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1 Introduction

Description logics [10] (DLs) are widely-used logical formalisms for knowl-
edge representation, where the domain of interest is structured in concepts
whose properties are specified by roles. Complex concepts and role expres-
sions are constructed, starting from atomic ones, by applying suitable (log-
ical) operators, whose availability depends on the specific language we con-
sider. Concept descriptions are then collected into a knowledge base (KB),
made of intensional knowledge (TBox assertions) and extensional knowledge
(ABox assertions). A TBox typically consists of a set of axioms stating the
inclusion between pairs of concepts or roles, while in an ABox one can assert
membership of objects (constants) in concepts, or that a pair of objects is
connected by a role.

The name DL-Lite identifies a family of description logics, proposed for
the first time in [22, 23] and characterized by a good computational be-
haviour combined with a relatively high expressive power. To describe the
DL-Lite family, whose intended applications include capturing typical con-
cept modeling formalisms such as UML, class diagrams, and ER diagrams,
we focus our attention on the supremum (w.r.t. the expressive power) for-
malism, namely, DL-LiteHNbool , which includes as a fragment every other ele-
ment of the family. Among the various fragments, we mention sub-Boolean
fragments (hence the subscript bool, which indicates no restrictions), frag-
ments that cannot constrain the cardinality of roles, and fragments with
restricted role inclusions in the TBox (hence the superscript HN , which
indicates that number restrictions and role inclusions are fully available).
A comprehensive survey of the variety of the formalisms that belong to
DL-Lite, their properties, and their applications can be found in [3].

Temporal extensions of DLs have been studied in [4, 6, 7, 9, 11, 12, 33]
(see [5, 26, 29] for a detailed survey). In particular, in [8] logics of the
family DL-Lite have been been combined with a variety of point-based tem-
poral logics, ranging from LTL with Future and Past to full LTL with Since
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and Until (see, e.g., [27]). Different resulting logics, generically denoted by
TTLDL-Lite, are introduced according to the following parameters: (i) the
fragment of LTL to be used, (ii) the fragment of DL-Lite taken as the ba-
sis for the extension, and (iii) whether roles can be temporalized or not.
Complexities of the different logics range from NLogSpace to undecidable
(in particular when roles can be temporalized or when role inclusions and
number restrictions can interact without constraints). As for the underlying
temporal structure, in [8] all results are given for Z.

In this paper, we study interval-based extensions of DL-Lite logics based
on fragments of Halpern and Shoham’s logic HS [28]. We make the fol-
lowing assumptions: (i) we take Z as the temporal domain; (ii) we con-
sider only HS fragments that can express the so-called length constraints;
(iii) we distinguish between rigid roles, that is, roles that are time-invariant,
and flexible roles, but we do not allow the computationally-expensive tem-
poralised roles. All logics studied here can be considered as fragments of
the full product of DL-LiteHNbool and HS, that is, THSDL-LiteHNbool . Since
HS is undecidable over Z, it easily follows that THSDL-LiteHNbool is unde-
cidable as well. However, a number of recent results show that various
fragments of HS offer a good balance between expressiveness and decidabil-
ity/complexity [13, 14, 17, 19, 30, 31, 32], suggesting that we can weaken the
temporal part, by considering decidable fragments ofHS, without sacrificing
expressiveness.

Even if we fix the underlying interval-based temporal languages, there
are a number of choices to be made. First of all, interval-based temporal
logics have been studied, in a sense, in a more general way that point-based,
as there is no immediate need to fix a class of linearly ordered sets right at
the beginning. As a matter of fact, many interesting results have been found
in the dense case or in the case of all linearly ordered sets (see, e.g., [24]).
Second, we need to decide how to deal with ABox assertions. From [8] it
seems clear that for useful applications the possibility of expressing that, for
example, a certain individual has a given property at a precise moment of
time cannot be given up. Fragments of point-based TTLDL-Lite that do not
include the Next operator, but only qualitative information (and therefore
unable to directly represent ABox information), have been studied in [8],
but the possibility of expressing ABox assertions is preserved by means of a
clever technical solution.

2 The Language of DL-Lite

The language DL-LiteHNbool contains object names (a.k.a. constants, individu-
als) a0, a1, . . ., (atomic) concept names A0, A1, . . ., and (atomic) role names
P0, P1, . . .. Complex concepts, generically denoted by C0, C1, . . . as well as
complex roles, denoted by R0, R1, . . . are formed by means of the following
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abstract grammar:

R ::= Pk | P−k ,
B ::= ⊥ | Ak | ≥ q R,
C ::= B | ¬C | C1 u C2,

where q ≥ 1 and P−k denotes the inverse of the atomic role Pk. As in
their logical counterpart, disjunction (t) and truthness (>) are treated as
standard abbreviations. ∃R is an abbreviation for ≥ 1R.

A DL-LiteHNbool TBox T is a finite set of concepts and roles inclusions of
the form:

C1 v C2, and R1 v R2,

respectively. Similarly, a DL-LiteHNbool ABox A is a finite set of assertions of
the form:

Ak(am),¬Ak(am), Pk(am, an),¬Pk(am, an).

All together, K = T ∪ A is called a knowledge base.
An interpretation consists of a structure I = (∆I , ·I), where ∆I is a non-

empty domain and ·I is an interpretation function which assigns elements of
∆I to object names, subsets of ∆I to atomic concept names, and subsets of
∆I ×∆I to atomic role names. Under the unique name assumption (UNA),
different object names are assigned to different domain elements. Complex
concepts and roles are then interpreted as follows:

(P−k )I = {(y, x) ∈ ∆I ×∆I | (x, y) ∈ P Ik },
⊥I = ∅,
(≥ q R)I = {x ∈ ∆I | ]{y ∈ ∆I | (x, y) ∈ RI} ≥ q},
(¬C)I = ∆I \ CI ,
(C1 u C2)I = CI1 ∩ CI2 .

An interpretation satisfies C1 v C2 (R1 v R2) if CI1 ⊆ CI2 (RI1 ⊆ RI2 )
and it satisfies and assertion Ak(am) (¬Ak(am), Pk(am, an),¬Pk(am, an))
if aIm ∈ AIk (aIm 6∈ AIk , (a

I
m, a

I
n) ∈ P Ik , (a

I
m, a

I
n) 6∈ P Ik ). We say that a

knowledge base K = (T ,A) is satisfiable if there exists an interpretation
I that satisfies every assertion of K. Other interesting problems, such as
concept satisfiability (i.e., deciding whether there exists an interpretation
I of K such that a concept CI 6= ∅), or subsumption (deciding whether
every interpretation I of K is such that CI1 ⊆ CI2 ) can be reduced to KB
satisfiability.

There are several ways that have been studied to reduce the expressive
power of DL-LiteHNbool with the aim of reducing the complexity of its satis-
fiability problem. These techniques can be described as reductions along
three axes: (i) restricting the applicability of boolean operators, (ii) elim-
inating the number restrictions, and (iii) restricting or eliminating the ap-
plicability of role inclusions as axioms of the TBox. The standard nota-
tion includes a subscript α ∈ {bool,Horn,Krom, core}, and a superscript
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Figure 1: Relative expressive power between elements of the DL-Lite family.

β ∈ { ,N ,H,HN , (HN )} to denote the choice. In particular, including N
(resp., H) denotes that number restrictions (resp., role inclusions) are fully
available, and (HN ) indicates that both number restrictions and role inclu-
sions are allowed, but no roleR can occur in the TBox in both a role inclusion
and a number restriction with q ≥ 2. Conversely, bool denotes the fact that
Boolean operators are not restricted, while Horn (resp., Krom,core) indi-
cate that Boolean operators are limited as in the corresponding fragment
of propositional logic; this limitation applies to the construction of TBox
axioms. From an expressive power point of view, the various limitations
relate to each other independently, giving rise to two (partial) diagrams as
in Fig. 1, and from the complexity point of view the obtained fragments
range from NLogSpace (sub-boolean fragments) to NP and to ExpTime
(when role inclusions and number restrictions can be freely used).

3 The Interval Temporal Logic HS and its Frag-
ments

Let D = 〈D,<〉 be a linearly ordered set. An interval over D is an ordered
pair [i, j], where i, j ∈ D and i < j (strict semantics). There are 12 differ-
ent non-trivial ordering relations (excluding equality) between any pair of
intervals in a linear order, often called Allen’s relations [2]: the six relations
depicted in Fig. 2 and the inverse ones. We interpret interval structures as
Kripke structures and Allen’s relations as accessibility relations, thus asso-
ciating a modality 〈X〉 with each Allen’s relation RX . For each operator
〈X〉, its inverse (or transpose), denoted by 〈X〉, corresponds to the inverse
relation RX of RX (that is, RX = (RX)−1). Halpern and Shoham’s logic
HS is a multi-modal logic with formulas built on a set AP of proposition
letters, the boolean connectives ∨ and ¬, and a modality for each Allen’s
relation. We denote by X1 . . .Xk the fragment of HS featuring a modality
for each Allen’s relation in the subset {RX1 , . . . , RXk

}. Formulas of X1 . . .Xk

are defined by the grammar:

ϕ ::= p | ¬ψ | ψ ∨ τ | 〈X1〉ψ | . . . | 〈Xk〉ψ.
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Figure 2: Allen’s interval relations and the corresponding HS modalities.

The other boolean connectives can be viewed as abbreviations, and the dual
operators [X] are defined as usual. The semantics of HS is given in terms
of interval models M = 〈I(D),V〉, where I(D) is the set of all intervals over
D and V : AP 7→ 2I(D) is a valuation function that assigns to every p ∈ AP
the set of intervals V(p) over which p holds. The truth of a formula over a
given interval [i, j] in an interval modelM is defined by structural induction
on formulas:

M, [i, j]  p iff [i, j] ∈ V(p)
M, [i, j]  ¬ψ iff M, [i, j] 6 ψ
M, [i, j]  ψ ∧ τ iff M, [i, j]  ψ and M, [i, j]  ϕ
M, [i, j]  〈Xk〉ψ iff M, [i′, j′]  ψ for some [i, j]RX [i′, j′].

Recently, a great effort has been devoted to the study of decidability
of fragments of HS. Ever since HS was introduced, it was immediately
clear that its satisfiability problem is undecidable when interpreted on ev-
ery interesting class of linearly ordered sets [28]. While this sweeping result
initially discouraged further research in this direction, recent results showed
that the situation is slightly better then it seemed. Given the set of HS
modalities that correspond to the set of Allen’s relations {RX1 , . . . , RXk

},
we call fragment F = X1X2 . . .Xn any subset of such modalities, displayed
in alphabetical order. There are 212 such fragments. Some of these are ex-
pressively equivalent to each other; in [24] (resp., [1]) it is possible to find
all possible inter-definability in the class of all linearly ordered sets (resp.,
all dense linearly ordered sets), giving rise to 1347 (resp., 966) expressively
different fragments. The number of different fragments on other classes of
linear orders has not been determined yet, but it is believed that the situa-
tion in the finite or discrete case should be similar. Out of these fragments,
it has been possible to prove that exactly 62 are decidable in the finite
case [15], and 44 in the (strongly) discrete case (and in the case of Z) [16],
all of which with complexities that range from NP-complete (in very simple
cases) to NExpTime-complete, ExpSpace-complete, to non-primitive re-
cursive. The complete diagram that includes all decidable fragments of HS,
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Figure 3: Hasse diagram of all decidable fragments HS over Z.

along with their relative expressive power, over the integers, is displayed in
Fig. 3. The way in which switching from Z to N influences the computa-
tional properties of fragments of HS is displayed in Fig. 4, which contains
all decidable fragments of HS over natural numbers. The most interesting
change is that some fragments, undecidable over Z, become decidable, but
non-primitive recursive.

Since extending DL-Lite with an interval-based temporal logics in search
for a decidable hybrid has any hope to be successful only when the proposi-
tional interval-based logic alone is, at least, decidable, the diagrams in Fig. 3
and in Fig. 4 contain all fragments of HS in which we can be interested. In
this paper we are interested in the set of the integers as backbone for the
temporal part; changing this assumption, however, changes the decidability
status of fragments of HS only in a few cases.

We now consider two expressivity issues relevant for obtaining complex-
ity results on the considered interval-based DL-Lite logics, i.e., (i) the pos-
sibility of expressing the universal modality; (ii) the possibility of correctly
expressing length constraints over the intervals. We show how to capture
both of them when formulas are interpreted over Z. [G] is said to be a
universal modality when:

M, [i, j] |= [G]ϕ iff ∀[i′, j′] ∈ I(Z),M, [i′, j′] |= ϕ.

Whenever a fragment F of HS is powerful enough to express [G], we have
that its satisfiability problem on Z can be safely reduced to initial satisfia-
bility, that is, over the interval [0, 1]. In particular, in the fragment AA, a
possible way to express [G] over Z is:
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Figure 4: Hasse diagram of all decidable fragments HS over N.

[G]ϕ ≡ [A][A][A]ϕ ∧ [A][A]ϕ ∧ [A][A][A]ϕ. (1)

While the above expression is applicable in most of the fragments of Fig. 4
and Fig. 4, some of them are left out. These can be recovered with other
(more complex) formulas, provided that they allow one to move in both
directions. When this is not the case, then some intervals cannot be seen,
and it is convenient to change the underlying class of linear orders to recover
the universal modality.

Concerning the possibility to express length constraints, the situation is
slightly more complex. The most general way to deal with length constraints
is to explicitly introduce a predicate, len∼k, with the following semantics [18]:

M, [i, j] |= len∼k iff δ(i, j) ∼ k.

where δ is a distance function δ : Z× Z→ N, defined as δ(i, j) = |i− j|, for
each ∼∈ {<, ≤, =, ≥, >}1. As showed in [18, 20], the language of AA can
be extended with explicit length constraints predicates when interpreted over
N or Z without loosing the decidability of the fragment itself; its complexity,
though, worsen from NExpTime to ExpSpace. Length constraints can also
be captured inside HS. The simplest way to achieve this is to make use of
either 〈B〉 or 〈E〉 modality. For example, under the discreteness hypothesis,
we have that:

M, [i, j] |= len=k iff M, [i, j] |= 〈B〉k−1> ∧ [B]k⊥.
1Equality and inequality constraints are mutually definable, although there is a increase

in formula length if we consider only constraints of the form len=k as primitive.
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where we use the expression 〈Xk〉k to denote the application of a modal-
ity 〈Xk〉 k times. It is worth observing that the above encoding is unary:
this means that a formula that contains a length constraint with a con-
stant k, expressed in binary, will be exponentially longer than the constraint
itself. To overcome this problem, we can use a more complicate logarith-
mic encoding (see [21]) that requires the use of both 〈A〉 and one among
{〈B〉, 〈B〉, 〈E〉, 〈E〉}. In other cases, as showed in [18, 20] for the fragment
AA, the language can be extended with length constraints without loosing
the decidability of the fragment itself. This addition, though, worsen the
complexity from NExpTime to ExpSpace.

The picture that can be drown from [16, 20] shows that, over Z, two
fragments are particularly interesting for us, namely ABBL and AA ex-
tended with length constraints (also known as mpnl). These are maximally
decidable (in the sense that no other modality from the HS machinery
can be added without loosing their decidability), both can express length
constraints and the universal operator, and are expressively incomparable
to each other. The decidability problem for both of them is ExpSpace-
complete.

4 The Language THSDL-LiteHNbool

The purpose of this paper is to define a family of languages that can be
obtained by combining DL-Lite with HS. These languages will have the
possibility of describing concepts with characteristics that change over time
and properties that hold over intervals instead of points. We present here
the most expressive member of this family, that is, THSDL-LiteHNbool .

The syntax of THSDL-LiteHNbool can be naturally obtained from the two
components DL-LiteHNbool andHS. Its language contains object names a0, a1, . . .,
concept names A0, A1, . . ., flexible role names P0, P1, . . ., and rigid role
names G0, G1, . . . Role names S, roles R, basic concepts B and concepts
C are formed by means of the following abstract grammar:

S ::= Pk | Gk,
R ::= S | S−,
B ::= ⊥ | Ak | ≥ q R,
C ::= B | ¬C | C1 u C2 | 〈Xk〉C,

where 〈Xk〉 is one of theHS-modalities explained in the previous section and
[Xk]C ≡ ¬〈Xk〉¬C. Members of the TBox can be built as in the atemporal
case, while members of ABox are of the following form:

Ak(am, [i, j]), ¬Ak(am, [i, j]),
Sk(am, an, [i, j]), ¬Sk(am, an, [i, j]).

A temporal interpretation for a THSDL-LiteHNbool knowledge base is a pair
I = (∆I , ·I([i,j])) where ∆I 6= ∅ is a non empty domain (under the constant
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domain assumption) and I([i, j]) is a standard DL interpretation for each
interval [i, j] ∈ I(Z) such that:

I([i, j]) = 〈∆I , aI0 , . . . A
I([i,j])
0 , . . . , P

I([i,j])
0 , . . . , GI0 , . . .〉

We assume that rigid roles names and object names have a time-invariant
interpretation. Thus we omit the interval parameter in their interpretation,
i.e., GI ⊆ ∆I ×∆I and aI ∈ ∆I . The interpretation of flexible roles names
P I([i,j]) ⊆ ∆I×∆I and concept names AI([i,j]) ⊆ ∆I depend on the interval
[i, j] of evaluation. Interpreting atemporal concepts can be accomplished as
before, while we interpret temporal concepts as:

(〈Xk〉C)I([i,j]) =
⋃

[i,j]rXk
[i′,j′]

CI([i
′,j′]),

where rXk
is the Allen’s relation that corresponds to the modality 〈Xk〉.

Members of the TBox are interpreted globally :

I  C1 v C2 iff C
I([i,j])
1 ⊆ CI([i,j])2 , for all [i, j] ∈ I(Z);

I  R1 v R2 iff R
I([i,j])
1 ⊆ RI([i,j])2 , for all [i, j] ∈ I(Z).

ABox assertions are interpreted locally on some interval [i, j]:

I  Ak(am, [i, j]) iff am ∈ AI([i,j])k ,

I  ¬Ak(am, [i, j]) iff am 6∈ AI([i,j])k ,

I  Sk(am, an, [i, j]) iff (am, an) ∈ SI([i,j])k ,

I  ¬Sk(am, an, [i, j]) iff (am, an) 6∈ SI([i,j])k .

The notion of satisfiability of a THSDL-LiteHNbool knowledge base can be de-
fined as follows.

Definition 1 Let K = (T ,A) be a THSDL-LiteHNbool knowledge base. Then,
K is satisfiable (I |= K) if and only if there exists an interpretation I =
(∆I , ·I([i,j])) that satisfies every assertion in A and all axioms in T .

From the decidability point of view, we already know that HS alone is
undecidable (over almost any meaningful class of linear orders, including
Z), and that the point-based temporal counterpart of DL-LiteHNbool (where
number restrictions and role inclusions can be used freely) is undecidable as
well when rigid roles are also allowed. Therefore, in the rest of the paper
we focus our attention on how to combine decidable fragments of HS with
a suitable fragment of DL-LiteHNbool to obtain a decidable logic.

We conclude this section with a small but meaningful example. Let us
consider the ER diagram of Fig. 5 representing a small part of a medical
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Therapy IT

Physician G Patient

Drug IT

Prescribes

(1,∞)

(1, 1)
Receives

(1,∞)

(1, 1)

Administrates

(0, 1)

Figure 5: The conceptual data model of the medical example.

information system. The diagram represents an entity Therapy that is pre-
scribed by some Physician to some Patient. A Therapy consists of the ad-
ministration of some Drug. We can model the diagram in THSDL-LiteHNbool

by considering Therapy, Physician, Patient and Drug as concept names,
and Prescribes, Receives and Administrates as role names. Cardinality con-
straints on relationships, like ‘a therapy is prescribed by exactly one physi-
cian’, can be expressed as in DL-Lite:

Therapy v ∃Prescribes− ≥ 2 Prescribes− v ⊥

The fact that Physician is a time-invariant entity — i.e., a physician is a
global entity holding at every interval — is represented with the timestamp
G (standing for global) and is enforced by using the global temporal operator
and the corresponding axiom:

Physician v [G]Physician

Time-variant entities are represented by marking them with the timestamp
IT with the meaning that they have a limited life-span. The fact that Ther-
apy and Drug are both time-variant can be captured using the following
axioms:

Therapy v 〈A〉¬Therapy u 〈A〉¬Therapy ,

Drug v 〈A〉¬Drug u 〈A〉¬Drug .

The interval modalities of HSallow us to express complex relations between
the lifespan of time-variant entities. For instance, we can say that ‘a therapy
starts and finishes with a drug administration’ :

Therapy v 〈B〉∃Administrates u 〈E〉∃Administrates.

and that ‘drug administrations cannot overlap inside the same therapy’ :

∃Administrates v [O]¬∃Administrates.
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The above example makes use of HSmodalities that belong to fragments
which are not always decidable. Under reasonable assumptions, such as, for
example, ‘a therapy is always shorter than k time units’, we can rewrite the
above formulas using only the interval modalities of the decidable fragments
mpnl or ABBL.

5 Decidable Fragments of THSDL-LiteHNbool

To obtain decidable fragments of THSDL-LiteHNbool we investigate here the
case where decidable fragments of HS are combined with DL-Lite

(HN )
bool , i.e.,

the restriction of DL-LiteHNbool with the following condition: if a role R appears
in an axiom of the form R′ v R, for some role R′ 6= R, then number restric-
tions ≥ q R and ≥ q R−, with q ≥ 2, cannot appear in T . Since, as showed
in [3], the language DL-Lite

(HN )
bool behaves computationally as DL-LiteNbool , in

the following we consider the language THSDL-LiteNbool . Complexity results
will then transfer to THSDL-Lite

(HN )
bool .

Using a technique similar to [8], we first prove that THSDL-LiteNbool can
be embedded into FO1×HS, that is, HS extended with the single variable
fragment of first order logic, and from that, into propositional HS. The
embedding can be accomplished for temporal fragments of THSDL-LiteNbool
as well under the following conditions: (i) the universal operator is ex-
pressible; (ii) length constraints are expressible or explicitly added to the
language; (iii) the interpretation is based on a left-bounded domain only
if no past operators are present (notice that past operators in HS are:
〈A〉, 〈L〉, 〈E〉, 〈O〉, 〈D〉). Whenever the fragment F of HS is decidable, and
yet the above conditions are met, we prove that the obtained TFDL-Lite is
decidable as well.

5.1 The language FO1×HS

To the best of our knowledge, no first-order extensions ofHS can be found in
the literature. This is not surprising, given that HSis already undecidable,
that decidable fragments of it has been found only recently, and that even a
very small first-order extension of a decidable fragment of HS has already
been found to be undecidable [25].

The language of FO×HS contains predicates P0, P1, . . . of some given
arity, variables x0, x1, . . ., and constants a0, a1, . . . A formula of FO×HS,
generically denoted by f, g, . . ., is built from the basic components by means
of the following abstract grammar:

f ::= Pk(t0, . . . , ts) | ⊥ | ∀xg | ¬g | g ∧ h | 〈Xk〉g,

where t0, t1, . . . are terms (i.e., variables or constants), Pk is of arity s, and
〈Xk〉 is one of the HS modalities. The existential quantification, the re-
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maining Boolean operators and the universal temporal modalities can all be
considered as shortcuts.

As in propositional HS, we let D = 〈D,<〉 be a linearly ordered set, and
we consider the set of all intervals I(D) that can be built on it. Then, given
a domain ∆M 6= ∅, for each interval [i, j] in I(D) we define the structure:

M([i, j]) = 〈∆M, aM0 , . . . , P
M([i,j])
0 , . . .〉.

As before, under the rigid and constant domain assumption, the domain
and the interpretation of constants do not vary over time. Therefore, a
FO×HS model based on D is a tuple of the typeM = (∆M,M(·)), where
M(·) assigns to every interval in I(D) a first-order structure as described
above. An assignment a maps variables to elements of ∆M. If a and a′ are
two assignments that differ exactly on the value assigned to the variable x,
we write a′ 6=x a. The truth of a formula over a given interval [i, j] and for
a given assignment a is defined by structural induction:

M([i, j]) a Pk(t1, . . . , ts) iff (tM1 , . . . , tMs ) ∈ PM([i,j])
k

M([i, j]) a ¬g iff M([i, j]) 6a g
M([i, j]) a g ∧ h iff M([i, j]) a g and

M([i, j]) a h

M([i, j]) a ∀xg iff M([i, j]) a′ g for all
a′ 6=x a

M([i, j]) a 〈Xk〉g iff M([i′, j′]) a ψ for some
[i′, j′] s.t. [i, j]rXk

[i′, j′].

For our purposes, we focus on FO1×HS (i.e., the one variable fragment of
FO×HS) interpreted over the integers and where satisfiability is intended
as initial satisfiability (i.e., over [0, 1]) as in HS.

Definition 2 Let f be a FO1×HS formula. Then, f is satisfiable over Z
if and only if there exists a model M = (∆M,M(·)) based on Z and an
assignment a such that M, [0, 1] a f .

5.2 Embedding in FO1×HS

We now show the main result of this paper. We consider THSDL-LiteNbool
KBs and we give an equi-satisfiable encoding into FO1×HS formulas. As a
matter of facts, all proofs and results immediately transfer from THSDL-LiteNbool
to THSDL-Lite

(HN )
bool .

Let us fix a THSDL-LiteNbool knowledge base K = T ∪A, where T contains
only concept inclusions (role inclusions are not allowed in THSDL-LiteNbool ),
and let ob(A) be the set of objects in A. Also, let us denote by role(K)
(resp., roler(K)) the set of all role names (resp., rigid role names) in K
plus their inverses, and by QK the set containing 1 and all numbers q s.t.
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≥ q R occurs in K. Finally, for every role name R, we denote by inv(R)
its inverse, i.e., inv(S) = S− and inv(S−) = S, for a role name S. In our
encoding, objects in ob(A) become constants, and atomic concepts, A, and
number restrictions, ≥ q R, become unary predicates (A(x) and EqR(x),
respectively; the shortcut ER is used instead of E1R). Intuitively, for a role
name S, the predicates EqS(x) and EqS

−(x) represent the domain and the
codomain of S. The FO1×HS formula C∗(x) that encodes a THSDL-LiteNbool
concept C is built by induction on the structure of C:

A∗ = A(x), ⊥∗ = ⊥, (≥ q R)∗ = EqR(x)
(C1 u C2)∗ = C∗1 ∧ C∗2 , (¬C)∗ = ¬C∗, (〈X〉C)∗ = 〈Xk〉C∗k .

To correctly translate K we have to describe how to deal with axioms and
assertions. Translating an axiom C1 v C2 requires a global formula. To this
end, we can use the definable modal operator [G] discussed in Section 3.
Furthermore, we need to add conditions to correctly encode roles. First,
if an object has q R-successors, then, it has also q′ R-successors for any
q′ ∈ QK, q

′ < q. Second, if the domain of a role is non-empty, then its
range is not empty as well. Third, if a role R is rigid and an object has q
R-successors at an interval [i, j], then, it has q R-successors at every interval
of the model. The translation T † of T is is defined as the conjunction of the
following sentences:∧

C1vC2∈T
[G]∀x(C∗1 (x)→ C∗2 (x))∧ (2)

∧
R∈role(K)

∧
q,q′∈QK,q′<q

[G]∀x(EqR(x)→ Eq′R(x))∧ (3)

∧
R∈role(K)

[G](∃xER(x)→ ∃x(Einv(R)(x)))∧ (4)

∧
R∈roler(K)

∧
q∈QK

[G]∀x(EqR(x)→ [G]EqR(x)). (5)

To complete the transformation, we need to deal with assertions in the ABox
A. Assertions of the form Ak(am, [i, j]) are encoded as:

Ak(am, [i, j])[ =


Ak(am) if i = 0, j = 1
〈A〉(len=(j−1) ∧ [A]〈A〉(len=|j−i| ∧Ak(am))) if j > 1
〈A〉(len=|i| ∧ [A]〈A〉(len=|j−i| ∧Ak(am))) if j ≤ 1

Role assertions are slightly more complex. We can safely assume that if
S(a, b, [i, j]) ∈ A, then A also contains S−(b, a, [i, j]). Since there are no
binary predicates in the FO1×HS encoding we can only express the fact
that a (resp., b) is in the domain (resp., range) of R. This is sufficient since
DL-Lite logics do not have the expressive power to qualify those individuals
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whose existence is asserted. Furthermore, if R is rigid, then R(a, b, [i, j]) ∈ A
implies that R(a, b, [i′, j′]) holds for each [i′, j′] ∈ I(Z). Thus, to count the
number of individuals related via R to a at a certain interval [i, j] we need
to look at the entire ABox. Thus, for every [i, j] ∈ I(Z) and every R, we
introduce the following interval slice AR

[i,j] of A as

AR
[i,j] =

{
{R(a, b) | R(a, b, [i′, j′]) ∈ A for some [i′, j′] ∈ I(Z)}, R rigid,
{R(a, b) | R(a, b, [i, j]) ∈ A}, R flexible,

and to count the number of R-successor of a at [i, j] we use:

qR
a,[i,j] = max{q ∈ QK | R(a, b1), . . . , R(a, bq) ∈ AR

[i,j]}.

We can now define the translation A† of the ABox A as:∧
Ak(a,[i,j])∈A

Ak(a, [i, j])[ ∧
∧

¬Ak(a,[i,j])∈A

¬Ak(a, [i, j])[∧

∧
R(a,b,[i,j])∈A

EqR
a,[i,j]

R(a, [i, j])[ ∧
∧

¬S(a,b,[i,j])∈A,S(a,b,[i,j])∈AS
[i,j]

⊥.

where, by abuse of notation we denote with EqR
a,[i,j]

R(a, [i, j])[ the appli-

cation of the ·[ encoding — as presented above for ABox assertions — to
ground predicates of the form EqR

a,[i,j]
R(a, [i, j]). The above translation can

be effectively computed since we need slices only for those intervals that
are mentioned in the ABox. We finally define the encoding of K into an
FO1×HS formula K† as the conjunction T † ∧ A†. We now establish the
main result of this section, i.e., that K and K† are equi-satisfiable.

Theorem 1 A THSDL-LiteNbool knowledge base K is satisfiable iff the FO1×HS
formula K† is satisfiable in [0, 1].

Proof. If K is satisfiable over Z, then it is trivial to see that K† is satisfied
over the set Z in [0, 1]. The difficult part is to show that the converse holds
as well.

Suppose that for a given FO1×HS structureM = (∆M,M(·)) based on
Z, it is the case thatM([0, 1])  K†—notice that no assignment is involved as
there are no free variables. We now show how to build a THSDL-LiteNbool in-
terpretation I satisfying K following an unfolding technique already adopted
in [8]. The domain ∆I is built inductively; we set ∆0 = {aM | a ∈ ob(A)}
(assuming, w.l.g., that all aM are distinct), and define:

∆I =
⋃
n≥0

∆n.

Clearly, aI = aM for every object. Intuitively, to build ∆n+1 from ∆n, we
add copies of elements u ∈ ∆M \∆0 (i.e., we create elements that have the
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same properties as u). For an element u ∈ ∆I , we denote by −→u that element
in ∆M from which it has been copied, with −→a = a, for any a ∈ ob(A).
Therefore, for every interval [i, j] ∈ I(Z), and every concept name occurring
in K, we have that:

AI([i,j]) = {u ∈ ∆I | M([i, j])  A∗(−→u )}.

The interpretation of roles is defined along an inductive procedure as long as
we construct the domain, i.e., SI([i,j]) =

⋃
n≥0 S

[i,j]
n . Clearly, at each step n

of the construction, S[i,j]
n ⊆ ∆n ×∆n represents the (partial) interpretation

of the role S at [i, j]. Given an individual d ∈ ∆M, an interval [i, j], and a
role name R, we denote with ρR,[i,j]

d the required R-rank of d at [i, j] defined
as:

ρ
R,[i,j]
d = max({0} ∪ {q ∈ QK | M([i, j])  EqR(d)}).

Notice that ρR,[i,j]
d is well defined: if q = ρ

R,[i,j]
d > 0 then M([i, j])  EqR(d)

and M([i, j])  Eq′R(d), for any q′ ∈ QK with q′ < q, while M([i, j]) 6
Eq′R(d), for any q′ > q. Similarly, the number of individuals that are
actually R-related to some u ∈ ∆I at some interval [i, j] and some step n of
the construction can be computed by simply counting the number of distinct
pairs (u, u′) ∈ S[i,j]

n , if R = S, or (u′, u) ∈ S[i,j]
n , if R = S−. We denote this

number as ςR,[i,j]
u,n and call it the actual R-rank. Thus, the cardinalities of

type ρ are based on the FO1×HS model M, while cardinalities of type ς
are based on the interpretation I at a certain step n of its construction.
It is easy, now, to define the basis of the induction for building the role
interpretation: for every role name S and every interval [i, j], we put:

S
[i,j]
0 = {(aI , bI) ∈ ∆0 ×∆0 | S(a, b) ∈ AS

[i,j]}.

Since the interpretation of the roles starts with the information already
present in A, at the first step of the construction, the following holds:
ς
R,[i,j]
u,0 ≤ ρ

R,[i,j]
−→u , for every R ∈ role(K) and every interval [i, j]. The defini-

tion of A[, and, in particular, the third conjunct, guarantees this property.
Now, suppose that we have defined ∆n and S

[i,j]
n for each interval [i, j] up

to a given step n ≥ 0. If ςR,[i,j]
u,n = ρ

R,[i,j]
−→u for every R ∈ role(K), the con-

struction could be considered as finished. Suppose that for some role R and
some individual u the number of its R-successors is less than the required
R-rank. We can list all such defects at the step n ≥ 0, relatively to each role
R ∈ {S, S−} and the interval [i, j] as:

ΛR
n,[i,j] = {u ∈ ∆n \∆n−1 | ςR,[i,j]

u,n < ρ
R,[i,j]
−→u }.

We assume that ∆−1 = ∅. At each step n of the construction, we build ∆n+1

from ∆n by identifying the set of all defects, for each interval and role, and
by fixing them. In doing so, we fix S[i,j]

n+1 staring from S
[i,j]
n by applying one

of the following rules, depending on whether u ∈ ΛS
n,[i,j] or u ∈ ΛS−

n,[i,j]:
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• Let u ∈ ΛS
n,[i,j] and d = −→u . Thus, q = ρ

S,[i,j]
d − ς

S,[i,j]
u,n > 0 counts

the defects we need to repair. Then, M([i, j])  Eq′S(d) for some
q′ > q. By T [ construction, we know thatM([i, j])  ES(d) and that
M([i, j])  ES−(d′) for some d′. We take q fresh copies u1, . . . , uq of
d′, so that −→u i corresponds to d′ for each i = 1, . . . , q, and we add them
to ∆n+1. Also, we add (u, u1), . . . , (u, uq) to S[i,j]

n+1. If S is rigid, then

we add S(u, u1), . . . , S(u, uq) to S[i′,j′]
n+1 for every [i, j] ∈ I(Z).

• The case u ∈ ΓS−

n,[i,j] is treated similarly.

It is immediate to see that after the application of the corresponding
rule at the step n for the role S (resp., S−), u ∈ ∆n \ ∆n−1 and interval
[i, j], ρS,[i,j]

−→u = ς
S,[i,j]
u,n+1 (resp., ρS−,[i,j]

−→u = ς
S−,[i,j]
u,n+1 ). It follows that, for every

role R ∈ role(K), q ∈ QK, [i, j] ∈ I(Z), and u ∈ ∆I , we have that:

M([i, j])  EqR(−→u ) iff u ∈ (≥ q R)I([i,j]). (6)

It remains to be shown that

M([i, j])  C∗(−→u ) iff u ∈ CI([i,j]),

for each concept in C ∈ K, every interval [i, j], and every u ∈ ∆I . We can do
it by induction on the structure of C. If C = ⊥ the case is trivial. If C = A,
then the thesis follows by definition of AI([i,j]), while the case C = ≥ q R
follows from (6). Finally, the inductive steps of ¬, u, and temporal operators
are straightforward. Thus, I  T . Similarly, it is straightforward to prove
that I satisfies every assertion in A over [0, 1].

5.3 Embedding into Propositional HS

We remark that every FO1×HS-formula K† has the form:

K† = ψ ∧ [G]∀xϕ(x) ∧
∧

R∈role(K)

[G]∀x(ER(x)→ ∃x(Einv(R)(x)))

where ψ is a ground formula. Thus, K† is an universal FO1×HS-formula
except for the last conjunct. We now show how to eliminate the use of
the existential quantification in this last conjunct allowing us to translate
K into a universally qualified FO1×HS-formula. Consider the following
universal formula, where pR (resp., dR) is a fresh propositional variable
(resp., constant), for each R ∈ role(K):

K‡ = ψ ∧ [G]∀xϕ(x)∧ (7)∧
R∈role(K)

[
pR → (Einv(R)(dinv(R)) ∧ [G]∀x(ER(x)→ [G]pR))

]
. (8)
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Lemma 1 Let K be a THSDL-LiteNbool knowledge base. Then, K† is satisfi-
able iff K‡ is satisfiable.

Proof. (⇒) Let M be a model based on Z of K†, i.e., M([0, 1])  K†. We
first prove the existence of a model M′ such that for every role name S in
K, ES(x) and ES−(x) are either both empty or both non-empty for every
interval [i, j] ∈ I(Z), and that M′([0, 1])  K†. To this end, suppose that
for a role name S, some element d ∈ ∆M, and some interval [i, j] ∈ I(Z),
M([i, j])  ES(d). By (4), we know that M([i, j])  ES−(d′) for some
other element d′ ∈ ∆M. We build a new model M′ that extends both ∆M

to ∆M
′

and the interpretation pM([i,j]) of each unary predicate p(x) in K†,
for each [i, j] ∈ I(Z), as follows:

∆M
′

= ∆M ∪ ({d, d′} × Z× Z)

pM
′([i,j]) = pM([i,j]) ∪ {(d, k, k′) | d ∈ pM([i−k,j−k′]), k, k′ ∈ Z}

∪ {(d′, k, k′) | d′ ∈ pM([i−k,j−k′]), k, k′ ∈ Z}.

To complete the model construction, we repeat the above steps for each role
name in K. To show that we obtained a new model for K† note that ψ
only depends on the interpretation of constants and thus just on M, the
last conjunct is obviously true, while [G]∀xϕ(x) is a unary predicate that
must hold at every interval in I(Z) and thus it remains true in M′—note
that, this would be in general false for models over N, e.g., consider as K†
the formula p(a) ∧ [G](> → [A]¬p(x)). Thus, if K† is satisfiable, then there
exists a model, M†, s.t. M†([0, 1])  K† where, for every role name S in
K, the unary predicates ES and ES− are either both empty or both non-
empty for every interval [i, j] ∈ I(Z). Now, we want to build a model M‡
that extendsM† and satisfies K‡. Consider a role name S. If ES and ES−

are both non-empty for every interval [i, j] ∈ I(Z), then we interpret pS and
pS− as true for every interval [i, j] ∈ I(Z), and dS and dS− as any element
from the interpretation of ES and ES− in M† at the interval [0, 1]. If, on
the other hand, ES and ES− are both empty for every interval [i, j] ∈ I(Z),
we set pS and pS− as false on [0, 1], and we interpret dS and dS− as arbitrary
domain elements. Now, under the assumption that (4) is satisfied in M†,
we have to prove that the last conjunct of K‡ is satisfied in M‡—the other
conjuncts of K‡ are identical to the corresponding ones in K†, thus they are
not affected by the extension fromM† toM‡. Consider a role name S, and
assume that ES and ES− are both non-empty for every interval [i, j] ∈ I(Z).
By construction, pS and pS− are true everywhere, proving that the second
conjunct of (8) is satisfied, and since dS (resp., dS−) is in the interpretation
of ES (resp., ES−) at [0, 1], the first conjunct is also satisfied. If ES and
ES− are both empty for every interval [i, j] ∈ I(Z), then, by construction,
pS and pS− are both false at [0, 1], proving that the first conjunct of (8) is
satisfied; the second conjunct is satisfied in this case as ES and ES− are
both empty everywhere.
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(⇐) Conversely, we assume now that K‡ is satisfied in some model M‡
and we want to prove that so is the case for K†. Notice that M‡ satisfies
all conjuncts of K† except, possibly, (4). If (4) is not satisfied in the model
M‡, then, there must be an interval [i, j], a role R, and an element d of the
domain such that M‡([i, j])  ER(d) while (Einv(R))M

‡([i,j]) = ∅. By (8),
this implies that pR is true on every interval of the model, which, in turn,
implies the existence of an element dinv(R) ∈ (Einv(R))M

‡([0,1]). We can
therefore apply the same construction that we have applied before, to obtain
an extension ofM‡ where, for every interval, the predicates ER and Einv(R)
are both non-empty. This model, sayM†, satisfies (4) and thusM†([0, 1]) 
K†, as we wanted.

We conclude this part by observing that, after the above results, we have
that the following theorem holds.

Theorem 2 Let K be a THSDL-LiteNbool knowledge base. Then, there exists
an HS-formula K‡ such that K is satisfiable iff K‡ is satisfiable.

The above theorem is based on the straightforward observation that K‡ is
an FO1×HS-formula with no existential quantifier, and it can be therefore
considered as a purely propositional HS-formula.

6 Complexity Results

Given any fragment F of HS, the corresponding fragment TFDL-LiteHNbool

of THSDL-LiteHNbool is obtained by restricting the syntax of the language
THSDL-LiteHNbool to the temporal operators contained in F . Theorem 2 gives
us a powerful tool to identify decidable fragments of the latter: it is enough
to pair DL-Lite

(HN )
bool to decidable fragments ofHS. ThoseHS-fragments, be-

sides decidable, should be suitable, i.e., they should be able to capture both
global formulas as in (3) and temporal ABoxes (see formula Ak(am, [i, j])[).
Both maximal fragments mentioned in Section 3 are suitable, which implies
the following result.

Theorem 3 The logics TmpnlDL-Lite
(HN )
bool and TABBLDL-Lite

(HN )
bool are max-

imal, expressively incomparable, and decidable, fragments of THSDL-LiteHNbool

interpreted over Z. In both cases KB satisfiability is ExpSpace-complete.

It is worth to point out that in the case of TABBLDL-Lite
(HN )
bool , temporal

Abox assertions in the past of the interval [0, 1] requires a special and more
involved treatment. For example, to say that A(c) holds on the interval
[−2,−1] it is necessary to proceed as follows: (i) using a construction similar
to [G], constraint the special proposition letter Start to hold only on [0, 1]
(simulate a nominal); (ii) then, use the formula 〈L〉(〈A〉(len=2∧〈A〉Starts)∧
〈A〉(len=1 ∧A(c))) to encode the temporal assertion.
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When we interpret THSDL-LiteHNbool over N we have to pay attention to
the suitability condition since past operators are not allowed anymore. To
capture ABox assertions over N we can still use length constraints but to
replace the met-by (A) relation we need to extend the set of natural numbers
to the set N = {−1} ∪ N and interpret FO1×HS-formulas on the interval
[−1, 0]. Thus, assertions of the form Ak(am, [i, j]) are encoded in N as:

Ak(am, [i, j])∂ =

{
〈A〉(len=j ∧Ak(am)) if i = 0,
〈A〉(len=i ∧ 〈A〉(len=(j−i) ∧Ak(am))) if i > 0.

To capture the global modal operators (G) over N it is enough to interpret
over [−1, 0] the following formula using just the meet (A) temporal relation:

[G]ϕ = [A]ϕ ∧ [A][A]ϕ.

It is not difficult to see that the fragments of HS interpreted over N have
exactly the same computational behaviour when they are interpreted over
N. We can therefore conclude that the following theorem hold.

Theorem 4 The fragments TMRPNLDL-Lite and TABBDL-Lite, obtained by
restricting the syntax of THSDL-LiteHNbool to mrpnl (that is, A plus length
constraints) and to ABB, respectively, are maximal decidable fragments of
THSDL-LiteHNbool interpreted over N, and their satisfiability problem is ExpSpace-
complete.
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