cr) (10)

next(Cr, D3) (11)

CeCCUOTC (12)

C) C Ca — YR.Cps (13)

Cs C Cg — YR.Cy (14)

Cr CCy — VR.C, (15)

Co C (-CyM=Cs M=Cr) —» VR.Co, Ya€ AU{L} (16)
discover(S1,{C(s, 4y | a € AU{L}}) (17)

Cs E =51 (18)

with axioms (13-15) for each instruction(«, 3,7)

(o, B',"). We now prove thaf, is satisfiable w.r.tKB,, iff

M has an infinite computation starting from the empty tape.
“="Let Cy be satisfiable, therj(xo, o) € AT x T.x¢ €

cZ) Then, by axiom (1) € 2", andJf > to.Ci(f)w.

We now show that = ¢o + 1. Indeed, ifCs, 0y is true, then,

axioms can be either true at all time or true at some time, re-py axjom (6),D; must also be true, i.exy € le(i)_ on

spectively. Sinc&€Ry 1 is able to encode just simple global
axioms, we modify the proof presented in [9]. The follow-
ing theorem proves that checking concept satisfiabilitytw.r
an ALC¢ KB made by just simple global axioms is an unde-
cidable problem.

Proposition 5.1. Concept satisfiability w.r.t. asl LC¢ knowl-
edge base is undecidable.

the other hand, by axiom (4{,¢ is true at just one point in
time andD; is true next time and only there (by axiom (5)),
i.e. o € le(t0+1). Thus,f =ty+ 1,z € Cg(to),lﬂo S
Z(to+1) . Z(t)
, and, by axiom (7)yt > to+ 1.z € C . Further-

<‘507b>
more, by axiom (8)z¢ € CZFD while, by axioms (9-12),

Ty € ClI(tU),:zzo e CFt) Because by axiom (2), for all
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Figure 5. Encoding axioms: (a) C T —=D; (b) CC Dy U ... U D,,.

t € 7 there is at most one € A’ such thatzy € C’f(t), then,
the sequencé(xo, to), {(xo,to + 1),...) represents the start-
ing configuration ofM. Now, by axiom (3) and the assump-
tion thatR is global,3z; € ATVt € T.(xg,z;) € RT®) (we
call z; R-successor ofy). Let(xg, z1, 22, ...) be a chain of
R-successors satisfying axiom (2). Singe € Cﬁ(t“), then,
by axioms (13) and (16), and the definition of the instruction
function,é, z; € Cﬁ(t‘)), for all i. Then, given the axioms (12—
16), the chain ofRk-successor{z, z1,x2,...), represents a
computation oM. Finally, axioms (17-18) guarantee thixt
never halts.

“ <" Conversely, suppose thav is a Turing machine
and{co, ..., ¢k, - . .) its infinite computation starting with the
empty tape. We construct a modek (7, A%, .Z(®)) of KB,
such thatCy is satisfiable. In particular, we fif = (N, <)?,
AT = N, R? = sucy (the successor function oveé¥),
Cg® = {0}, andCyY) = ¢, for all j > 0. Furthermore,
VjeN:

o CIY = {i € N | thejth cell of¢; containsz}, for all
ze A

o T = {i € N | thejth cell of¢; is the active ong

ClI(j) _ CSI(j+1)

C,Z(j) _ CSI(J'*l)

) T(i
° CI(g) — UJ;EA’ C:c (49)
DIO)

* Ly

_ Cﬁ(j’l)
o DIO) — pTUG-D
o DIV — cZU-D
o 5110) = UaeA otV

<51 7a> '
It is easy to verify thaf is a model ofKB,; whereCj is
satisfiable. m]

Reducing ALCg concept sat toE Ry entity sat

We now show how to capture the knowledge b&SB
with anERyr schemay ;. The mapping is based on a sim-
ilar reduction presented in [5] for capturiggCC axioms. For
each atomic concept and role KB,,; we introduce an en-
tity and a relationship, respectively. To simulate the arsal
concept,T, we introduce a snapshot entiBgp, that general-
izes all the entities i ;. Additionally, the various axioms in
KB, are encoded i8Ry as follows:

4 Asimilar proof holds if7 = (Z, <).

1. Axioms involvingdiscover are mapped using disjoint
and covering hierarchies #iR v .

N

. Axioms of the formC' C D, with C, D atomic concepts
are encoded a5 ISA D.

3. For each axiom of the forl@ T —D we construct the
hierarchy in Figure 5(a).

4. For each axiom of the fordf C D, LI. ..U D,, we intro-
duce a new entity]), and then we construct the hierarchy
in Figure 5(b).

. Axioms of the formC C VR.D are mapped together
with the axiomT C 3R.T by introducing a new sub-
relationship,R¢, and consideringt as a functional rofe
Figure 6(a) shows the mapping whekds a snapshot re-
lationship to capture the fact thdt is a global role in
KBy,.

. For each axiom of the forfd@ C O+ D (C C ¢t D) we
use a persistency (dynamic extension) constrairRER
D (C DEX D).

. Axioms of the formmext(C, D) are mapped by using the
dynamic extension constraint to capture that ¢+ D.
To capture thaC C —=<O+TOT D we rewrite it asC =
O*+O%-D, which, in turn, is encoded by the following
set of axioms:

C C oOoft¢
C, C Ot
Cy C =D
Figure 6(b) shows the portion of tt&R diagram
that mapsiext axioms.

The above reductions are enough to capture all axioms in
KB),. Indeed, axioms (13-15) have the forai:C -C, U
VR.C5. They can be split by introducing new concefts C',

as follows:

g C 61 L 62
gl C VR.C,
Cy B G

We proceed in a similar way to encode axioms (16) which have
the form:C, C C; U Cs U C, UVR.C,, and the axiom (12).
We are now able to prove the main result of this paper.

Theorem 5.2. Reasoning i€ Ry 1 using persistency and dy-
namic constructs is undecidable.

Proof Proving that the above reduction frolB,; to X,

is true can be easily done by checking the semantic equiva-
lence between eacdLCr axiom and its encoding (for a sim-
ilar proof see [5]). Then, the concepl) is satisfiable w.r.t.
KB, iff the entityCy, is satisfiable w.r.t3,. Thus, because

5 ConsideringR as a functional role does not change HH€Cr undecid-
ability proof.
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Figure 6. Encoding axioms: (a) C CVR.D and T C 3R.T; (b) next(C, D).

[o}-ro->{af-r->[e]  [o0
A

————————— DEX - — ————— — — — — —

(b)

of Proposition 5.1, the halting problem can be reduced to rea

soning iINERy . a

6. Conclusions

We formally discussed the relevant reasoning problems
for temporal conceptual models. We distinguished between

six different reasoning services: (a) Entity, relatiopshind
schema satisfiability; (b) Liveness and global satisfigbfbr
both entities and relationships; (c) Subsumption for eidmti-
ties or relationships; (d) Logical implication betweenectas.

While the problems (a-c) have been shown to be reducible to

Meyden, and G. Saake, editoiispgics for Emerging Appli-
cations of DatabasesLecture Notes in Computer Science,
Springer-Verlag, 2003.

[4] A.Artale, E. Franconi, F. Wolter, and M. Zakharyasch&vem-

poral description logic for reasoning about conceptuaéstis
and queries. In S. Flesca, S. Greco, N. Leone, and G. larini, ed
tors,Proceedings of the 8th Joint European Conference on Log-
ics in Artificial Intelligence (JELIA-02)volume 2424 oL NAI,
pages 98-110. Springer, 2002.

D. Berardi, A. Cali, D. Calvanese, and G. De Giacomo. -Rea
soning on UML class diagrams. Technical Report 11-03, 2003.
D. Calvanese, M. Lenzerini, and D. Nardi. Unifying cldsased
representation formalism3. of Artificial Intelligence Research
11:199-240, 1999.

each other, checking whether a schema logically implies an- [7] J. Chomicki and D. Toman. Temporal logic in information

other schema has been shown to be the more general reason-

ing service.

We then investigated the complexity of reasoning on tem- [8]
poral models and we found that such problem is undecidable
as soon as the schema language is able to distinguish betweeri9]

temporal and atemporal constructs (in particular, whetier

language captures temporal relationships) and has thigyabil

to represent dynamic constraints between entities.

We finally mention an interesting open problem which will

be matter of a future work. Does reasoning&Ry r become

decidable if we drop dynamic constraints? Without dynamic

constraints it is possible to encod& 1 using a combina-
tion between the description logi¢LC Q7 and the epistemic

modal logic S5. Decidability results have been proved fer th

logic ALC g5 [9]. But, it is still an open problem whether this
result holds for the more complex logitLC Q7 s5.
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