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Abstract

We extend the tractable DL-Lite languages by (i) relaxing the restriction on the allowed
interaction between cardinality constraints and role inclusions; (ii) extending the languages
with attributes. On the one hand, we push the limit on the use of number restrictions over
role hierarchies and also show the effect of the presence of the ABox on such constraints.
On the other hand, attributes—a notion borrowed from data models—associate concrete
values from datatypes to abstract objects and in this way complement DL-Lite roles that
describe relationships between abstract objects. We present complexity results for two most
important reasoning problems in DL-Lite: combined complexity of KB satisfiability and
data complexity of query answering.

1 Introduction
The DL-Lite family of description logics has recently been proposed and investigated in (Calvanese et al.,
2005, 2006, 2007) and later extended in (Artale et al., 2007a; Poggi et al., 2008; Artale et al., 2009). The
relevance of the DL-Lite family is witnessed by the fact that it forms the basis of OWL 2 QL, one of the
three profiles of OWL 2 (www.w3.org/TR/owl2-profiles). According to the official W3C profiles
document, the purpose of OWL 2 QL is to be the language of choice for applications that use very large
amounts of data.

This paper extends the DL-Lite languages of (Artale et al., 2009) by: (i) relaxing the restriction on the
interaction between cardinality constraints (or number restrictions, N ) and role inclusions (or hierarchies,
H); (ii) having the so called attributes (A), i.e., the possibility to associate concrete values from datatypes
to abstract objects. These extensions will be formalized in a new family of languages, DL-LiteHNAα , with
α ∈ {core, krom, horn, bool}. Original and tight complexity results for both KB satisfiability and query
answering will be presented in this paper.

Role inclusion axioms were introduced in DL-Lite by (Calvanese et al., 2006). The possibility to com-
bine them with cardinality constraints on roles has been studied by (Artale et al., 2009), which shows the
dramatic impact of role inclusions, when combined with cardinality (or even functionality) constraints, on
the computational complexity of reasoning. In particular, query answering becomes CONP-complete for
the data complexity even for the simplest, core, logics and PTIME-complete for the core and Horn logics
only with functionality constraints only; moreover, KB satisfiability, which is NLOGSPACE-complete for
the combined complexity in the simplest, core, case when role inclusions and cardinalities are used sepa-
rately, becomes EXPTIME-complete when they both are present and interact. The DL-Lite logic DL-LiteA,
introduced in (Poggi et al., 2008), retains both role inclusions and functionality constraints and, to regain
nice computational results, limits the interaction between them. A similar restriction is also used by (Ar-
tale et al., 2009) for limiting this kind of interaction thus preserving the computational properties of the
DL-Lite fragments with only role inclusions or only cardinality constraints. The restriction—called (in-
ter)—essentially forbids the use of cardinality constraints whenever a role is specialized. In this paper we
push the limit by relaxing these restriction and allowing specialization of roles even when cardinalities are
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Figure 1: Salary example

specified on them. We present two new restrictions, (interT ) and (interKB), whose difference lies in the
fact that the latter takes account of the number of R-successors in the ABox while the former does not.
We show that (interKB) does not lead to an increase of the complexity of KB satisfiability, but adopting
(interT ) brings the computational complexity up to EXPTIME.

The notion of attributes, borrowed from conceptual modelling formalisms, introduces a distinction
between (abstract) objects and concrete values (integers, reals, strings, etc.) and, consequently, between
concepts (sets of objects) and datatypes (sets of values), and between roles (relating objects to objects)
and attributes (relating objects to values). The language DL-LiteA (Poggi et al., 2008) was introduced
with the aim of capturing the notion of attributes in DL-Lite in the setting of ontology-based data access
(OBDA). The datatypes of DL-LiteA are modelled as pairwise disjoint sets of values that are also disjoint
from concepts. A similar choice is made by various DLs encoding conceptual models (Calvanese et al.,
1999; Berardi et al., 2005; Artale et al., 2007b). Furthermore, datatypes of DL-LiteA are used for typing
attributes globally, i.e., even if associated to different concepts, attributes sharing the same name are forced
to have the same range restriction—e.g., to constrain the range of the attribute salary to the type Real the
following DL-LiteA axiom is used: ∃salary− v Real.

In this work we consider a more expressive language for attributes and datatypes in DL-Lite. We
present two main extensions of the original DL-LiteA: (i) datatypes are not necessarily mutually disjoint
but Horn-like constraints can formalize relations between them; (ii) range restrictions for attributes are
local (rather than global), i.e., concept inclusion axioms of the form C v ∀U.T specify that all values of
the attribute U of instances of concept C belong to the datatype T . In this way, we capture a wider range of
datatypes (e.g., intervals over the reals) and allow re-use of the very same attribute associated to different
concepts, but with different range restrictions.

For example, the Entity-Relationship diagram shown in Fig. 1 says that

• employees’ salary is of type Real: Employee v ∀salary.Real;

• researchers’ salary is in the range {35K–70K} (interval type, subset of Real):
Researcher v ∀salary.{35K–70K};

• and professors’ salary in the range {55K–100K}: Professor v ∀salary.{55K–100K};

• with researchers and professors being employees: Researcher v Employee, Professor v Employee.

Local attributes are strictly more expressive than global attributes—the axiom> v ∀salary.Real would
force every salary value to be a real number. Using local attributes we can infer concept disjointness just
from datatype disjointness for the same (existentially qualified) attribute. For example, assume that in the
scenario of Fig. 1 we add the concept of ForeignEmployee as having at-least one salary that must be a
String (to include also the currency). Then Employee and ForeignEmployee will be disjoint concepts—i.e.,
EmployeeuForeignEmployee v ⊥—because of the disjointness of the respective datatypes and restrictions
on the salary attribute. More generally, we allow Horn datatype inclusions, which, for instance, can express
that an intersection of a number of datatypes is empty.
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Our work lies in between the DL-LiteA proposal and the extensions of DLs with concrete domains;
see (Lutz, 2003) for an overview. According to the concrete domain terminology, we consider a path-
free extension with unary predicates—predicates coincide with datatypes with a fixed interpretation, as
in DL-LiteA. Differently from the concrete domain approach, we do not require attributes to be func-
tional but we can specify generic number restrictions over them—similarly to extensions of EL with
datatypes (Baader et al., 2005; Magka et al., 2011) and the notion of datatype properties in OWL 2 (Pan and
Horrocks, 2011; Cuenca Grau et al., 2008). Our approach works as far as datatypes are unbounded—query
answering is CONP in presence of datatypes of specific cardinalities (Franconi et al., 2011; Savković,
2011)—and no covering constraints can hold between them (unless the DL-Lite fragments with the full
Booleans are considered).

We provide tight complexity results showing that for the Bool, Horn and core cases the addition of
local range restrictions for attributes does not change the complexity of KB satisfiability. On the other
hand, surprisingly, in the Krom case the complexity increases from NLOGSPACE to NP. These results
reflect the intuition that universal restrictions over attributes—as studied in this paper—cannot introduce
cyclic dependencies between concepts, while the (unrestricted) use of universal range restrictions (∀R.C)
together with sub-roles, by which we can encode qualified existential restrictions (∃R.C), and arbitrary
TBox axioms would result in EXPTIME-completeness.

We complete our complexity results by showing that positive existential query answering (and so,
conjunctive query answering) for core and Horn KBs with local attributes and Horn datatype constraints
(i.e., the logics DL-LiteHNAhorn and DL-LiteHNAcore ) under the relaxed version of the restriction on sub-roles
(and sub-attributes) and cardinalities is still FO rewritable and so in AC0 for data complexity.

The paper is organized as follows. Section 2 presents DL-Lite and its fragments. Section 3 investi-
gates the complexity of deciding KB satisfiability when relaxing the restriction on the interaction between
cardinalities and role hierarchies. Sections 4 and 5 study combined complexity of KB satisfiability and
data complexity for answering positive existential queries, respectively, when attributes and datatypes are
present. Section 6 concludes this paper. Complete proofs of all the results can be found in (Artale et al.,
2012).

2 The Description Logic DL-LiteHNAbool

The language of DL-LiteHNAbool contains object names a0, a1, . . ., value names v0, v1, . . ., concept names
A0, A1, . . ., role names P0, P1, . . ., attribute names U0, U1, . . ., and datatype names T0, T1, . . .. Complex
roles R, concepts C and datatypes T are defined as follows:

R ::= Pi | P−i ,
B ::= > | ⊥ | Ai | ≥ q R | ≥ q Ui
C ::= B | ¬C | C1 u C2,
T ::= ⊥ | Ti1 u · · · u Tik ,

where q is a positive integer. The concepts of the form B are called basic concepts. A DL-LiteHNAbool TBox,
T , is a finite set of concept, role, attribute and datatype inclusion axioms of the form:

C1 v C2 and C v ∀U. T, R1 v R2, U1 v U2, T1 v T2,

and an ABox, A, is a finite set of assertions of the form:

Ak(ai), ¬Ak(ai), Pk(ai, aj), ¬Pk(ai, aj), Uk(ai, vj), Tk(vj), ¬Tk(vj).

We standardly abbreviate ≥ 1R and ≥ 1U by ∃R and ∃U , respectively. Taken together, a TBox T and an
ABox A constitute the knowledge base (KB) K = (T ,A).
Semantics. As usual in description logic, an interpretation, I = (∆I , ·I), consists of a nonempty domain
∆I and an interpretation function ·I . The interpretation domain ∆I is the union of two nonempty disjoint
sets: the domain of objects ∆IO and the domain of values ∆IV . We assume that all interpretations agree on
the semantics assigned to each datatype Ti, as well as on each value vj . In particular, T Ii = val(Ti) ⊆ ∆IV
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Languages (inter)∗ (interT ) (interKB) No Restrict. QA
DL-LiteHNcore NLOGSPACE∗ ≥NP [Th.1] NLOGSPACE [Th.3] AC0∗

DL-LiteHNhorn PTIME∗ EXPTIME [Th.1] PTIME [Th.3] AC0∗

DL-LiteHNkrom NLOGSPACE∗ ≥NP [Th.1] NLOGSPACE [Th.3] EXPTIME∗ CONP∗

DL-LiteHNbool NP∗ EXPTIME [Th.1] NP [Th.3] CONP∗

DL-LiteHNAcore NLOGSPACE [Th.5] ≥NP [Th.1] NLOGSPACE [Th.5] AC0 [Th.8]

DL-LiteHNAhorn PTIME [Th.5] EXPTIME [Th.1] PTIME [Th.5] AC0 [Th.8]

DL-LiteHNAkrom NP [Th.6] ≥NP [Th.1] NP [Th.6] EXPTIME CONP
DL-LiteHNAbool NP [Th.5] EXPTIME [Th.1] NP [Th.5] CONP

Table 1: Complexity of DL-Lite logics; ∗ = (Artale et al., 2009).

is the set of values of the datatype Ti, and each vj is interpreted as one specific value, denoted val(vj),
i.e., vIj = val(vj) ∈ ∆IV . Furthermore, ·I assigns to each object name ai an element aIi ∈ ∆IO, to
each concept name Ak a subset AIk ⊆ ∆IO of the domain of objects, to each role name Pk a binary
relation P Ik ⊆ ∆IO × ∆IO over the domain of objects, and to each attribute name Uk a binary relation
UIk ⊆ ∆IO ×∆IV . We adopt here the unique name assumption (UNA): aIi 6= aIj , for all i 6= j. The role,
concept and datatype constructs are interpreted in I in the standard way:

(P−k )I = {(w′, w) ∈ ∆IO ×∆IO | (w,w′) ∈ P Ik },
>I = ∆IO, ⊥I = ∅, (¬C)I = ∆IO \ CI ,

(≥q R)I =
{
w ∈ ∆IO | ]{w′ | (w,w′) ∈ RI} ≥ q

}
,

(≥q U)I =
{
w ∈ ∆IO | ]{v | (w, v) ∈ UI} ≥ q

}
,

(∀U. T )I =
{
w ∈ ∆IO | ∀v. (w, v) ∈ UI → v ∈ T I

}
,

(C1 u C2)I = CI1 ∩ CI2 , (T1 u T2)I = T I1 ∩ T I2 ,

where ]X is the cardinality of X . The satisfaction relation |= is also standard:

I |= C1 v C2 iff CI1 ⊆ CI2 , I |= R1 v R2 iff RI1 ⊆ RI2 ,
I |= T1 v T2 iff T I1 ⊆ T I2 , I |= U1 v U2 iff UI1 ⊆ UI2 ,
I |= Ak(ai) iff aIi ∈ AIk , I |= Pk(ai, aj) iff (aIi , a

I
j ) ∈ P Ik ,

I |= ¬Ak(ai) iff aIi /∈ AIk , I |= ¬Pk(ai, aj) iff (aIi , a
I
j ) /∈ P Ik ,

I |= Tk(vj) iff vIj ∈ T Ik , I |= Uk(ai, vj) iff (aIi , v
I
j ) ∈ UIk ,

I |= ¬Tk(vj) iff vIj /∈ T Ik .

A KB K = (T ,A) is said to be satisfiable (or consistent) if there is an interpretation, I, satisfying all the
members of T and A. In this case we write I |= K (as well as I |= T and I |= A) and say that I is a
model of K (of T and A).

A positive existential query q(x1, . . . , xn) is a first-order formula ϕ(x1, . . . , xn) constructed by means
of conjunction, disjunction and existential quantification starting from atoms of the from Ak(t1), Tk(t1),
Pk(t1, t2) and Uk(t1, t2), whereAk is a concept name, Tk a datatype name, Pk a role name, Uk an attribute
name, and t1, t2 are terms taken from the list of variables y0, y1, . . . , the list of object names a0, a1, . . .
and the list of value names v0, v1, . . . . We write q(~x) for a query with free variables ~x = x1, . . . , xn and
q(~a) for the result of replacing every occurrence of xi in ϕ(~x) with the ith component ai of a vector of
constants ~a = a1, . . . , an. A conjunctive query is a positive existential query that contains no disjunction.

For a KB K = (T ,A), we say that a tuple ~a of constant names fromA is a certain answer to q(~x) with
respect to K, and write K |= q(~a), if I |= q(~a) (with I regarded as a first-order interpretation) whenever
I |= K. The query answering problem is: given a KB K = (T ,A), a query q(~x), and a tuple ~a of constant
names from A, decide whether K |= q(~a).
Fragments of DL-LiteHNAbool . We consider various syntactical restrictions on the language of DL-LiteHNAbool
along two axes: (i) the Boolean operators (bool ) on concepts and (ii) the attributes (A). Similarly to classical
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logic, we adopt the following definitions. A TBox T will be called a Krom TBox—from the Krom fragment
of FOL— if only negation is allowed in the construction of its complex concepts, i.e., if

C ::= B | ¬B, (Krom)

(here and below the B are basic concepts). A TBox T will be called a Horn TBox if its complex concepts
are constructed by using only intersection:

C ::= B1 u · · · uBk. (Horn)

Finally, we call T a core TBox if its concept and datatype inclusions are of the form:

B1 v B2, B1 uB2 v ⊥, Ti1 v Ti2 , Ti1 u · · · u Tik v ⊥. (core)

Note that the positive occurrences of B on the right-hand side of the above axioms can also have the form
∀U.T . As B1 v ¬B2 is equivalent to B1 u B2 v ⊥, core TBoxes can be regarded as sitting in the
intersection of Krom and Horn TBoxes. In this paper, in addition to the full language of DL-LiteHNAbool , we
study the following logics:
DL-LiteHNA

krom , DL-LiteHNA
horn , DL-LiteHNA

core are the fragments of DL-LiteHNAbool with Krom, Horn, and
core TBoxes, respectively;
DL-LiteHN

α , for α ∈ {core, krom, horn, bool}, is the fragment of DL-LiteHNAα without attributes and
datatypes.

Table 1 summarizes the obtained complexity results (with numbers q coded in binary) for KB satisfia-
bility (combined complexity) and query answering (data complexity).

3 Complexity of Reasoning in DL-LiteHNα
As shown in (Artale et al., 2009), reasoning in DL-LiteHNα is already rather costly (EXPTIME-complete)
due to the interaction between role inclusions and number restrictions. However, both of these constructs
turn out to be useful for the purposes of conceptual modelling. By limiting their interplay one can get
languages with better computational properties. In this section we formulate and study two syntactic re-
strictions that are weaker than the ones known in the literature (Poggi et al., 2008; Artale et al., 2009).

In the following, we denote by role(K) the set of role names in K; let role±(K) = {Pk, P−k | Pk ∈
role(K)}. For a role R, let inv(R) = P−k if R = Pk and inv(R) = Pk if R = P−k . Given a TBox T we
denote by v∗T the reflexive and transitive closure of the relation {(R,R′), (inv(R), inv(R′)) | R v R′ ∈
T }. We say that R′ is a proper sub-role of R in T if R′ v∗T R and R 6v∗T R′. A proper sub-role R′ of R
is a direct sub-role of R if there is no other proper sub-role R′′ of R such that R′ is a proper sub-role of
R′′; dsubT (R) denotes the set of direct sub-roles of R in T . An occurrence of a concept on the right-hand
(left-hand) side of a concept inclusion is called negative if it is in the scope of an odd (even) number of
negations ¬; otherwise it is called positive.

3.1 Counting Successors in Hierarchies

The languages DL-Lite(HN )
α of (Artale et al., 2009) are the result of imposing the following syntactic

restriction on DL-LiteHNα TBoxes T :

(inter) if R has a proper sub-role in T then T contains no negative occurrences of number restrictions
≥ q R or ≥ q inv(R) with q ≥ 2.

To formulate our subtler restrictions, we need the following parameters, for a TBox T and a role R ∈
role±(T ):

ub(R, T ) = min
(
{∞} ∪ {q − 1 | q ≥ 2 and

≥ q R occurs negatively in T }
)
,

lb(R, T ) = max
(
{0} ∪ {q | ≥ q R occurs positively in T }

)
,

rank(R, T ) = max
(
lb(R, T ),

∑
R′∈dsubT (R)

rank(R′, T )
)
.
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Consider first the languages obtained from DL-LiteHNα by imposing the following restriction on all R ∈
role±(T ):

(interT ) if R has a proper sub-role in T then

ub(R, T ) ≥ rank(R, T ).

It turns out, however, that these languages are too expressive to keep the same complexity of the satisfia-
bility problem as their basic counterparts:

THEOREM 1. Under (interT ), KB satisfiability is NP-hard for DL-LiteHNcore and DL-LiteHNkrom and EXPTIME-
complete for DL-LiteHNhorn and DL-LiteHNbool .

Proof. To prove NP-hardness, we show that graph 3-colourability can be reduced to DL-LiteHNcore KB satis-
fiability. Let G = (V,E) be a graph with vertices V and edges E and {r, g, b} be three colours. Consider
the following KB K = (T ,A) with a role name S and its sub-roles Ri, for each vertex vi ∈ V , and object
names o, r, g, b and vi, for each vertex vi ∈ V :

T ={≥ (|V |+ 4)S v ⊥} ∪
{Ri v S, B1 v ∃Ri, B2 u ∃R−i v ⊥ | vi ∈ V } ∪
{∃R−i u ∃R

−
j v ⊥ | (vi, vj) ∈ E},

A ={B1(o), S(o, r), S(o, g), S(o, b)} ∪
{S(o, vi), B2(vi) | vi ∈ V }.

Clearly, K enjoys (interT ). It can be shown that K is satisfiable iff G is 3-colourable. Indeed, for every
vertex vi, the individual vi is a an S-successor of o, which has another three S-successors: r, g and b. On
the other hand, for each vertex vi, o must have an Ri-successor (which is also an S-successor) but the total
number of S-successors of o is bounded by |V | + 3. Since the vj cannot be Ri-successors (for any pair
i, j), all theRi-successors of omust be among r, g and b, which by the range disjointness axiom forRi and
Rj (provided that (vi, vj) ∈ E) happens iff the graph is 3-colourable.

EXPTIME-hardness can be proved by reduction of the complement of the state reachability problem
for alternating Turing machines (ATMs). We only give an idea of the proof here. Suppose we are given
an ATM that, on every input, requires only a polynomial number of cells on the tape. Without loss of
generality we may assume that each state has exactly two successor states on each input symbol. Let n be
the length of the input and ` the number of cells required. Then we need the following 3 sets of roles, for
0 ≤ k < 3,

• Skai, for each symbol a ∈ Σ and position 1 ≤ i ≤ `, so that ∃S−kai says ‘the symbol a is written at
the position i’;

• Hkqi, for each state q ∈ Q and head position 1 ≤ i ≤ `, so that ∃H−kqi says ‘the current state is q and
the head is over the position i’;

(the three sets are required for the disjointness constraints below). Since each state has two successors, we
also need two sub-roles (left and right) of each Skai:

LSkai v Skai, RSkai v Skai

and sub-roles LHkqi and RHkqi for each Hkqi. With the help of these pairs of roles we can encode
transitions of the form δ(a, q) = {(a1, q1, d1), (a2, q2, d2)} in a natural way:

∃S−kai u ∃H
−
kqi v ∃LHbk+1cq1(i+d1) u ∃LSbk+1ca1i u

∃RHbk+1cq2(i+d2) u ∃RSbk+1ca2i,

where bkc denotes the value of k modulo 3. We also need to say that cells that are not under the current
position of the head do not change their symbols: for all j 6= i,

∃S−kaj u ∃H
−
kqi v ∃LSbk+1caj u ∃RSbk+1caj .
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But now the main difficulty is to enforce that all the LSbk+1caj- and LHbk+1cq1i1 -successors coincide (and
similarly, their right counterparts). We could introduce a new functional super-role for all of them but then
the restriction (interT ) would be violated. Instead, we will employ a role Tk and its two subroles Lk and
Rk, for each 0 ≤ k < 3, and super-roles L̂Skai, R̂Skai, L̂Hkqi and R̂Hkqi. Each of these super-roles
contains its title role, Lk and T−bk−1c as its sub-roles and has not more than 2 successors, e.g.:

LSkai v L̂Skai, Lk v L̂Skai, T−bk−1c v L̂Skai, ≥ 3 L̂Skai v ⊥.

With the help of disjointness constraints of the form ∃Tbk−1c u ∃T−k v ⊥ and ∃Tbk−1c u ∃S−kai v ⊥ and
an ABox, modelling the initial configuration and containing H0q01(z, a), S0a11(z, a), . . . , S0a``(z, a) and
T0(z, a), we can ensure that in all models of this TBox each point (but z) has a single Tbk−1c-predecessor
and a single Lk-successor, which is a Tk-successor, and, by the cardinality constraints above, is also the
LSbk+1caj- and LHbk+1cq1i1 -successor for the respective combination of subscripts. It is easily seen that
the TBox enjoys (interT ) and encodes the tree of computations of the ATM. In a similar way one can
encode the condition that a certain state is never reached.

The NP-hardness proof used the fact that the restriction (interT ) does not impose any bounds on the
number of R-successors in the ABox. And the EXPTIME-hardness proof also reveals that if we were to
maintain the low complexity of reasoning, we would have to take into account not only the number of
R-successors in the ABox, but also the number of R−-predecessors (i.e., R-successors) that come to the
unnamed individuals outside the ABox. In the next section, this intuition will drive our next attempt to
weaken the restrictions on the interaction of role inclusions and cardinality constraints.

3.2 Taking the ABox into Account
In this section, we formulate our second restriction, (interKB), and show that the complexity of KB sat-
isfiability remains low under it. We need the following additional parameters, for an ABox A, a TBox T
and R ∈ role±(T ):

rank(R,A) = max
(
{0}∪{n | Ri(a, ai) ∈ A, Ri v∗T R,

for distinct a1, . . . , an}
)
,

pred(R, T ) =

{
1, if lb(R′, T ) ≥ 1, for some R′ v∗T R−,
0, otherwise.

Then our second restriction on role inclusions and cardinality constraints is as follows: for every R ∈
role±(T ),

(interKB) if R has a proper sub-role in T then

ub(R, T ) ≥ rank(R, T ) + max
(
pred(R, T ), rank(R,A)

)
.

Both (interT ) and (interKB) are weaker than (inter) and, for example, allow for the specialization of
functional roles: T = {≥ 2R v ⊥, R1 v R2, R2 v R} and A = {R(a, b), R1(a1, b1), R2(a2, b2)} do
not satisfy (inter), but do satisfy both (interT ) and (interKB). The above restrictions will also be applied
to sub-attributes in the languages DL-LiteHNAα .

To show that (interKB) matches the complexity of KB satisfiability of the basic languages, we adapt
the proof presented in (Artale et al., 2009), where a DL-LiteHNbool KB K = (T ,A) is encoded into a first-
order sentence K‡e with one variable. Every ai ∈ ob(A) is associated to the individual constant ai, and
every concept name Ai to the unary predicate Ai(x). For each concept ≥ q R in K we introduce a fresh
unary predicate EqR(x). We also introduce the set

dr(K) = {dpk, dp−k | Pk ∈ role±(K)}
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of individual constants, as representatives of the objects in the domain (dpk) and the range (dp−k ) of each
role Pk, respectively. The encoding C∗ of a concept C is defined inductively:

⊥∗ = ⊥, (Ai)
∗ = Ai(x),

>∗ = >, (¬C)∗ = ¬C∗(x),

(≥ q R)∗ = EqR(x), (C1 u C2)∗ = C∗1 (x) ∧ C∗2 (x).

The following sentence encodes the knowledge base K:

K‡e = ∀x
[
T ∗(x) ∧ T R(x) ∧

∧
R∈role±(K)

(
εR(x) ∧ δR(x)

)]
∧ A‡e ,

where

T ∗(x) =
∧

C1vC2∈T

(
C∗1 (x)→ C∗2 (x)

)
,

δR(x) =
∧

q,q′∈QR
T , q

′>q

(
Eq′R(x)→ EqR(x)

)
,

T R(x) =
∧

Rv∗T R
′

∧
q∈QR

T

(
EqR(x)→ EqR

′(x)
)
,

and QRT contains 1, all q such that ≥ q R occurs in T and all QR
′

T , for R′ v∗T R. Sentence A‡e encodes
the ABox A:

A‡e =
∧

Ak(ai)∈A

Ak(ai) ∧
∧

¬Ak(ai)∈A

¬Ak(ai) ∧
∧

ai∈ob(A)
R′v∗T R, R

′(ai,aj)∈A

EqeR,ai
R(ai) ∧

∧
¬Pk(ai,aj)∈A

R(ai,aj)∈A, Rv∗T Pk

⊥,

where qeR,a is the maximum number in QRT such that there are qeR,a many distinct ai with Ri(a, ai) ∈ A
and Ri v∗T R. For each R ∈ role±(K), we also need a formula expressing the fact that the range of R is
not empty whenever its domain is nonempty:

εR(x) = E1R(x)→ inv(E1R(dr)),

with inv(E1R(dr)) denoting E1P
−
k (dp−k ) if R = Pk and E1Pk(dpk) if R = P−k .

LEMMA 2. A DL-LiteHNbool KB K under (interKB) is satisfiable iff the one-variable sentence K‡e is satis-
fiable.

Proof. The only challenging direction is (⇐). To prove it, we adapt the proofs of Theorem 5.2 and Lemma
5.14 of (Artale et al., 2009). The idea of the proof is to construct a DL-LiteHNbool model I of K from the
minimal Herbrand model M of K‡e . with domain D = ob(A) ∪ dr(K). The interpretation I = (∆I , ·I)
is defined inductively: ∆I =

⋃∞
m=0Wm, such that W0 is the set ob(A), and each set Wm+1, m ≥ 0, is

constructed by adding to Wm fresh copies of elements of dr(K). We write cp(w) for the element d ∈ D
of which w is a copy, with cp(a) = a for a ∈ ob(A) = W0. We define aIi = ai, for all individuals
ai ∈ ob(A), and, for all concept names Ak,

AIk = {w ∈ ∆I |M |= A∗k[cp(w)]},

The interpretation of each role Pk, is defined inductively as P Ik =
⋃∞
m=0 P

m
k , where Pmk ⊆ Wm ×Wm,

along with the construction of ∆I . The initial interpretation of Pk is

P 0
k = {(aMi , aMj ) ∈W0 ×W0 | R(ai, aj) ∈ A and R v∗T Pk}.

The required R-rank r(R, d) of d ∈ D is defined as:

r(R, d) = max
(
{0} ∪ {q ∈ QR+

T |M |= EqR[d]}
)
,
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where QR+
T contains all q such that ≥ q R occurs positively in T . Note that:

r(R, d) ≤ lb(R, T ). (1)

The actual R-rank rm(R,w) of a point w ∈ ∆I at step m is defined as follows:

rm(R,w) = ]{w′ | (w,w′) ∈ Pmk ∪ Pm+1
j , Pj ∈ dsubT (Pk)},

if R = Pk; replace (w,w′) by (w′, w) if R = P−k . Assume that Wm and Pmk , m ≥ 0, have been already
defined. Let Wm+1 \Wm = ∅. If the actual rank of some points is smaller than the required rank, then,
we cure these defects by adding R-successors for them. For each Pk ∈ role(K), we consider two sets of
defects in Pmk : Λmk = {w ∈Wm \Wm−1 | rm(Pk, w) < r(Pk, cp(w))} and Λm−k = {w ∈Wm \Wm−1 |
rm(P−k , w) < r(P−k , cp(w))}. In each equivalence class [R] = {S | S v∗T R, R v∗T S} we select
a single role, a representative. Let G = (RepT , E) be a directed graph such that RepT is the set of
representatives and (R,R′) ∈ E iff R is a proper sub-role of R′. We use the ascending total order induced
on G when choosing an element Pk in RepT , and extend in that way Wm and Pmk to Wm+1 and Pm+1

k ,
respectively.

(Λmk ) Let w ∈ Λmk , q = r(Pk, d) − rm(Pk, w), d = cp(w). There is q′ ≥ q > 0 with M |= Eq′Pk[d]
and so, M |= E1Pk[d] and M |= E1P

−
k [dp−k ]. We take q fresh copies w′1, . . . , w

′
q of dp−k , add them

to Wm+1 and for each 1 ≤ i ≤ q, set cp(w′i) = dp−k , add the pairs (w,w′i) to each Pm+1
j with

Pk v∗T Pj and the pairs (w′i, w) to each Pm+1
j with P−k v∗T Pj ;

(Λm−k ) This rule is the mirror image of (Λmk ): Pk and dp−k are replaced with P−k and dpk, respectively.

We now show that I |= ϕ for each ϕ ∈ T ∪A. From the construction ofRI , it immediately follows that the
interpretation of roles respects role inclusions, i.e., RI1 ⊆ RI2 whenever R1 v R2 ∈ T . For ϕ = Ak(ai)
and ϕ = ¬Ak(ai), the claim follows from the definition of AIk . For ϕ = Pk(ai, aj) and ϕ = ¬Pk(ai, aj),
we have (ai, aj) ∈ P Ik iff (ai, aj) ∈ P 0

k iffR(ai, aj) ∈ A andR v∗T Pk. The challenging part is, however,
to show that I |= C1 v C2 whenever M |= ∀x (C∗1 (x) → C∗2 (x)), for each ϕ = C1 v C2. We need to
prove that, for all w ∈ ∆I and all ≥ q R in T ,

(a1) M |= EqR[cp(w)] implies w ∈ (≥ q R)I , for all ≥ q R that occur positively in T ;

(a2) w ∈ (≥ q R)I implies M |= EqR[cp(w)], for all ≥ q R that occur negatively in T .

In order to do that, we demonstrate the following property of the unravelling construction, for all w ∈Wm:

rm(R,w) ≤
∑

Ri∈dsubT (R)

rank(Ri, T ) +

{
rank(R,A), if m = 0,

pred(R, T ), if m > 0.
(2)

First, note that we have, for all w ∈Wm:

rm(R,w) = sRw + ]{w′ ∈Wm | (w,w′) ∈ Rm} ≤ sRw +

{
rank(R,A), if m = 0,

pred(R, T ), if m > 0,

where
sRw = ]{w′ ∈Wm+1 \Wm | (w,w′) ∈ Rm+1

i , Ri ∈ dsubT (R)}.

Indeed, the case m = 0 is immediate from the definition of the P 0
k ; if m > 0 then the second component

of the sum does not exceed 1 because every such w is introduced to cure a defect of another w′ ∈ Wm−1

and can be 1 only if an R1-defect of w′ was cured, for R1 v∗T R− and lb(R1, T ) ≥ 1. Now, by induction
on the topological order in G = (RepT , E), we show that sRw ≤

∑
Ri∈dsubT (R) rank(Ri, T ). For the

basis of induction, dsubT (R) = ∅ and so, by definition, sRw = 0 and the inequality trivially holds. For
the inductive step, let R1, . . . , Rk be the direct sub-roles of R. If w has an Ri-successor w′ that does
not belong to any of its sub-roles, i.e., (w,w′) ∈ Rm+1

i \
⋃
Rij∈dsubT (Ri)

Rm+1
ij , then Ri had a defect
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on w, which was cured, and therefore, sRi
w ≤ r(Ri, cp(w)). Then, by (1) and the definition of rank,

r(Ri, cp(w)) ≤ lb(Ri, T ) ≤ rank(Ri, T ), whence sRi
w ≤ rank(Ri, T ). Otherwise, all Ri-successors

of w come from its direct sub-roles, in which case sRi
w =

∑
Rij∈dsubT (Ri)

s
Rij
w , whence, by the induction

hypothesis, sRi
w ≤

∑
Rij∈dsubT (Ri)

rank(Rij , T ) and, by the definition of rank , sRi
w ≤ rank(Ri, T ). In

either case, sRw =
∑
Ri∈dsubT (R) s

Ri
w ≤

∑
Ri∈dsubT (R) rank(Ri, T ) and so, (2) holds.

We then proceed by showing (a1) and (a2) as follows:

(a1) If ≥ q R occurs positively in T and M |= EqR[cp(w)] then, by the definition of the required rank,
q ≤ r(R, cp(w)) and so, the construction ensures that w ∈ (≥ q R)I .

(a2) We consider the following three subcases:

• Let dsubT (R) = ∅. Suppose w ∈ (≥ q R)I . If w ∈ W0 and there are w1, . . . , wq′ ∈ W0 with
q′ ≥ q and (w,w1), . . . , (w,wq′) ∈ RI then, by A‡e , M |= Eq′R[cp(w)] whence, by δR(x),
M |= EqR[cp(w)]. Otherwise, some w′ ∈ ∆I \W0 with (w,w′) ∈ RI was introduced to cure
an R-defect of w and so q ≤ r(R, cp(w)). Let q′ = r(R, cp(w)). Then M |= Eq′R[cp(w)]
and, by δR(x), we obtain M |= EqR[cp(w)].

• Let dsubT (R) 6= ∅ and ub(R, T ) =∞. Since≥ q R occurs negatively in T then, by definition,
q = 1. Suppose w ∈ (∃R)I . If w ∈ W0 and there is w′ with w′ ∈ W0 and (w,w′) ∈ RI

then, by A‡e and δR(x), M |= E1R[cp(w)]. Otherwise, some w′ ∈ ∆I \W0 was introduced
to cure an R1-defect of w for some R1 v∗T R. It follows then that r(R1, cp(w)) ≥ 1 and so,
M |= E1R1[cp(w)] whence, by T R(x), M |= E1R[cp(w)].

• Let dsubT (R) 6= ∅ and ub(R, T ) 6= ∞. We show (≥ q R)I = ∅. Assume, to the contrary,
there isw ∈ (≥ q R)I . Since≥ q R occurs negatively in T and ub(R, T ) 6=∞, q > ub(R, T ).
By (interKB) and the definition of the required rank, ub(R, T ) ≥ lb(R, T ) ≥ r(R, cp(w)),
whence q > r(R, cp(w)). On the other hand, w ∈ Wm, for some m ≥ 0, and, by (interKB)
and (2), ub(R, T ) ≥ rm(R,w), whence q > rm(R,w). Then, since w ∈ (≥ q R)I , an
R-defect was cured on w, and so, as the procedure (if applied) does not create more than
r(R, cp(w))-many R-successors, we have q ≤ r(R, cp(w)), contrary to q > r(R, cp(w)).

Finally, we can prove that, for all C1 v C2 ∈ T ,

M |= ∀x
(
C∗1 (x)→ C∗2 (x)

)
implies I |= C1 v C2.

It should be clear that each C1 v C2 is equivalent to a set of concept inclusions in the following normal
form

> v D1 t · · · tDk,

where each Di is either ⊥, A, ¬A, ≥ q R or ¬(≥ q R). It is to be noted that ≥ q R occurs positively in
such concept inclusion if it occurs positively in C1 v C2 and negatively if negatively in C1 v C2. So,
suffice it to prove that, for each concept inclusion,

M |= ∀x
(
D∗1(x) ∨ · · · ∨D∗k(x)

)
implies I |= > v D1 t · · · tDk.

Let w ∈ ∆I . Then, we have M |= D∗i [cp(w)], for some 1 ≤ i ≤ k. Obviously, Di is not ⊥. If Di is
A or ¬A then we clearly have w ∈ DIi . If Di is ≥ q R then ≥ q R occurs positively in T and, by (a1),
w ∈ (≥ q R)I . If Di is ¬(≥ q R) then ≥ q R occurs negatively in T and, by (a2), w /∈ (≥ q R)I . In any
case w ∈ DIi and so, I |= > v D1 t · · · tDk.

THEOREM 3. Under (interKB), KB satisfiability is NP-complete in DL-LiteHNbool , PTIME-complete in
DL-LiteHNhorn and NLOGSPACE-complete inDL-LiteHNkrom and DL-LiteHNcore .
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4 Extending with Attributes
In this section we study the effect of extending DL-Lite with attributes. We first define a class of datatypes
that can be safely handled.

DEFINITION 4. A set of datatypes {T1, . . . , Tn} is safe if: (i) each Ti is unbounded; (ii) arbitrary conjunc-
tion of datatypes is also unbounded or the empty set; (iii) constraints between datatypes are expressible by
Horn clauses.

From now on we deal only with safe datatypes. We start by showing that for the Bool, Horn and core
cases the addition of attributes does not change the complexity of KB satisfiability.

THEOREM 5. Under restriction (interKB), checking KB satisfiability is NP-complete in DL-LiteHNAbool ,
PTIME-complete in DL-LiteHNAhorn and NLOGSPACE-complete in DL-LiteHNAcore .

Proof. We encode a DL-LiteHNAα KB K = (T ,A) in a first-order sentence K‡a with one variable in a
way similar to the translation of Lemma 2. Denote by att(K) the set of all attribute names in K, and by
val(A) the set of all value names in A. Similarly to roles, we define the sets QUT containing 1 and all q for
occurrences of ≥ q U (including sub-attributes). The set of all datatype names in K is denoted dt(K).

We need a unary predicate EqU(x), for each attribute name U and q ∈ QUT , denoting the set of objects
with at least q values for the attribute U . We also need, for each attribute name U and each datatype name
T , a unary predicate UT (x), denoting all objects such that all their U attribute values belong to the datatype
T (if they have attribute U values at all). Following this intuition, we extend ·∗ by the following statements:

(≥ q U)∗ = EqU(x), (∀U.⊥)∗ = ¬E1U(x),

(∀U.(T1 u · · · u Tk))∗ = UT1(x) ∧ · · · ∧ UTk(x).

The following sentence encodes the KB K:

K‡a = K‡e ∧ ∀x
[
T U (x) ∧

∧
U∈att(K)

(δU (x) ∧ θU (x)) ∧ β(x)
]
∧ A‡a ∧ A‡

2
a ,

whereK‡e is as in Section 3.2, T U (x), δU (x) andA‡a are similar to T R(x), δR(x) andA‡e , but rephrased
for attributes and their inclusions. The new types of ABox assertions require the following formula:

A‡
2
a =

∧
U ′(ai,vj)∈A
U ′v∗T U

∧
T∈dt(K)

(
(∀U.T )∗(ai)→ Tvj

)
∧
∧

T (vj)∈A

Tvj ∧
∧

¬T (vj)∈A

¬Tvj ∧∧
v∈val(A)

∧
T1u...TkvT∈T

(
T1v ∧ · · · ∧ Tkv → Tv

)
,

where Tvj is a propositional variable for each datatype name T and each value vj ∈ val(A), and Tv = ⊥
in case T = ⊥ and vj 6∈ val(T ), otherwise Tv = >. The additional formulas capturing datatype and
attribute inclusions are:

θU (x) =
∧

T1u···uTkvT∈T

(
(∀U.(T1 u · · · u Tk))∗ → (∀U.T )∗

)
,

β(x) =
∧

U1vU2∈T

∧
T∈dt(K)

((∀U2.T )∗ → (∀U1.T )∗).

We would like to note here that the formula θU (x), in particular for disjoint datatypes, demonstrates a
subtle interaction between attribute range constraints, ∀U.T , and minimal cardinality constraints, ∃U .

We show that K is satisfiable iff the QL1-sentence K‡a is satisfiable.
(⇐) Let M |= K‡a , we construct a model I = (∆IO ∪ ∆IV , ·I) of K similarly to the way we proved
Lemma 2 but this time datatypes will have to be taken into account. Let ∆IO be defined inductively as
before and T Ii = val(Ti), for each datatype name Ti. For each attribute name U , to ‘cure’ its defects we
begin with

U0 = {(a, v) | U ′(a, v) ∈ A, U ′ v∗T U}.
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For every attribute name U , we can define the required U -rank r(U, d) of d ∈ D and the actual U -rank
rm(R,w) of a point w ∈ Wm ⊆ ∆IO, m ≥ 0, as before, treating U as a role name. We can also consider
the equivalence relation induced by the sub-attribute relation in T , then we can choose representatives and
a linear order on them respecting the sub-attribute relation of T . We can start from the smaller attributes
and ‘cure’ their defects. Let Uk be the smallest attribute name not considered so far. For each w ∈Wm, let
q = r(Uk, cp(w))− rm(Uk, w). If q > 0, take q fresh values v1, . . . , vq ∈ ∆IV such that each vj ∈ val(T ),
for all datatype names T with M |= UkT [cp(w)]—since the datatypes are safe, by Definition 4, such vj
always exist. Then, for each 1 ≤ j ≤ q, add the pair (w, vj) to all attribute relations U0 with Uk v∗T U .
Denote the relations resulting in applying the above procedure to all attributes by UI . Now, it can be shown
that if M |= K‡a then I |= ϕ for every ϕ ∈ K.

Consider C v ∀U.(T1 u · · · u Tk) ∈ T . And suppose w ∈ CI . Let (w, v) ∈ UI , for some v ∈ ∆IV . It
remains to show that v ∈ T Ij , for all 1 ≤ j ≤ k. By the unravelling construction, as showed in Lemma 2,
M |= C[cp(w)] and so, M |= UTj [cp(w)], for all 1 ≤ j ≤ k. By the construction of UI , there are two
possible cases. If v ∈ val(A) then w = cp(w) = a ∈ ob(A) and U ′(a, v) ∈ A, for U ′ v∗T U . Thus,
by the first conjunct of A‡2a , for all 1 ≤ j ≤ k, we have M |= Tjv, whence, by the definition of Tjv,
v ∈ val(Tj) = T Ij . Otherwise, by the construction of UI , we have v ∈ T Ij , for all 1 ≤ j ≤ k.

Consider T1 u · · · u Tk v T ∈ T . Let v ∈ T Ij = val(Tj), for all 1 ≤ j ≤ k. If v ∈ val(A), then,
by definition of Tjv, M |= Tjv, whence, by the last conjunct of A‡2a , M |= Tv and so, v ∈ val(T ) = T I .
Otherwise, by the unravelling construction, there is a unique w ∈ ∆IO and attribute name U such that
(w, v) ∈ UI and v has been introduced to ‘cure’ the defects of U -successors of w. By UI construction,
v ∈ T Ij , for each 1 ≤ j ≤ k, if M |= UTj [cp(w)]. But then, by the formula θU (x), M |= UT [cp(w)],
whence, by the construction of UI , v ∈ T I .

For the other kinds of formulas the proof is similar to that on of Lemma 2.
(⇒) Conversely, if I is a model of K with the domain ∆I = ∆IO ∪ ∆IV we construct a model M =

(D, ·M) of K‡a with D = ∆IO. The only difference with the proof of Lemma 2 is how to define UTM: for
every attribute U and every datatype name T we set

UTM =
{
w ∈ ∆IO | v ∈ T I , for all (w, v) ∈ UI

}
.

Now, given a KB with a Bool or Horn TBox, K‡a is a universal one-variable formula or a universal
one-variable Horn formula, respectively, which immediately gives the NP and PTIME upper complexity
bounds for the Bool and Horn fragments. The NLOGSPACE upper bound for KBs with core TBoxes is not
so straightforward because θU (x) is not a binary clause. In this case we note thatK‡a is still a universal one-
variable Horn formula and therefore, K‡a is satisfiable iff it is true in the ‘minimal’ model. The minimal
model can be constructed in the bottom-to-top fashion by using only positive clauses of K‡a (i.e., clauses
of the form ∀x (B1(x) ∧ · · · ∧ Bk(x) → H(x))) and then checking whether the negative clauses of K‡a
(i.e., clauses of he form ∀x (B1(x) ∧ · · · ∧ Bk(x)→ ⊥)) hold in the constructed model. By inspection of
the structure of K‡a , one can see that all its positive clauses are in fact binary, and therefore, whether an
atom is true in its minimal model or not can be checked in NLOGSPACE.

It is of interest to note that the complexity of KB satisfiability increases in the case of Krom TBoxes:

THEOREM 6. Satisfiability of DL-LiteHNAkrom KBs is NP-hard even without role and attribute inclusions
(and so, under (interKB)).

Proof. The proof is by reduction of 3SAT to the KB satisfiability problem. It exploits the structure of the
formula θU (x) in K‡a : if T u T ′ v ⊥ ∈ T then the concept inclusion

∀U.T u ∀U.T ′ u ∃U v ⊥,

although not in the syntax of DL-LiteHNAkrom , is a logical consequence of T . Using such ternary intersections
with the full negation of the Krom fragment one can encode 3SAT. Let ϕ =

∧m
i=1 Ci be a 3CNF, where the

Ci are ternary clauses over variables p1, . . . , pn. Now, suppose pi1 ∨ ¬pi2 ∨ pi3 is the ith clause of ϕ. It is
equivalent to ¬pi1 ∧ pi2 ∧ ¬pi3 → ⊥ and so, can be encoded as follows:

T 1
i u T 2

i v ⊥, ¬Ai1 v ∀Ui.T 1
i , Ai2 v ∀Ui.T 2

i , ¬Ai3 v ∃Ui,
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where the A1, . . . , An are concept names for the variables p1, . . . , pn, and Ui is an attribute and T 1
i and

T 2
i are datatypes for the ith clause (note that Krom concept inclusions of the form ¬B v B′ are required,

which is not allowed in the core TBoxes). Let T consist of all such inclusions for clauses in ϕ. It can be
seen that ϕ is satisfiable iff T is satisfiable.

5 Query Answering: Data Complexity
In this section we study the data complexity of answering positive existential queries over a KB expressed
in languages with attributes and datatypes. In the following, we slightly abuse notation and use H for an
attribute name or a role.

REMARK 7. It follows from the proofs of Theorems 5 and 6 and Lemma 2 that, for a DL-LiteHNAbool KB
K = (T ,A) under restriction (interKB), every model M of K‡a induces a forest-shaped model IM of K
with the following properties:

(ABox) For all ai, aj ∈ ob(A) ∪ val(A) and all roles (attributes) H , we have (ai, aj) ∈ HIM iff there is
H ′ v∗T H with H ′(ai, aj) ∈ A.

(forest) The object names a ∈ ob(A) induce a partitioning of ∆IM into disjoint labelled trees Ta =
(Ta, Ea, `a) with nodes Ta, edges Ea, root aIM , and a labelling function `a : Ea → role±(K) ∪
att(K).

(copy) There is a function, cp : ∆IM → ob(A) ∪ dr(K) such that cp(aIM) = a, for a ∈ ob(A), and
cp(w) = dr, if (w′, w) ∈ Ea and `a(w′, w) = inv(R), for w′ ∈ Ta.

(role) For every role (attribute) name H ,

HIM =
{

(ai, aj) | H ′(ai, aj) ∈ A, H ′ v∗T H
}
∪⋃

a∈ob(A)

{
(w,w′) ∈ Ea | `a(w,w′) = H ′, H ′ v∗T H

}
.

THEOREM 8. The positive existential query answering problem for DL-LiteHNAhorn and DL-LiteHNAcore , under
restriction (interKB), is in AC0 for data complexity.

Proof. Suppose that we are given a consistent DL-LiteHNAhorn KB K = (T ,A) and a positive existential
query in prenex form q(~x) = ∃~y ϕ(~x, ~y) in the signature of K. Since K‡a is a Horn sentence, it is enough
to consider just one special model I0 of K. Let M0 be the minimal Herbrand model of (the universal Horn
sentence) K‡a . We remind the reader (for details consult, e.g., (Apt, 1990; Rautenberg, 2006)) that M0 can
be constructed by taking the intersection of all Herbrand models for K‡a , that is, of all models based on the
domain that consists of the constant symbols from K‡a—i.e., ob(A) ∪ val(A) ∪ dr(K).

Let I0 be the canonical model of K, i.e., the model induced by M0 along the construction presented in
Theorem 5. Denote the domain of I0 by ∆I0 . The following are true from the construction of the canonical
model:

aI0i ∈ B
I0 iff K |= B(ai), for basic concepts B and ai ∈ ob(A), (3)

w ∈ BI0 iff T |= ∃R v B, for basic concepts B and w ∈ ∆I0O with cp(w) = dr, (4)

vI0i ∈ T
I0 iff K |= T (vi), for datatype names T and vi ∈ val(A), (5)

v ∈ T I0 iff there are B1, . . . , Bk such that T |= B1 u · · · uBk v ∀U.T and w ∈ BI01 , . . . , BI0k , (6)
for datatype names T, attribute names U and (w, v) ∈ UI0 with v /∈ val(A).

Then the canonical model I0 provides answers to all queries:

LEMMA 9. K |= q(~a) iff I0 |= q(~a).
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Proof. Suppose I0 |= K. As q(~a) is a positive existential sentence, it is enough to construct a homomor-
phism h : I0 → I. By property (forest) of Remark 7, the domain ∆I0 of I0 is partitioned into disjoint
trees Ta, for a ∈ ob(A). Define the depth of a point w ∈ ∆I0 to be the length of the shortest path in the
respective tree to its root. Denote by Wm the set of points of depth ≤ m. In the following we extend the
meaning of sets Wm to include also values v ∈ ∆I0V that were taken for objects in Wm−1; in particular,
W0 = ob(A) ∪ val(A).

We construct h as the union of maps hm, m ≥ 0, where each hm is defined on Wm and has the
following properties: hm+1(w) = hm(w), for all w ∈Wm, and

(am) for all w ∈Wm, if w ∈ BI0 then hm(w) ∈ BI , for each basic concept B;

(bm) for all u,w ∈Wm, if (u,w) ∈ RI0 then (hm(u), hm(w)) ∈ RI , for each R ∈ role±(K).

(tm) for all v ∈Wm, if v ∈ T I0 then hm(v) ∈ T I , for each datatype name T ;

(vm) for all u, v ∈Wm, if (u, v) ∈ UI0k then (hm(u), hm(v)) ∈ UIk , for each Uk ∈ att(K).

For the basis of induction, we set h0(ai) = aIi , for ai ∈ ob(A), and h0(vi) = vIi , for vi ∈ val(A).
Property (a0) follows then from (3), (t0) from (5) and (b0) and (v0) from (ABox).

For the induction step, suppose that hm has already been defined for Wm, m ≥ 0. Set hm+1(w) =
hm(w) for all w ∈ Wm. Consider an arbitrary w ∈ Wm+1 \Wm. By (forest), there is a unique u ∈ Wm

such that (u,w) ∈ Ea, for some Ta.

• Let `a(u,w) = S ∈ role±(K). Then, by (copy), cp(w) = inv(ds). By (role), u ∈ (∃S)I0 and,
by (am), hm(u) ∈ (∃S)I , which means that there is w1 ∈ ∆I with (hm(u), w1) ∈ SI . Set
hm+1(w) = w1. As cp(w) = inv(ds) and (∃inv(S))I0 6= ∅, it follows from (4) that if w ∈ BI0

then w′ ∈ BI whenever we have w′ ∈ (∃inv(S))I . As w1 ∈ (∃inv(S))I , we obtain (am+1) for w.
To show (bm+1), we notice that, by (role), we have (u,w) ∈ RI0 just when S v∗T R. Thus, since
(u,w) ∈ SI0 and (hm+1(u), hm+1(w)) ∈ SI and, as S v∗T R, then, (hm+1(u), hm+1(w)) ∈ RI .

• Let `a(u,w) = U ∈ att(K), then w = v ∈ Wm+1 ∩ ∆I0V . By (role), u ∈ (∃U)I0 and, by (am),
hm(u) ∈ (∃U)I , which means that there is v1 ∈ ∆IV with (hm(u), v1) ∈ UI . Set hm+1(v) = v1. To
show (vm+1), we notice that, by (role), we have (u, v) ∈ UI0k just when U v∗T Uk; but then we have
(hm+1(u), hm+1(v)) ∈ UI ⊆ UIk . Next, we show (tm+1). By definition, v /∈ val(A). Then, by (6),
v ∈ T I0 just in case there are basic concepts B1, . . . , Bk such that K |= B1 u · · · uBk v ∀U.T and
u ∈ BI01 , . . . , BI0k . By (am+1), we have hm+1(u) ∈ BI1 , . . . , B

I
k , whence hm+1(u) ∈ (∀U.T )I

and so, as (hm+1(u), hm+1(v)) ∈ UI , we obtain hm+1(v) ∈ T I .

This completes the proof of the lemma.

Our next lemma shows that in this case to check whether I0 |= q(~a) it suffices to consider only the
points of depth ≤ m0 in ∆I0 , for some m0 that does not depend on |A|:

LEMMA 10. If I0 |= ∃~y ϕ(~a, ~y) then there is an assignment a0 such that I0 |=a0 ϕ(~a, ~y) and a0(yi) ∈
Wm0

, for all yi ∈ ~y, where m0 = |~y|+ |role±(T )|+ 1.

Proof. The proof is similar to that one of Lemma 7.4 in (Artale et al., 2009) observing that attributes cannot
be nested and cannot have role successors either.

To complete the proof of Theorem 8, we encode the problem ‘K |= q(~a)?’ as a model checking
problem for first-order formulas. We fix a signature that contains unary predicatesA, A, for concept names
A, and T and T , for datatype names T , and binary predicates P , P , for role names P and U for attribute
names U . Then we represent the ABox A of K as a first-order model AA with domain ob(A) ∪ val(A)
(the · predicates encode negative assertions of the ABox). Now we define a first-order formula ϕT ,q(~x) in
the above signature such that (i) ϕT ,q(~x) depends on T and q but not on A, and (ii) AA |= ϕT ,q(~a) iff
I0 |= q(~a).

Denote by con(T ) the set of basic concepts in T together with all concepts of the form ∀U.T , for
attribute names U and datatypes T from T .
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We begin by defining formulas ψB(x), for B ∈ con(T ), that describe the types of elements of the
model I0 (see also (3)): for all ai ∈ ob(A),

AA |= ψB(ai) iff aI0i ∈ B
I0 , if B is a basic concept, (7)

AA |= ψ∀U.T (ai) iff aI0i ∈ B
I0
1 , . . . , BI0k and T |= B1 u · · · uBk v ∀U.T. (8)

These formulas are defined as the ‘fixed-points’ of sequences ψ0
B(x), ψ1

B(x), . . . :

ψ0
B(x) =


A(x), if B = A,

∃y1 . . . ∃yq
( ∧
1≤i<j≤q

(yi 6= yj) ∧
∧

1≤i≤q

HT (x, yi)
)
, if B = ≥ q H,

⊥, if B = ∀U.T,

ψiB(x) = ψ0
B(x) ∨

∨
B1u···uBkvB∈ext(T )

(
ψi−1
B1

(x) ∧ · · · ∧ ψi−1
Bk

(x)
)
,

where

HT (x, y) =
∨

H′v∗TH

H ′(x, y),

and ext(T ) denotes the extension of T with the following concept inclusions, for H ∈ role±(T )∪ att(T ):

• ≥ q′H v ≥ q H , for all q, q′ ∈ QHT with q′ > q,

• ≥ q H v ≥ q H ′, for all q ∈ QHT and H v∗T H ′.

and the following concept inclusions, for all attributes names U and datatypes T in T :

• ∀U.T v ∀U ′.T , for all U ′ v U ∈ T ,

• ∀U.T1 u · · · u ∀U.Tk v ∀U.T , for all T1 u · · · u Tk v T ∈ T .

It should be clear that there is N with ψNB (x) ≡ ψN+1
B (x), for all B at the same time, and that N does not

exceed the cardinality of con(T ). We set ψB(x) = ψNB (x).
Next we introduce sentences θB,dr, for B ∈ con(T ) and dr ∈ dr(T ), that describes the types of the

dr(T ) (cf. (4)): for all w with cp(w) = dr,

AA |= θB,dr iff w ∈ BI0 , if B is a basic concept, (9)
AA |= θ∀U.T,dr iff T |= ∃R v ∀U.T. (10)

Note that, formula (10) uses that fact that the type of every w s.t. cp(w) = dr is generated by a single
basic concept, ∃R, and therefore, we do not need to consider conjunctions as above. We inductively define
a sequence θ0

B,dr, θ
1
B,dr, . . . by taking θ0

B,dr = >, if B = ∃R, and θ0
B,dr = ⊥, otherwise, and

θiB,dr = θ0
B,dr ∨

∨
B1u···uBkvB∈ext(T )

(
θi−1
B1,dr

∧ · · · ∧ θi−1
Bk,dr

)
.

As with the ψB , we set θB,dr = θNB,dr.
Sentences νT (x), for datatype names T , describe the types of an element of val(A) (cf. (5)):

AA |= νT (vj) iff vj ∈ T I0 . (11)

They are defined as the ‘fixed-points’ of the following sequences:

ν0
T (x) = T (x) ∨

∨
U∈att(T )

∃y
(
U(y, x) ∧ ψ∀U.T (y)

)
,

νiT (x) = ν0
T (x) ∨

∨
T1u···uTkvT∈T

(
νi−1
T1

(x) ∧ · · · ∧ νi−1
Tk

(x)
)
.
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Note that, for (11) to hold the ABox, A, must contain an assertion T (v) for every v ∈ val(A) s.t. v ∈
val(T ). Furthermore, the datatypes of a named value, say vj , are only partly described by the predicates
T : concept inclusions of the form B1 u · · · u Bk v ∀U.T can imply additional datatypes for vj , which is
reflected by the second disjunct of ν0

T (x). We set νT (x) = νMT (x), for M that does not exceed the number
of datatypes.

Now we consider the directed graph GT = (VT , ET ), where VT is the set of equivalence classes
[H] = {H ′ | H v∗T H ′ and H ′ v∗T H}, and ET is the set of all pairs ([R], [H]) such that

(p) T |= ∃inv(R)v≥ q H and either inv(R) 6v∗T H or q ≥ 2,

and H has no proper sub-role/attribute satisfying (p). Recall now that we are given a query q(~x) =
∃~y ϕ(~x, ~y), where ~y = y1, . . . , yk. Let ΣT ,m0 be the set of all paths in the graph GT of length ≤ m0.
More precisely,

ΣT ,m0 =
{
ε
}
∪ VT ∪

{
([H1], . . . , [Hn]) | 2 ≤ n ≤ m0 and ([Hj ], [Hj+1]) ∈ ET , for 1 ≤ j < n

}
.

When evaluating the query ∃~y ϕ(~x, ~y) over I0, each bound variable yi is mapped to a point w in Wm0
.

However, the first-order model AA does not contain the points from Wm0 \W0, and to represent them,
we use the following ‘trick.’ By (forest), every w in Wm0 \W0 is uniquely determined by the pair (a, σ),
where a is the root of the tree Ta containing w, and σ is the sequence of labels `a(u, v) on the path from a
to w. It follows from the unravelling procedure and (p) that σ ∈ ΣT ,m0

.
Let ΣkT ,m0

be the set of k-tuples ~σ = (σ1, . . . , σk), with σi ∈ ΣT ,m0
. In the formula ϕT ,q we are

about to define we assume that the yi range over W0 and represent the first component of the pairs (a, σ),
whereas the second component is encoded in the ith member σi of ~σ (these yi should not be confused
with the yi in the original query q, which range over Wm0

). In order to treat arbitrary terms t occurring in
ϕ(~x, ~y) in a uniform way, we set t~σ = ε, if t ∈ ob(A) ∪ val(A) or t = xi, and t~σ = σi, if t = yi. (the
distinguished variables xi, the object names a and the value names v are mapped to W0 and do not require
the second component of the pairs).

Given an assignment a0 in Wm0 , we denote by split(a0) the pair (a, ~σ) made of an assignment a in
AA and ~σ ∈ ΣkT ,m0

such that (i) for each free variable xi, a0(xi) ∈ ob(A) ∪ val(A), (ii) for each bound
variable yi, a(yi) = a and σi = ([H1], . . . , [Hn]), n ≤ m0, with a being the root of the tree containing
a0(yi) and H1, . . . ,Hn being the sequence of labels `a(ui, ui+1) on the path from a to a0(yi). Not every
pair (a, ~σ), however, corresponds to an assignment inWm0

because some paths in ~σ may not exist in the I0

for a given ABoxA. As follows from the unravelling procedure and (p), a point in Wm0 \W0 corresponds
to a ∈ ob(A) and σ = ([H], . . . ) ∈ ΣT ,m0 iff a has not enough H-witnesses in A. Thus, for every (a, ~σ),
there is an assignment a0 in Wm0

with split(a0) = (a, ~σ) iff AA |=a η~σ(~y), where

η~σ(~y) =
∧

1≤i≤k
σi=([Hi],... ) 6=ε

∨
q∈QHi

T

(
¬ψ0
≥q Hi

(yi) ∧ ψ≥q Hi
(yi)

)
.

We define now, for every ~σ ∈ ΣkT ,m0
, concept name A, role or attribute name H and datatype name T :

A~σ(t) =

{
ψA(t), if t~σ = ε,

θA,inv(ds), if t~σ = σ′.[S],

H~σ(t1, t2) =


HT(t1, t2), if t~σ1 = t~σ2 = ε,

(t1 = t2), if either t~σ1 .[S] = t~σ2 or t~σ2 = t~σ1 .[inv(S)], for S v∗T H,
⊥, otherwise,

T ~σ(t) =


νT (t), if t~σ = ε,

ψ∀U.T (t), if t~σ = [U ],

θ∀U.T,inv(ds), if t~σ = σ′.[S].[U ].
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LEMMA 11. For each assignment a0 in Wm0 , with split(a0) = (a, σ), we have

I0 |=a0 A(t) iff AA |=a A~σ(t), for concept names A,

I0 |=a0 H(t1, t2) iff AA |=a H~σ(t1, t2), for role and attribute names H ,

I0 |=a0 T (t) iff AA |=a T ~σ(t), for datatype names T .

Proof. For A(a), A(xi) and A(yi) with σi = ε the claim follows from (7). For A(yi) with σi = σ′.[S],
by (copy), we have cp(a0(yi)) = inv(dr), for some R ∈ [S]; the claim then follows from (9).

For H(yi1 , yi2) with σi1 = σi2 = ε, the claim follows from (ABox). Let us consider the case of
H(yi1 , yi2) with σi2 6= ε: we have a0(yi2) /∈W0 and thus, by (role), I0 |=a0 H(yi1 , yi2) iff

• a0(yi1), a0(yi2) are in the same tree Ta, for a ∈ ob(A), i.e., AA |=a (yi1 = yi2),

• and either (a0(yi1), a0(yi2)) ∈ Ea and then `a(a0(yi1), a0(yi2)) = S for some S v∗T H , or
(a0(yi2), a0(yi1)) ∈ Ea and then `a(a0(yi2), a0(yi1)) = S for some inv(S) v∗T H .

For T (v), T (xi) and T (yi) with σi = ε the claim follows from (11). Consider T (yi) with σi 6= ε.
Let v = a0(yi). Then v /∈ W0 and, by (role), there is w ∈ ∆I0 such that w and v are in the same tree
Ta, for some a ∈ ob(A), with (w, v) ∈ Ea and `a(w, v) = Ui, for some Ui v U , i.e., σi = σ′.[U ], and
(w, v) ∈ UI0 . By (6), v ∈ T I0 iff w ∈ BI01 , . . . , BI0k such that T |= B1 u · · · u Bk v ∀U.T , which is
equivalent to AA |=a Tσ(yi). Indeed, we can distinguish two cases: (i) w = a ∈ ob(A), then by (8), it
is equivalent to AA |= ψ∀U.T (ai) and T ~σ(yi) = ψ∀U.T (ai); cp(w) = dr− and σ = σ′.[S].[U ] for some
R ∈ [S], then by (4) and (10), it is equivalent to AA |= θ∀U.T,inv(ds) and T ~σ(yi) = θ∀U.T,inv(ds).

Finally, we define the first-order rewriting of q and T by taking:

ϕT ,q(~x) = ∃~y
∨

~σ∈Σk
T ,m0

(
ϕ~σ(~x, ~y) ∧ η~σ(~y)

)
,

where ϕ~σ(~x, ~y) is the result of attaching the superscript ~σ to each atom of ϕ.
As follows from Lemma 11, for every assignment a0 in Wm0

, we have I0 |=a0 ϕ(~x, ~y) iff AA |=a

ϕ~σ(~x, ~y) for (a, σ) = split(a0). For the converse direction notice that, if AA |=a η~σ(~y) then there is an
assignment a0 in Wm0

with split(a0) = (a, ~σ).

6 Conclusions
We studied two different extensions of the DL-Lite logics. First, we considered the interaction between
cardinality constraints and role inclusions and their impact on the complexity of satisfiability. We presented
two alternative restrictions both relaxing the one analyzed by (Artale et al., 2009), where roles with sub-
roles cannot have maximum cardinality constraints. Our results imply that if the complexity of the KB
satisfiability problem is to remain low, the number ofR-successors in the ABox has to be taken into account
(e.g., (interKB)); otherwise, under the condition (interT ), complexity of KB satisfiability becomes NP-
hard, even for the core fragment, and EXPTIME-complete even for the Horn case.

Then we considered local attributes that allowing the use of the same attribute associated to different
concepts with different datatype range restrictions (with Horn-like inclusions of datatypes). Notably, this is
the first time that DL-Lite is equipped with a form of the universal restriction ∀U.T . We showed that such
an extension is harmless with the only exception of the Krom fragment, where the complexity rises from
NLOGSPACE to NP. We studied also the problem of answering positive existential queries and showed that
for the Horn and core extensions the problem remains in AC0(i.e., FO-rewritable).

As a future work, given the encouraging results obtained here, we aim at better clarifying the connection
of this work with the literature on concrete domains and analyzing the influence of different concrete
domains on the complexity of the logics.
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