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Abstract

This paper introduces a new logical formalism, intended for temporal conceptual modelling, as
a natural combination of the well-known description logic DLR and point-based linear temporal
logic with Since and Until. The expressive power of the resulting DLRUS logic is illustrated by
providing a systematic formalisation of the most important temporal entity-relationship data models
appeared in the literature. We define a query language (where queries are non-recursive Datalog
programs and atoms are complex DLRUS expressions) and investigate the problem of checking
query containment under the constraints defined by DLRUS conceptual schemas, as well as the
problems of schema satisfiability and logical implication. Although it is shown that reasoning in
full DLRUS is undecidable, we identify the decidable (in a sense, maximal) fragment DLR−

US

by allowing applications of temporal operators to formulas and entities only (but not to relation
expressions). We obtain the following hierarchy of complexity results: (a) reasoning in DLR −

US

with atomic formulas is EXPTIME-complete, (b) satisfiability and logical implication of arbitrary
DLR−

US
formulas is EXPSPACE-complete, and (c) the problem of checking query containment of

non-recursive Datalog queries under DLR−

US
constraints is decidable in 2EXPTIME.

1 Introduction

Temporal databases are databases that store historical information, i.e., past, present, and potential future
data [Jensen and Snodgrass, 1999]. Many formalisations have been proposed for temporal databases
which are based on first-order temporal logic[Chomicki and Toman, 1998]. Although these formal-
isations can be very useful for characterising semantical problems arising in temporal databases, say,
conceptual modelling or querying, usually they are computationally unfeasible for performing deduc-
tion tasks (for example, logical implication in the first-order temporal logic of the flow of time 〈Z, <〉 or
〈N, <〉 is not even recursively enumerable). An obvious solution to this problem would be to look for
well-behaved fragments of first-order temporal logic (see e.g.[Chomicki and Toman, 1998] and refer-
ences therein); however this way has not been successful.1 Another idea is to deviate from the first-order
paradigm and start from computationally more friendly languages such as description logics which have

1The only promising approach we know of is the recent paper [Hodkinson et al., 2000].
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been used in the area of non-temporal databases to characterise in a uniform framework both conceptual
modelling and queries [Levy and Rousset, 1998; Calvanese et al., 1998a].

The temporal description logic DLRUS we design in this paper is based on the expressive and
decidable description logic DLR which allows the logical reconstruction and the extension of represen-
tational tools such as object-oriented data models (e.g., class diagrams in UML and ODMG), semantic
data models (e.g., extended entity-relationship, EER, and ORM), frame-based ontology languages (e.g.,
OKBC, XOL, and OIL), and semantic networks [Calvanese et al., 1998c; 1999]. In this setting, an inter-
esting feature of DLR is the ability to completely define entities and relations as DLR views over other
entities and relations of the conceptual schema. Moreover, DLR formulas can express a large class of
integrity constraints that are typical in databases, for instance, existence dependencies, exclusion de-
pendencies, typed inclusion dependencies without projection of relations, unary inclusion dependencies,
full key dependencies [Calvanese et al., 1998a; 2000]. Logical implication in DLR is EXPTIME-
complete [Calvanese et al., 1998a]; practical correct and complete algorithms exist in implemented
systems which are used in real applications [Horrocks et al., 1999; Horrocks, 1999; Jarke et al., 2000;
Franconi and Ng, 2000].

DLR is not only a very powerful language for conceptual data modelling. The problem of view-
based query processing under DLR constraints has also been studied[Calvanese et al., 1998a]. View-
based query processing turns out to be very useful for information integration, data warehousing, query
optimisation, incomplete information management[Calvanese et al., 1998b]. View-based query answer-
ing requires to answer a query over a virtual database (constrained by a DLR theory playing the role of
the conceptual schema and of the integrity constraints) for which the only information comes from a set
of materialised views over the same database. Query answering with non-recursive Datalog queries and
views referring to predicates defined in a DLR theory is a co-NP-complete problem (in data complex-
ity) under the closed world assumption. Checking query containment of non-recursive Datalog queries
is decidable in 2EXPTIME [Calvanese et al., 1998a; Horrocks et al., 2000].

Given all these nice features of DLR, it is natural to try to extend it with a temporal dimension, to
understand the expressive power of the resulting hybrid with respect to the needs of temporal conceptual
modelling and view based query processing, and to investigate its computational properties. This paper
reports the results of such an attempt.

We construct DLRUS as an organic combination of DLR and the propositional linear temporal logic
with Since and Until [Sistla and Clarke, 1985; Gabbay et al., 1994] (which usually serves as the temporal
component in the first-order approach) by allowing applications of temporal operators to all syntactical
terms of DLR: entities, relations, and schemas. Previous approaches to temporal description logics
considered much weaker languages in the tradition of description logics having only binary relations
(i.e., roles) [Schild, 1993; Wolter and Zakharyaschev, 1998; 1999c]. For the ALC fragment a tableau
based algorithm has been studied in [Sturm and Wolter, 2001]. For a survey of various approaches to
temporal description logics see [Artale and Franconi, 2001].

To illustrate the expressive power of DLRUS , we provide a formal semantic characterisation—by
means of DLRUS theories—of the most important temporal conceptual modelling constructs (for the
valid time representation) appeared in the literature on the entity-relationship data model[Gregersen and
Jensen, 1998; 1999; Spaccapietra et al., 1998; Theodoulidis et al., 1991; Artale and Franconi, 1999b].
To the best of our knowledge, this is the first systematic formalisation of the constructs present in the
majority of temporal conceptual modelling systems. The outcome is an elegant correspondence between
temporal constructs and sets of DLRUS formulas. Moreover, temporal integrity constraints can be
captured by additional DLRUS formulas.

We then investigate computational properties of reasoning with DLRUS by analysing schema, entity,
and relation satisfiability, logical implication, and query containment for non-recursive Datalog queries
under constraints imposed by DLRUS conceptual schemas.

The full DLRUS turns out to be undecidable. The main reason for this is the possibility to postulate
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Figure 1: A TIMEER diagram.

that a binary relation does not vary in time—a very small fragment of DLR (say, the basic description
logic ALC) can encode then the undecidable tiling problem (cf. [Wolter and Zakharyaschev, 1999a;
Hodkinson et al., 2000]). The fragment DLR−

US of DLRUS deprived of this ability to talk about tem-
poral persistence of n-ary relations, for n ≥ 2, is still very expressive, as is illustrated by examples in
this paper, but its computational behaviour is much better. We obtain the following hierarchy of com-
plexity results: (1) reasoning in DLR−

US with atomic formulas is EXPTIME-complete, (2) satisfiability
and logical implication of arbitrary DLR−

US formulas is EXPSPACE-complete, and (3) the problem of
checking query containment of non-recursive Datalog queries under DLR−

US constraints is decidable in
2EXPTIME.

The paper is organised as follows. . . .

2 Modelling Temporal Databases

Temporally enhanced ER models have been developed to conceptualise the temporal aspects of database
schemas, namely valid time – when a fact holds, i.e., it is true in the representation of the world – and
transaction time – which records the history of database states rather than the world history, i.e., is the
time when a fact is current in the database and can be retrieved.

In the temporal ER community two different main modelling approaches have been devised to pro-
vide temporal support. The implicit approach hides the temporal dimension in the interpretation structure
of the ER constructs. Thus, a temporal ER model does not include any new specific temporal construct
with respect to a standard non-temporal ER model. Each ER construct is always interpreted with a tem-
poral semantics, so that instances of entities or relationships are always potentially time-varying objects.

The explicit approach, on the other hand, retains the non-temporal semantics for the conventional ER
constructs, while adding new syntactical constructs for representing temporal entities and relationships
and their temporal interdependencies. The advantage of the explicit approach is the so called upward
compatibility: the meaning of conventional (legacy) ER diagrams when used inside a temporal model
remains unchanged. This crucial property is not realizable within a strict implicit temporal approach.
Indeed, if the implicit approach has the attractive of leaving unchanged the original ER model, “In its
extreme, this approach rules out the possibility of designing non-temporal databases or databases where
some part of a database is non-temporal and the rest is temporal”[Gregersen and Jensen, 1999].

Among the different temporal ER models presented in the literature we give here a brief overview of
three of them: TIMEER [Gregersen and Jensen, 1998], ERT [Theodoulidis et al., 1991], MADS [Spac-
capietra et al., 1998]. These models have been chosen both because they are closely related to our
proposal, and they cover the full spectrum of temporal constructs (cf.[Gregersen and Jensen, 1999] for
an extensive overview of temporally extended ER models).
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Figure 2: Temporal composite attributes in MADS.

TIMEER [Gregersen and Jensen, 1998] supports both valid and transaction time for entities, rela-
tionships and attributes. It can be regarded as an extension of ERT [Theodoulidis et al., 1991] where
only valid time is considered, and only binary relationships are allowed. Both TIMEER and ERT in-
troduce new temporal constructs in the explicit philosophy to support the temporal dimension. While
ERT annotates temporal schema elements with the label T, TIMEER uses the following labels: LS for
lifespan—i.e., the validity time for entities; VT for valid time of relationships and attributes; TT for trans-
action time of entities, relationships and attributes; LT for both lifespan and transaction time of entities;
BT for both valid and transaction time of relationships and attributes. Cardinality constraints are distin-
guished into snapshot and lifespan cardinality constraints[Tauzovich, 1991]. Snapshot cardinalities—
represented by (min,max)—define the minimum and maximum number of participation of an entity
in a relationship at each point in time, while lifespan cardinalities—represented by [min,max]—are
evaluated along the entire existence time of the entity. Figure 1 gives a TIMEER diagram showing the
various temporal constructs, and will form a running example trough the paper. Manager is a sub-entity
of Employee—represented with a line with an arrow pointing to the super-entity—and is partitioned
into AreaManager and TopManager—disjoint covering hierarchies are represented with a crossed
circle (disjoint) together with a double ISA line (covering). Both lifespan and transaction time are cap-
tured for AreaManager, while just lifespan is considered for both Manager and TopManager. No
temporal aspects are considered for Employee which has two integer attributes: PaySlipNumber,
that is the key, and Salary for which validity time is captured. Works-for and Manages are two
binary relationships for which validity time is captured. The participation of TopManager in the Man-
ages relationship is constrained by both snapshot (1, 1) and lifespan [1, 5] cardinality constraints stating
that top managers should manage at most 5 different projects in their entire existence while still being
constrained in managing exactly one project at a time. Resp-for is an atemporal relationship between
two atemporal entities: Project and OrganisationalUnit.

MADS [Spaccapietra et al., 1998] supports valid time: entities, attributes and relationships can be
annotated with a clock symbol to indicate that their extensions have a life cycle (to adopt a uniform no-
tation we substitute the clock with the VT mark). Differently from TIMEER, components of a composite
attribute can have different temporal behaviours. This is in accordance with the identity principle2 for
objects whose change of a property/component doesn’t necessarily change the identity of the object it-
self. For example, for the composite attribute Address, composed of City, Street, Home-Phone

2See [Simons, 1987] for a comprehensive overview of the relevant philosophical literature in this area. This property is
a particular case of the orthogonality principle as introduced in MADS advocating the independence between the different
temporal constructors.
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Figure 3: Dynamic relationships in MADS.

assuming that both City and Street follow the temporal behaviour of Address three different cases
are possible as illustrated in Figure 2:

1. Address changes during time but the Home-Phone for a given address is always the same;

2. Address remains the same also if the associated Home-Phone can change over time (this is in
agreement with the above mentioned identity principle);

3. Both Address and Home-Phone evolve over time—this being the most general situation.

In addition to both TIMEER and ERT, MADS models dynamic relationships. In a transition rela-
tionship the instances of an entity may eventually become instances of another entity. The instances of
the source entity are said to migrate into the target entity and the phenomenon is called object migration.
There are two types of transitions: dynamic evolution when objects cease to be instances of the source
entity, and dynamic extension otherwise. In general, type constraints enforce that both the source and the
target entity belong to the same generalisation hierarchy. Figure 3 shows an example of dynamic exten-
sion between the entities Student and Employee—represented with an arrows from the source to the
target entity with the label T, and a case of dynamic evolution between a Probationary-Employee
and a Confirmed-Employee—represented with an arrow from the source to the target entity with
the label T-.

Another case of a dynamic relationship is the one called generation relationship. This relationship
involves different instances—differently from the transition case: an instance (set of instances) from a
source entity is (are) transformed in an instance of the target entity, and all the instances of the source are
consumed in the transformation process. Figure 3 shows a relationship Generate between Orange
and Juice marked with the label G and an arrow pointing to the target entity—the cardinality says that
5 oranges are needed to produce a single juice.

2.1 The Proposed model: ERV T

ERV T is a temporal ER model that supports valid time for entities, relationships and attributes in the line
of TIMEER and ERT, while supporting some form of dynamic relationships as introduced in MADS.
The main motivations behind the development of ERV T is the need for a formally specified temporal
ER language with a clear semantics for the various temporal constructs, and the possibility to perform
automatic deductions both on ERV T schemas and on temporal queries posed against an ERV T schema.
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Figure 4: An ERV T diagram.

The core model

We achieve temporal support in ERV T by giving a temporal semantics to each ER construct—as in the
implicit approach—and then adding new temporal constructs—as in the explicit approach. In this way
the implicit and explicit approach are reconciled in a uniform framework where the second is built on
top of the first. As a result we obtain an homogeneous language with a clear and elegant semantics.

The ability to add temporal constructs on top of a temporally implicit model has the advantage of
preserving the non-temporal semantics of conventional (legacy) ER schemas when embedded into tem-
poral ER diagrams, then ERV T is upward compatible. The possibility of capturing the meanings of
both legacy and temporal ER diagrams is crucial in modelling data warehouses or federated databases,
where sources may be collections of both temporal and legacy databases. The formalisation we propose
is in agreement with the desirable orthogonality principle [Spaccapietra et al., 1998], since temporal
constructs can be specified separately and independently for entities, relationships and attributes. De-
pending on the application requirements, the temporal support is decided by the designer. Furthermore,
each ERV T schema is snapshot reducible [Snodgrass, 1987], i.e., snapshot of the database described
by an ERV T schema is the same as the database described by the same schema where all the temporal
constructs are eliminated and the schema is interpreted atemporally.

ERV T can be seen as a temporal extension of the extended entity-relationship (EER) model3. Tem-
poral explicit marks are added to capture the temporal behaviour. In particular, we suppose that entities,
relationships and attributes in ERV T can be either S-marked in what case they are considered snapshot
constructs (i.e., each of their instances has a global lifetime, as in the case they derive from a legacy
diagram), VT-marked and they are considered temporary constructs (i.e., each of their instances has a
temporary existence), or un-marked, i.e. without any temporal mark, in what case they have temporally
unconstrained instances (i.e., their instances can have either a global or a temporary existence). Car-
dinalities in ERV T are distinguished between snapshot participation constraints (true at each point in
time) and lifespan participation constraints (evaluated during the entire existence of the entity). Figure 4
shows how ERV T models the temporal ER schema of the running example (Figure 1). It has to be noted
that: i. there is no support for transaction time, ii. thanks to the combination between the implicit and ex-
plicit approach and the formal semantics associated to ERV T (see Section 2.2) we don’t need to specify
all the temporal constraints since they are logically implied—e.g., since Manager is VT-marked then
its sub-entities, left un-marked, AreaManager and TopManager are necessarily VT-marked, too.

3EER is the standard entity-relationship data model, enriched with ISA links, generalised hierarchies with disjoint and
covering constraints, and full cardinality constraints [Elmasri and Navathe, 1994].
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Advanced features

ERV T can capture composite attributes. As far as the temporal properties of composite attributes is
concerned, we adopt the same approach of MADS: components of a composite attribute can have a
temporal behaviour different from the owner, respecting in this way the orthogonality principle. In
particular, the diagrams of Figure 2 can be regarded as diagrams in ERV T , too—with the proviso of
S-marking the unlabelled constructs.

ERV T is able to capture some of the dynamic relationships introduced in MADS. It is possible
to represent dynamic entities whose instances may change during time—both dynamic extension and
evolution are captured. Generation relationships are also captured, then all the diagrams in Figure 3 are
valid diagrams in ERV T , too. Furthermore, ERV T is able to represent some form of schema evolution
(for more details on the dynamic features in ERV T see Section 5.3).

2.2 A formalisation of ERV T

In this paper, we adopt the snapshot representation of abstract temporal databases and temporal con-
ceptual models (see e.g. [Chomicki and Toman, 1998]). The flow of time T = 〈Tp, <〉, where Tp is a
set of time points (or chronons) and < a binary precedence relation on Tp, is assumed to be isomorphic
to 〈Z, <〉. Thus, a temporal database can be regarded as a mapping from time points in T to standard
relational databases, with the same interpretation of constants and the same domains along time. As it
is well known, the snapshot model is in correspondence to the timestamp one, which is used, e.g., in the
the bitemporal conceptual data model (BCDM) [Jensen et al., 1994; Jensen and Snodgrass, 1999]. In
the BCDM model each tuple in a bitemporal relation instance is associated with a bitemporal timestamp
value modelling both the valid and the transaction time of the tuple.

The proposed formalisation is based on a linear syntax and an associated model-theoretic semantics
as proposed in [Calvanese et al., 1999] for the EER model, which is here extended to take into account
the time dimension and the temporal constructs. This will give both a formal characterisation of the most
important temporal conceptual modelling constructs (for the valid time representation) appeared in the
literature [Gregersen and Jensen, 1998; 1999; Spaccapietra et al., 1998; Theodoulidis et al., 1991], and
the formal background to develop the correspondence to the temporal description logic DLRUS in order
to reason over temporal schemas and queries. What follows is the formalisation of the core model of
ERV T ; composite attributes and the dynamic aspects will be formalised using directly the mapping into
DLRUS . We adopt the following notation: given two sets X,Y a X-labelled tuple over Y is a function
from X to Y ; the labelled tuple T that maps the set {x1, . . . , xn} ⊆ X to the set {y1, . . . , yn} ⊆ y is
denoted by 〈x1 : y1, . . . , xn : yn〉, while T [xi] = yi.

Definition 2.1 (ERV T Syntax). An ERV T schema is a tuple ΣS = (LS , RELS , ATTS , CARDS , CARDLS , ISAS ,
DISJS , COVERS , DISCOVERS , SS , TS , KEYS), where:

• LS is a finite alphabet partitioned into a set ES of entity symbols, a set AS of attribute symbols, a
set RS of relationship symbols, a set US of role symbols, and a set DS of domain symbols. Fur-
thermore, ES is partitioned into a set ESS of snapshot entities (the S-marked entities in our graphical
representation), a set EIS of temporal entities (the un-marked, Implicitly temporal, entities), and a
set ETS of temporary entities (the VT-marked entities). A similar partition applies to the set RS .

• ATTS is a function that maps each entity symbol in ES to an AS-labelled tuple over DS : ATTS(E) =
〈A1 : D1, . . . , Ah : Dh〉.

• RELS is a function that maps each relationship symbol in RS to an US -labelled tuple over ES :
RELS(R) = 〈U1 : E1, . . . , Uk : Ek〉, and k is the arity of R.
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• CARDS , and CARDLS are functions from ES ×RS ×US to N× (N∪ {N}) such that if RELS(R) =
〈U1 : E1, . . . , Uk : Ek〉 then CARDS(E,R,U), CARDLS(E,R,U) are defined only if U = Ui
and E = Ei for some i ∈ {1, . . . , k}. We denote with CMINS(E,R,U), CMAXS(E,R,U)
(CMINLS(E,R,U), CMAXLS(E,R,U)) the first and second component of CARDS (CARDLS ). If not
stated otherwise, CMINS and CMINLS are assumed to be 0 while CMAXS and CMAXLS are assumed
to be N.

• ISAS ⊆ (ES ×ES)∪ (RS ×RS) is a binary relationship—ISAS between relationships is restricted
to relationships with the same arity.

• DISJS , COVERS , DISCOVERS are binary relations over 2ES × ES .

• SS , TS are binary relations over ES ×AS containing, respectively, the snapshot and temporary at-
tributes of an entity. Furthermore, if 〈E,A〉 ∈ SS , TS then A is between the attributes in ATTS(E).

• KEYS is a function that maps entity symbols in ES to attributes in AS : KEYS(E) = A. Further-
more, if KEYS(E) = A then A is between the attributes in ATTS(E).

Example 2.2. The informal meaning of the various components of a schema is now illustrated with re-
spect to the schema of Figure 4. The set of snapshot entities (relationships) is ESS = {Employee, Department}
(RS

S = {Resp-for}), the set of temporary entities (relationships) is ETS = {Manager} (RT
S = {Works-for}),

the set of un-marked entities (relationships) is EIS = {AreaManager, TopManager, OrganisationalUnit,
InterestGroup} (RI

S = {Manages}). The function ATTS is used to associate attributes to an en-
tity, e.g., ATTS(Employee) = 〈PaySlipNumber : Integer, Salary : Integer, Name : String〉. The
function RELS associates a name—called role—or, alternatively, a position number to each argument of a
relationship, and for each role/position an entity, e.g., RELS(Manages) = 〈man : TopManager, prj : Project〉.
CARDS , CARDLS are used to associate snapshot and lifespan cardinality constraints, respectively, e.g.,
CARDS(TopManager, Manages, man) = 〈1, 1〉, and CARDLS(TopManager, Manages, man) = 〈1, 5〉.
ISAS , DISJS , COVERS , DISCOVERS are used for representing generalised hierarchies. ISAS models the
sub-entity relationship, e.g., ManagerISASEmployee says that manager is a sub-entity of employee.
DISJS models disjoint hierarchies, e.g., {AreaManager, TopManager}DISJSManager says that area
manager is disjoint from top manager and both are sub-entities of manager. COVERS models the fact
that a set of sub-entities may have common instances but each instance of the super-entity belongs to
at least one of those sub-entities. DISCOVERS models the combination of disjoint and covering hierar-
chies, e.g. {AreaManager, TopManager}DISCOVERSManager. The relations SS , TS model snapshot
and temporary attributes, respectively, e.g., 〈Employee, Name〉 ∈ SS , and 〈Employee, Salary〉 ∈ TS .
The function KEYS captures keys for entities, e.g., the fact that the pay slip number is a key for an
employee is captured by KEYS(Employee) = PaySlipNumber.

The model-theoretic semantics for the core model of ERV T is given as an extension to the non
temporal semantics introduced in [Calvanese et al., 1998c].

Definition 2.3 (ERV T Semantics). Let ΣS = (LS , RELS , ATTS , CARDS , CARDLS , ISAS , DISJS , COVERS ,
DISCOVERS , SS , TS , KEYS) be an ERV T schema, BD =

⋃

Di∈DS
BDi be a set of basic domains such

that BDi ∩BDj = ∅ for i 6= j. B = (T ,∆B ∪ ∆B
D, ·

B(t)) is a Temporal Database State for the schema
ΣS where:

• ∆B is a non-empty set disjoint from ∆B
D.

• ∆B
D =

⋃

Di∈DS
∆B
Di

is the set of basic domain values used in the schema ΣS such that ∆B
Di

⊆

BDi—we call ∆B
Di

active domain.

• ·B(t) is a function that for each t ∈ T maps:
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– Every domain symbol Di ∈ DS to the corresponding active domain DB(t)
i = ∆B

Di
—then

D
B(t)
i doesn’t depend from the time t of evaluation.

– Every entity E ∈ ES to a set EB(t) ⊆ ∆B.

– Every relationship R ∈ RS to a set RB(t) of US-labelled tuples over ∆B.

– Every attribute A ∈ AS to a set AB(t) ⊆ ∆B × ∆B
D.

B is a legal temporal database state if it satisfies all the integrity constraints expressed in the schema:

(c1) For each E1, E2 ∈ ES if E1ISASE2 then, ∀t ∈ T .EB(t)
1 ⊆ E

B(t)
2 .

(c2) For each R1, R2 ∈ RS if R1ISASR2 then, ∀t ∈ T .RB(t)
1 ⊆ R

B(t)
2 .

(c3) For each E ∈ ES if ATTS(E) = 〈A1 : D1, . . . , Ah : Dh〉 then, ∀e ∈ EB(t),∀i ∈ {1, . . . , h},∃!ai.
〈e, ai〉 ∈ A

B(t)
i ∧∀ai.〈e, ai〉 ∈ A

B(t)
i → ai ∈ ∆B

Di
—we consider, for simplicity, only single-valued

attributes4.

(c4) For each R ∈ RS if rel(R) = 〈U1 : E1, . . . , Uk : Ek〉 then, ∀r ∈ RB(t).r = 〈U1 : e1, . . . , Uk :

ek〉 ∧ ∀i ∈ {1, . . . , k}.ei ∈ E
B(t)
i . In the following we adopt the convention: 〈U1 : e1, . . . , Uk :

ek〉 ≡ 〈e1, . . . , ek〉, and r[Ui] ≡ r[i] to denote the Ui/i-component of r—i.e., the naming and the
positional notation for tuples are two equivalent notations.

(c5) For each cardinality constraint CARDS(E,R,U) then, ∀e ∈ EB(t).CMINS(E,R,U) ≤ #{r ∈
RB(t) | r[U ] = e} ≤ CMAXS(E,R,U).

(c6) For each lifespan cardinality constraint CARDLS(E,R,U) then, ∀e ∈ EB(t).CMINLS(E,R,U) ≤
#

⋃

t′∈T {r ∈ RB(t′) | r[U ] = e} ≤ CMAXLS(E,R,U).

(c7) For each snapshot entity E ∈ ESS then, e ∈ EB(t) → (∀t′ ∈ T .e ∈ EB(t′)).

(c8) For each temporary entity E ∈ ETS then, e ∈ EB(t) → (∃t1 > t.e 6∈ EB(t1) ∨ ∃t2 < t.e 6∈ EB(t2)).

(c9) For each snapshot relationship R ∈ RSS then, r ∈ RB(t) → (∀t′ ∈ T .r ∈ RB(t′)).

(c10) For each temporary relationship R ∈ RTS then, r ∈ RB(t) → (∃t1 > t.r 6∈ RB(t1) ∨ ∃t2 < t.r 6∈
RB(t2)).

(c11) For each entity E ∈ ES if ATTS(E) = 〈A1 : D1, . . . , Ah : Dh〉, and 〈E,Ai〉 ∈ SS then,

∀e ∈ EB(t).〈e, ai〉 ∈ A
B(t)
i → ∀t′ ∈ T .〈e, ai〉 ∈ A

B(t′)
i .

(c12) For each entity E ∈ ES if ATTS(E) = 〈A1 : D1, . . . , Ah : Dh〉, and 〈E,Ai〉 ∈ TS then,

∀e ∈ EB(t).〈e, ai〉 ∈ A
B(t)
i → ∃t′ 6= t.〈e, ai〉 6∈ A

B(t′)
i .

(c13) ForE,E1, . . . , En ∈ ES if {E1, . . . , En}DISJSE then, ∀i ∈ {1, . . . , n}.EiISASE∧∀t ∈ T ,∀j ∈

{1, . . . , n}, j 6= i.EB(t)
i ∩E

B(t)
j = ∅.

(c14) For E,E1, . . . , En ∈ ES if {E1, . . . , En}COVERSE then, ∀i ∈ {1, . . . , n}.EiISASE ∧ ∀t ∈

T .EB(t) =
⋃n
i=1E

B(t)
i .

(c15) ForE,E1, . . . , En ∈ ES if {E1, . . . , En}DISCOVERSE then, {E1, . . . , En}DISJSE and {E1, . . . , En}
COVERSE.

4Section 5.2 shows that ERV T supports also multi-valued attributes.
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(c16) For each E ∈ ES , A ∈ AS such that KEYS(E) = A then the same semantic equation of c11 is
true—i.e., a key is a snapshot attribute—and ∀a ∈ ∆B

D.#{e ∈ EB(t) | 〈e, a〉 ∈ AB(t)} ≤ 1.

Reasoning over a temporal schema includes verifying whether an entity, relationship or a schema
admit a non empty interpretation, and checking for sub-entities and sub-relationships.

Definition 2.4 (Reasoning in ERV T ). Let ΣS an ERV T schema, E,E′ ∈ ES and R,R′ ∈ RS . The
following are the reasoning services over ΣS :

1. E (R) is satisfiable if there exists a legal temporal database state B for ΣS such that EB(t) 6= ∅
(RB(t) 6= ∅), for some t ∈ T ;

2. E (R) is globally satisfiable if there exists a legal temporal database state B for ΣS such that
EB(t) 6= ∅ (RB(t) 6= ∅), for all t ∈ T ;

3. E (R) is a sub-entity of E′ (R′) if for all possible legal temporal database states B for ΣS and for
all t ∈ T : EB(t) ⊆ E′B(t) (RB(t) ⊆ R′B(t));

4. ΣS is satisfiable if there exists a legal temporal database state B for ΣS such that all the entities
and relationships are satisfiable at some fixed t ∈ T ;

5. ΣS is globally satisfiable if there exists a legal temporal database state B for ΣS such that all the
entities and relationships are globally satisfiable.

6. . . .

By considering (temporal) ER schemas as a set of constraints we are mainly interested in checking
whether such constraints admit a model, i.e., whether there could be a database state satisfying them. In
the temporal database community the notion of potential constraint satisfaction[Chomicki and Toman,
1998] has been also defined. Given a current (finite) history of a database, a constraint can potentially be
satisfied if there is a model for it that extends the current history. This paper does not deal with potential
constraint satisfaction that will be matter of future work.

The following ‘classical’ desirable features in temporal conceptual modelling come as almost trivial
consequences in our framework, and if not explicitly stated are logically implied.

Proposition 2.5. In every ERV T schema the following temporal properties hold:

1. Sub-entities of temporary entities are also temporary.

2. Sub-entities of snapshot entities, and super-entities of temporary or un-marked entities can be
either snapshot, temporary or un-marked entities.

3. Super-entities of snapshot entities are also snapshot.

4. A schema is inconsistent if exactly one of a whole set of snapshot partitioning sub-entities is
temporary.

5. Participants of snapshot relations are either snapshot or un-marked entities. They are snapshot
when they participate at least once in the relationship.

6. Participants of temporary or un-marked relations can be either snapshot, temporary or un-marked
entities.

7. A relationship is temporary if one of the participating entities is temporary.

10



8. The temporal behaviour for an entity is independent from that of its attributes.

Points 1 − 3 are true also for relationships.

Example 2.6. From the ERV T diagram in Fig. 4 the following logical implications hold:

1. Since Manager is a temporary entity then both AreaManager and TopManager are tempo-
rary entities—constraining either AreaManager or TopManager as snapshot entities would
lead to a contradiction.

2. Even if Employee is a snapshot entity it is consistent to have Manager—a temporary entity—as
a sub-entity of Employee.

3. The fact that OrganisationalUnit is necessarily snapshot is a valid logical implication since
it is a super-entity of Department—a snapshot entity.

4. The fact that InterestGroup is a snapshot entity follows logically from our theory.

5. Since Project participates at least once in the snapshot relationship Resp-For it must be a
snapshot entity.

6. The un-marked relationship Manages is consistent even if the snapshot entity Project partici-
pates in the relationship.

7. The fact that Manages is a temporary relationship follows logically from our theory since the
temporary entity TopManager participates in the relationship.

3 The Temporal Description Logic DLRUS

As a logic language for reasoning over temporal database conceptual schemas we use a natural combi-
nation of the propositional linear temporal logic with Since and Until[Sistla and Clarke, 1985; Gabbay
et al., 1994] and the (non-temporal) description logic DLR [Calvanese et al., 1998a]. The resulting
temporal description logic will be denoted by DLRUS .

The basic syntactical types of DLRUS are entities (i.e., unary predicates, also known as concepts)
and n-ary relations of arity ≥ 2. Starting from a set of atomic entities (denoted by EN ), a set of atomic
relations (denoted by RN ) and a set of role symbols (denoted by U ) we define inductively (complex)
entity and relation expressions as it is shown in the upper part of Fig. 5, where the binary constructs
(u,t,U ,S) are applied to relations of the same arity, i, j, k, n are natural numbers, i ≤ n, and j does
not exceed the arity of R.

The non-temporal fragment of DLRUS coincides with DLR. For both entity and relation expres-
sions all the Boolean constructs are available. The selection expression Ui/n : E denotes an n-ary
relation whose argument named Ui (i ≤ n) is of type E; if it is clear from the context, we omit n and
write Ui : E. The projection expression ∃

�
k[Ui]R is a generalisation with cardinalities of the projection

operator over the argument named Ui of the relation R—this last operator coincides with ∃≥1[Uj]R. It
is also possible to use the argument position numbers version of the model by replacing role symbols
with position numbers—i.e., Ui/n : E ≡ i/n : E, and ∃

�
k[Uj ]R ≡ ∃

�
k[j]R.

A knowledge base is a finite set Σ of DLRUS-formulas. Atomic formulas are formulas of the form
E1vE2 andR1vR2, withR1 andR2 being relations of the same arity. If ϕ and ψ are DLRUS -formulas,
then so are ¬ϕ,ϕ ∧ ψ,ϕ U ψ,ϕ S ψ. E1

.
= E2 is used as an abbreviation for (E1 v E2) ∧ (E2 vE1),

while E1 v
∗ E2 is a global atomic formula and is a shortcut for 2

∗(E1 vE2)—the same holds true for
relations. Knowledge bases will serve to capture the constraints specified by a temporal database schema
as will be clear in Section 4.
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R → >n | RN | ¬R | R1 uR2 | R1 tR2 | Ui/n : E |

3
+R | 3

−R | 2
+R | 2

−R | ⊕R | 	R | R1 U R2 | R1 S R2

E → > | EN | ¬E | E1 uE2 | E1 tE2 | ∃
�
k[Uj ]R |

3
+E | 3

−E | 2
+E | 2

−E | ⊕E | 	E | E1 U E2 | E1 S E2

(>n)I(t) ⊆ (∆I)n

RNI(t) ⊆ (>n)I(t)

(¬R)I(t) = (>n)I(t) \RI(t)

(R1 u R2)
I(t) = R

I(t)
1 ∩R

I(t)
2

(Ui/n : E)I(t) = { 〈d1, . . . , dn〉 ∈ (>n)I(t) | di ∈ EI(t)}

(R1 U R2)
I(t) = { 〈d1, . . . , dn〉 ∈ (>n)I(t) | ∃v > t.(〈d1, . . . , dn〉 ∈ R

I(v)
2 ∧ ∀w ∈ (t, v). 〈d1, . . . , dn〉 ∈ R

I(w)
1 )}

(R1 S R2)
I(t) = { 〈d1, . . . , dn〉 ∈ (>n)I(t) | ∃v < t.(〈d1, . . . , dn〉 ∈ R

I(v)
2 ∧ ∀w ∈ (v, t). 〈d1, . . . , dn〉 ∈ R

I(w)
1 )}

(3+R)I(t) = {〈d1, . . . , dn〉 ∈ (>n)I(t) | ∃v > t. 〈d1, . . . , dn〉 ∈ RI(v)}
(⊕R)I(t) = {〈d1, . . . , dn〉 ∈ (>n)I(t) | 〈d1, . . . , dn〉 ∈ RI(t+1)}

(3−R)I(t) = {〈d1, . . . , dn〉 ∈ (>n)I(t) | ∃v < t. 〈d1, . . . , dn〉 ∈ RI(v)}
(	R)I(t) = {〈d1, . . . , dn〉 ∈ (>n)I(t) | 〈d1, . . . , dn〉 ∈ RI(t−1)}

>I(t) = ∆I

ENI(t) ⊆ >I(t)

(¬E)I(t) = >I(t) \EI(t)

(E1 u E2)
I(t) = E

I(t)
1 ∩ E

I(t)
2

(∃≶k[Uj]R)I(t) = { d ∈ >I(t) | ]{〈d1, . . . , dn〉 ∈ RI(t) | dj = d} ≶ k}

(E1 U E2)
I(t) = { d ∈ >I(t) | ∃v > t.(d ∈ E

I(v)
2 ∧ ∀w ∈ (t, v).d ∈ E

I(w)
1 )}

(E1 S E2)
I(t) = { d ∈ >I(t) | ∃v < t.(d ∈ E

I(v)
2 ∧ ∀w ∈ (v, t).d ∈ E

I(w)
1 )}

Figure 5: Syntax and semantics of DLRUS .

The language of DLRUS is interpreted in temporal models over T , which are triples of the form
I
.
= 〈T ,∆I , ·I(t)〉, where ∆I is non-empty set of objects (the domain of I) and ·I(t) an interpretation

function such that, for every t ∈ T , every entity E, and every n-ary relation R, we have EI(t) ⊆ ∆I

and RI(t) ⊆ (∆I)n. The semantics of entity and relation expressions is defined in the lower part of
Fig. 5, where (u, v) = {w ∈ T | u < w < v} and the operators 2

+ (always in the future) and 2
−

(always in the past) are the duals of 3
+ (some time in the future) and 3

− (some time in the past),
respectively, i.e., 2

+E ≡ ¬3
+¬E and 2

−E ≡ ¬3
−¬E, for both entities and relations. For entities,

the temporal operators 3
+, ⊕ (at the next moment), and their past counterparts can be defined via U and

S: 3
+E ≡ >UE,⊕E ≡ ⊥UE, etc. However, this is not possible for relations of arity> 1, since >n—

the top n-ary relation—can be interpreted by different subsets of the n-ary cross product > × · · · × >
at different time points.5 The operators 3

∗ (at some moment) and its dual 2
∗ (at all moments) can be

defined for both entities and relations as 3
∗E ≡ E t 3

+E t 3
−E and 2

∗E ≡ E u 2
+E u 2

−E,
respectively.

Given a formula ϕ, an interpretation I , and a time point t ∈ T , the truth-relation I, t |= ϕ (ϕ holds
in I at moment t) is defined inductively as follows:

5For instance, we may have 〈d1, d2〉 ∈ (3+R)I(t) because 〈d1, d2〉 ∈ RI(t+2), but 〈d1, d2〉 /∈ (>2)
I(t+1).
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I, t |= E1 vE2 iff EI(t)
1 ⊆ E

I(t)
2

I, t |= R1 vR2 iff RI(t)
1 ⊆ R

I(t)
2

I, t |= ϕ ∧ ψ iff I, t |= ϕ and I, t |= ψ
I, t |= ¬ϕ iff I, t 6|= ϕ
I, t |= ϕ U ψ iff ∃v > t.(I, v |= ψ ∧ ∀w ∈ (t, v).I, w |= ϕ)
I, t |= ϕ S ψ iff ∃v < t.(I, v |= ψ ∧ ∀w ∈ (v, t).I, w |= ϕ)

A formula ϕ is called satisfiable if there is a temporal model I such that I, t |= ϕ, for some time point
t. A conceptual schema Σ is satisfiable if the conjunction

∧

Σ of all formulas in Σ is satisfiable (we
write I, t |= Σ instead of I, t |=

∧

Σ); in this case I is called a model of Σ. We say that Σ is globally
satisfiable if there is I such that I, t |= Σ, for every t (I |= Σ, in symbols). An entity E (or relation R)
is satisfiable if there is I such that EI(t) 6= ∅ (respectively, RI(t) 6= ∅), for some time point t. Finally,
we say that Σ (globally) implies ϕ and write Σ |= ϕ if we have I |= ϕ whenever I |= Σ.

Note that an entity E is satisfiable iff ¬(E v⊥) is satisfiable. An n-ary relation R is satisfiable iff
¬(∃≥1[i]Rv⊥) is satisfiable for some i ≤ n. A conceptual schema Σ is globally satisfiable iff 2

∗(
∧

Σ)
is satisfiable. And Σ |= ϕ iff 2

∗(
∧

Σ) ∧ ¬ϕ is not satisfiable. Thus, all reasoning tasks connected with
the notions introduced above reduce to satisfiability of formulas.

The logic DLRUS can be regarded as a rather expressive fragment of the first-order temporal logic
L{since, until}; cf. [Chomicki and Toman, 1998; Hodkinson et al., 2000] and Section 7 below. The expres-
sive capabilities of DLRUS for temporal conceptual modelling in databases are illustrated in Section 4.

4 Encoding ERV T in DLRUS

In this section we show how the temporal description logic DLRUS is able to capture temporal con-
ceptual schema expressed in ERV T . This characterisation allows us to define and support several forms
of reasoning on both temporal conceptual models and temporal queries by using the reasoning services
of DLRUS . The correspondence is based on a mapping function Φ—introduced by[Calvanese et al.,
1998c; 1999] for capturing non-temporal ER models—from ERV T schemas to DLRUS knowledge
bases.

Informally, the encoding works as follows. Entity and relationship symbols in the ERV T diagram
are mapped into DLRUS entity and relation names. Domain symbols are mapped into additional entity
names, pairwise disjoint. Attributes of entities are mapped to binary relations with number restrictions
stating the single-valuedness6. ISA links between entities or between relationships are mapped using
atomic formulas. Generalised hierarchies with disjointness and covering constraints can be captured us-
ing the Boolean connectives. Cardinality constraints are mapped using the number restriction quantifiers
in DLRUS . Temporal properties in ERV T are mapped using the temporal operators in DLRUS .

Definition 4.1 (Mapping ERV T intoDLRUS). Let ΣS = (LS , RELS , ATTS , CARDS , CARDLS , ISAS , DISJS ,
COVERS , DISCOVERS , SS , TS , KEYS) be an ERV T schema. The DLRUS knowledge base Φ(ΣS) =
(EN,RN,RS,Σ) is defined as follows.
The set EN of atomic entities is such that:

• For each domain symbol D ∈ DS then Φ(D) ∈ EN ;

• For each entity symbol E ∈ ES then Φ(E) ∈ EN .

The set RN of atomic relationships is such that:

• For each relationship R ∈ RS then Φ(R) ∈ RN ;
6Multi-valued attributes can be easily captured by eliminating such cardinality constraint.
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• For each attribute A ∈ AS then Φ(A) ∈ RN .

The set RS of role symbols is such that:

• For each role symbol U ∈ US then Φ(U) ∈ RS;

• Two distinguished role symbols From and To ∈ RS.

Φ is functional over DS ∪ES ∪RS ∪US ∪AS . The set Σ contains the following DLRUS formulas—i.e.,
temporal integrity constraints.

(f1) For each Di ∈ DS :
Φ(Di) v

∗ (2+Φ(Di)) u (2−Φ(Di))—i.e., Φ(Di)
.
= 2

∗Φ(Di).

(f2) For each relationship R ∈ RS such that RELS(R) = 〈U1 : E1, . . . , Uk : Ek〉 :
Φ(R) v∗ Φ(U1)/k : Φ(E1) u . . .Φ(Uk)/k : Φ(Ek).

(f3) For each attribute A ∈ AS :
Φ(A) v∗ From/2 : > u To/2 : >.

(f4) For each entity E ∈ ES such that ATTS(E) = 〈A1 : D1, . . . , Ah : Dh〉 :
Φ(E)v∗∃=1[From]Φ(A1) u ∃=1[From](Φ(A1) u To/2 : Φ(D1)) u . . . u

∃=1[From]Φ(Ah) u ∃=1[From](Φ(Ah) u To/2 : Φ(Dh))
.

(f5) For each role symbol Ui ∈ US between R ∈ RS and E ∈ ES :

a. If m = CMINS(E,R,Ui) 6= 0 : Φ(E) v∗ ∃≥m[Φ(Ui)]Φ(R);

b. If n = CMAXS(E,R,Ui) 6= N : Φ(E) v∗ ∃≤n[Φ(Ui)]Φ(R).

(f6) For each role symbol Ui ∈ US between R ∈ RS and E ∈ ES :

a. If m = CMINLS(E,R,Ui) 6= 0 : Φ(E) v∗ ∃≥m[Φ(Ui)](3
∗Φ(R));

b. If n = CMAXLS(E,R,Ui) 6= N : Φ(E) v∗ ∃≤n[Φ(Ui)](3
∗Φ(R)).

(f7) For each pair of entities (relationships)E1, E2 ∈ ES (R1, R2 ∈ RS ) such thatE1ISASE2 (R1ISASR2):

a. Φ(E1) v
∗ Φ(E2);

b. Φ(R1) v
∗ Φ(R2).

(f8) For each snapshot entity E ∈ ESS :
Φ(E) v∗ (2+Φ(E)) u (2−Φ(E))—i.e., Φ(E)

.
= 2

∗Φ(E).

(f9) For each snapshot relationship R ∈ RSS :
Φ(R) v∗ (2+Φ(R)) u (2−Φ(R))—i.e., Φ(R)

.
= 2

∗Φ(R).

(f10) For each snapshot attribute Ai with 〈E,Ai〉 ∈ SS :
Φ(E) v∗ ∃=1[From](2∗Φ(Ai)).

(f11) For each temporary entity E ∈ ETS :
Φ(E) v∗ (3+¬Φ(E)) t (3−¬Φ(E)).

(f12) For each temporary relationship R ∈ RTS :
Φ(R) v∗ (3+¬Φ(R)) t (3−¬Φ(R)).

(f13) For each temporary attribute Ai with 〈E,Ai〉 ∈ TS :
Φ(E)〉 v∗ ∃=1[From](Φ(Ai) u (3+¬Φ(Ai) t 3

−¬Φ(Ai))).
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(f14) For each pair of symbols X1,X2 ∈ ES ∪ DS such that X1 6= X2 and X1 ∈ DS :
Φ(X1) v

∗ ¬Φ(X2).

(f15) For E,E1, . . . , En ∈ ES if {E1, . . . , En}DISJSE:
E1 v

∗ E u ¬E1 u . . . u ¬En
E2 v

∗ E u ¬E3 u . . . u ¬En
. . .
En v

∗ E.

(f16) For E,E1, . . . , En ∈ ES if {E1, . . . , En}COVERSE:
E1 v

∗ E
. . .
En v

∗ E
E v∗ E1 t . . . tEn.

(f17) For E,E1, . . . , En ∈ ES if {E1, . . . , En}DISCOVERSE then we have all the formulas in f15 and
the formula: E v∗ E1 t . . . tEn.

(f18) For each key attribute A with KEYS(E) = A:
Φ(E)v∗ ∃=1[From](2∗Φ(A))

>v∗ ∃≤1[To](Φ(A) u From/2 : Φ(E))

Example 4.2. We now show how the schema of the running example of Figure 4 is translated. Let ΣexS
be the schema associated to the ER diagram of Figure 4 as illustrated in Example 2.2, and Φ(ΣexS ) =
(ENex, RN ex, ANex,Σex) be its DLRUS translation. The alphabet of Φ(ΣexS ) is such that:

EN ex = {Employee, Manager, AreaManager, TopManager, Project, OrganisationalUnit,
Department, InterestGroup, Integer, String}

RN ex = {Manages, Works-for, Resp-for}
AN ex = {PaySlipNumber, Salary, Name, ProjectCode}

One of the main reasons for presenting the ERV T model is that all the constructs in this model have
a model-theoretic semantics and a mapping in the logic DLRUS which allows us to use the reasoning
services in DLRUS to support several form of reasoning on conceptual schemas expressed in ERV T .

To prove that reasoning on ERV T can be done by reasoning on its DLRUS translation we need to
prove the correctness of the encoding. The encoding has been proven correct for the ER model with im-
plicit time in [Artale and Franconi, 1999a; 1999b], where DLR was interpreted by a temporal semantics.
Here we give a proof for the full mapping considering both implicit and explicit temporal constructs. The
mapping provided in Definition 4.1 is proved correct by establishing a precise correspondence between
legal database states of ERV T schemas and models of the corresponding DLRUS theories.

Proposition 4.3 (Correctness of the encoding). Let ΣS = (LS , RELS , ATTS , CARDS , CARDLS , ISAS , DISJS ,
COVERS , DISCOVERS , SS , TS , KEYS) be an ERV T schema, then:

1. For each legal temporal database state B for ΣS there is a temporal model I of Φ(ΣS) such that
for each symbol X ∈ ES ∪ AS ∪RS ∪ DS then Φ(X)I(t) = XB(t), for each t ∈ T .

2. For each temporal model I = 〈T ,∆I , ·I(t)〉 of Φ(ΣS) there is a legal temporal database state B
for ΣS , a set of basic domains BD, and a one-to-one partial function B∆ : ∆I → BD—total on
⋃

Di∈DS
Φ(Di)

I(t)—such that:

(a) For each symbol X ∈ ES ∪RS : XB(t) = Φ(X)I(t), for each t ∈ T ;

(b) For each Di ∈ DS : DB(t)
i = B∆(Φ(Di)

I(t)), for each t ∈ T ;
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(c) For each A ∈ AS: 〈d1, d2〉 ∈ AI(t) iff 〈d1,B∆(d2)〉 ∈ A
B(t), for each t ∈ T .

As a direct consequence of the proposition 4.3 easily follows the theorem that reduces reasoning
over ERV T schemas (Definition 2.4) to reasoning over DLRUS knowledge bases (note that |= stands
for global implication).

Theorem 4.4 (Reasoning over ERV T schemas). Let ΣS be an ERV T schema, E,E′ ∈ ES , R,R′ ∈
RS , and Φ(ΣS) the DLRUS knowledge base corresponding to ΣS . The following holds:

1. E (R) is satisfiable iff Φ(ΣS) |= 3
∗¬(Φ(E) v⊥)—Φ(ΣS) |= 3

∗¬(Φ(R) v⊥);

2. E (R) is globally satisfiable iff Φ(ΣS) |= ¬(Φ(E) v⊥)—Φ(ΣS) |= ¬(Φ(R) v⊥);

3. E (R) is a sub-entity of E′ (R′) iff Φ(ΣS) |= E vE′—Φ(ΣS) |= RvR′;

4. ΣS is satisfiable iff Φ(ΣS) is satisfiable;

5. ΣS is globally satisfiable iff Φ(ΣS) is globally satisfiable.

5 Conceptual modelling in DLRUS

This Section illustrates the formulas contained in the DLRUS knowledge base Σex in order to capture
the (temporal) integrity constraints specified by the ERV T schema ΣexS .

5.1 The implicit entity-relationship model

ERV T models temporal schemas by giving a temporal semantics to each ER construct and then using
temporal integrity constraints to model explicit temporal constructs. As we said, ERV T reconciles the
implicit and the explicit approach. Here we illustrate those formulas in Σex constructed using DLR—
the non-temporal fragment of DLRUS—that translate entities, relationships and attributes in the implicit
style.

The relationships in ΣexS give rise to the following formulas:
Works-for v∗ emp/2 : Employeeu act/2 : Project
Manages v∗ man/2 : TopManageru prj/2 : Project
Resp-for v∗ prj/2 : Project u org/2 : OrganisationalUnit

The attributes for the entities in ΣexS give rise to the following formulas:
Employee v∗ ∃=1[From]PaySlipNumberu ∃=1[From](PaySlipNumberu To/2 : Integer) u

∃=1[From]Salary u ∃=1[From](Salary u To/2 : Integer) u
∃=1[From]Name u ∃=1[From](Name u To/2 : String)

Project v∗ ∃=1[From]ProjectCodeu ∃=1[From](ProjectCodeu To/2 : String)

where, for each attribute, the first conjunct declares the attribute as a functional—i.e., single valued—
attribute while the second conjunct restricts the value of the attribute to belong to the appropriate basic
domain.

Generalised hierarchies in ΣexS give rise to the following formulas:
Manager v∗ Employeeu (AreaManagert TopManager)

AreaManager v∗ Manager u ¬TopManager
TopManager v∗ Manager

OrganisationalUnit v∗ Departmentt InterestGroup

Department v∗ OrganisationalUnitu ¬InterestGroup
InterestGroup v∗ OrganisationalUnit
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The snapshot cardinality constraints in ΣexS give rise to the following formulas:
Project v∗ ∃≥1[act]Works-for u ∃≥1[prj]Resp-for u ∃=1[prj]Manages

TopManager v∗ ∃=1[man]Manages

The knowledge base Σex introduces the binary relations Works-for between employees and
projects, Manages between managers and projects, and Resp-for between project and organisa-
tional unit. Employees have exactly one pay slip number and one salary each, which are represented
as binary relations with an integer domain. Furthermore, employees have exactly one name which is a
string. Projects have exactly one project code which is a string. It is stated that managers are employ-
ees, and are partitioned into area managers and top managers, while organisational units are partitioned
into departments and interest groups. Top Managers participate exactly once in the relation Manages,
i.e., every top manager manages exactly one project. Projects participate at least once to the relations
Works-for and Resp-for, and exactly once in the relation Manages.

5.2 Explicit temporal constructs

Explicit temporal support in ERV T is obtained by further constraining the implicitly temporal constructs.
In the following, the DLRUS formulas used to encode the explicit temporal constructs are explained by
referring to the example schema ΣexS .

Temporal entities and relations

Both entity and relationship instances in a temporal setting have an existence time associated with them.
Formally, the function Lifespan maps pairs of objects and entity expressions (or n-tuples of objects
and relationship expressions) to 2Tp , i.e., it associates a lifespan to entities and relationship instances in
the following way:

Lifespan(e ,E) = {t ∈ Tp | e ∈ EB(t)}
Lifespan(〈e1, . . . , en〉, R) = {t ∈ Tp | 〈e1, . . . , en〉 ∈ RB(t)}

DLRUS-formulas can express timestamps by enforcing either that entities (relationships) cannot last
forever—formulas f11-12 for temporary entities and relationships, or that their extension never changes
in time—formulas f8-9 for snapshot entities relationships. In particular, temporary entities (relation-
ships) are captured by saying that there must be a past or a future time point where the entity (relation-
ship) does not hold. In other words, instances of temporary entities (relationships) always have a limited
lifespan. On the other hand, snapshot entities (relationships) are captured by saying that whenever the
entity (relationship) is true it is necessarily true in every past and every future time point, i.e, they never
change along time. Snapshot entities and relationships are used to capture the semantics of legacy dia-
grams when included in a temporal model, thus enforcing the upward compatibility. Un-marked entities
and relationships don’t have a particular formula associated and they have temporally indeterminate
instances. Let’s now show how temporary or snapshot entities and relationships in ΣexS are translated.

The explicitly snapshot entities in ΣexS give rise to the following formulas:
Employee v∗ (2+Employee)u (2−Employee)

Department v∗ (2+Department)u (2−Department)

The explicitly snapshot relationship in ΣexS gives rise to the following formula:
Resp-for v∗ (2+Resp-for) u (2−Resp-for)

The explicitly temporary entity in ΣexS gives rise to the following formula:
Manager v∗ (3+¬Manager)t (3−¬Manager)

The explicitly temporary relationship in ΣexS gives rise to the following formula:
Works-for v∗ (3+¬Works-for) t (3−¬Works-for)
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Temporal attributes

At different points in time, an entity may have different values for the same attribute. It is possible to
associate a validity time to each attribute:

ValidT(〈e, a〉, A) = {t ∈ Tp | 〈e, a〉 ∈ AB(t)}

Snapshot attributes are captured in DLRUS by constraining the attribute to have a global existence.
Formula f10 specifies that whenever an entity has a value for a snapshot attribute this value globally
persists over time. On the other hand, temporary attributes have a limited validity time. Formula f13
constraints a value of a temporary attribute to cease to be valid at a certain future or past time. Un-
marked attributes admit both global and temporary values due to the implicit temporal semantics. Let’s
now show how the temporal properties of attributes in ΣexS are translated.

The explicitly snapshot attribute in ΣexS gives rise to the following formula:
Employee v∗ ∃=1[From](2∗Name)

The explicitly temporary attribute in ΣexS gives rise to the following formula:
Employee v∗ ∃=1[From](Salaryu (3+¬Salaryt 3

−¬Salary))

¿From the above formulas it is clear that the timestamp for an entity is independent from the times-
tamp of its attributes respecting the orthogonality principle. When considering the interaction between
the temporal behaviour of an attribute and that of the owner entity, it is consistent in DLRUS to have
both snapshot attributes of a temporary entity, and temporary attributes of a snapshot entity. In the former
case, the DLRUS semantics says that during the (limited) lifespan of an entity the value of a snapshot
attribute never changes. In the latter one, the meaning is that each instance always belongs to the snap-
shot entity, but the value of the temporary attribute may change during its existence. In our running
example, where Employee is a snapshot entity, Salary is modelled as a temporary attribute—i.e.,
the salary of an employee will change, while its Name—represented as a snapshot attribute—persists
over time. Furthermore, the temporal behaviour of an attribute is only specified locally to an entity, i.e.,
the same attribute associated to two different entities can have a different temporal behaviour—e.g., the
phone number of a department is not supposed to change over time and should be modelled as a snapshot
attribute, while the phone number of an employee can change and should be modelled as a temporary
attribute.

Key constraints in ΣexS give rise to the following formulas:
Employee v∗ ∃=1[From](2∗PaySlipNumber)

> v∗ ∃≤1[To](PaySlipNumberu From/2 : Employee)
Project v∗ ∃=1[From](2∗ProjectCode)

> v∗ ∃≤1[To](ProjectCodeu From/2 : Project)

Both PaySlipNumber and ProjectCode are modelled as snapshot (key) attributes that uniquely
identifies an employee or a project, respectively. Notice that in our approach only single-attribute keys
are captured. The case of full key dependencies in the a-temporal DLR language as been recently
solved [Calvanese et al., 2000] and its temporal extension has to be investigated.

As an advanced feature in ERV T we mentioned the possibility to capture composite attributes. In-
deed, let us assume that the entity E has the attribute A with components A1, . . . , Ap then, instead of
formula f4, the following DLR formula holds:

E v∗ ∃=1[From]Au∃=1[From](AuTo/2 : (∃=1[From]A1 u ∃=1[From](A1 u To/2 : D1) u . . . u
∃=1[From]Ap u ∃=1[From](Ap u To/2 : Dp)))

saying that the value of the attribute A participates, in its turn, to the attributes A1, . . . , Ap. Furthermore,
DLRUS can associate a different temporal behaviour to both the components and the owner attribute (in
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the line of MADS). This is illustrated by showing how DLRUS can capture the three example diagrams
of Figure 2—for simplicity we consider only the Home-Phone component. Notice that the following
formulas do not substitute the above formula for composite attributes but they have to be intended as
additional constraints.

Case 1 gives rise to the following formula:
Employee v∗ ∃=1[From](Address u (3−¬Addresst 3

+¬Address)u
To/2 : ∃=1[From]2∗Home-Phone)

Case 2 gives rise to the following formula:
Employee v∗ ∃=1[From](2∗Addressu

To/2 : ∃=1[From](Home-Phone u (3−¬Home-Phonet 3
+¬Home-Phone)))

Case 3 gives rise to the following formula:
Employee v∗ ∃=1[From](Address u (3−¬Addresst 3

+¬Address)u
To/2 : ∃=1[From](Home-Phone u (3−¬Home-Phonet 3

+¬Home-Phone)))

Finally, we show how multiple-valued attributes are captured in ERV T . In case of multiple-valued
attributes the formula f4 has to be modified in the following way:

(f4’) For each entity E ∈ ES such that ATTS(E) = 〈A1 : D1, . . . , Ah : Dh, Ah+1 : Dh+1, . . . , Ah+p :
Dh+p〉, where Ai, . . . , Ah are single-valued attributes and Ah+1, . . . , Ah+p are multiple-valued
attributes, then the following formula holds:

Φ(E)v∗∃=1[From]Φ(A1) u ∃=1[From](Φ(A1) u To/2 : Φ(D1)) u . . . u
∃=1[From]Φ(Ah) u ∃=1[From](Φ(Ah) u To/2 : Φ(Dh)) u . . . u
∃≥1[From](Φ(Ah+1) u To/2 : Φ(Dh+1)) u ¬∃≥1[From](Φ(Ah+1) u To/2 : ¬Φ(Dh+1))
u . . . u
∃≥1[From](Φ(Ah+p) u To/2 : Φ(Dh+p)) u ¬∃≥1[From](Φ(Ah+p) u To/2 : ¬Φ(Dh+p))

.

For each multiple-valued attribute, the first conjunct says that there must be at least one value constrained
to belong to a given basic domain while the second conjunct is essentially an universal quantification
constraining all the possible values to belong to the given basic domain.

Temporal cardinalities

Cardinality constraints limit the participation of entities in relationships. In a temporal setting, we can
distinguish between snapshot participation constraints (true at each point in time) and lifespan partici-
pation constraints [Tauzovich, 1991; Gregersen and Jensen, 1998; Spaccapietra et al., 1998] (evaluated
during the entire existence of the entity). While the cardinality construct in DLR is enough to capture
snapshot participation constraints, DLRUS is needed to capture the lifespan participation constraints.
Let’s now show how lifespan cardinality constraints in ΣexS are translated.

The lifespan cardinality constraints in ΣexS give rise to the following formula:
TopManager v∗ ∃≥1[man](3∗Manages)u ∃≤5[man](3∗Manages)

i.e., a top manager should manage at least 1 and at most 5 different projects in his entire existence as a
top manager. DLRUS can also enforce a form of lifespan cardinality constraint with respect to the past
or to the future only:

E v∗ ∃
�
n[Ui](3

−R) (Past lifespan participation)
E v∗ ∃

�
n[Ui](3

+R) (Future lifespan participation)

Obviously, since for snapshot relationships the set of instances does not change in time there is no
difference between snapshot and lifespan participation constraints.
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5.3 Dynamic Temporal Features

ERV T is able to capture both dynamic relationships between the entities of the schema, and a simplified
form of schema evolution. Here we describe how DLRUS can formalise those notions.

Dynamic entities

DLRUS can model transition relationships between entities whose instances may migrate from one
entity to the other; this is called object migration from a source to a target entity. In fact, in the temporal
conceptual modelling literature, two notions of object migration are considered[Gupta and Hall, 1991;
1992; Spaccapietra et al., 1998]: evolution, when an object ceases to be an instance of a source entity,
and extension, when an object continues to belong to the source. Let Es be the source entity and Et be
the target one; the case of dynamic extension is captured by the following formula:

Es v
∗
3

+Et (Dynamic extension)

Thus, every instance of the source entity must be an instance of the target at some moment in the future.
To enforce the dynamic evolution the dynamic extension formula has to be restricted:

Es v
∗
3

+(Et u ¬Es) (Dynamic evolution)

Specifying that when the target is reached the object doesn’t belong anymore to the source. An interest-
ing consequence of dynamic evolution is that the source is necessarily a temporary entity. The example
diagrams of Figure 3 give rise to the following formulas:

Student v∗
3

+Employee

ProbationaryEmployee v∗
3

+(ConfirmedEmployeeu ¬ProbationaryEmployee)

The expressive power of DLRUS can enforce more complex forms of dynamic behaviours. The
uni-directional evolution is represented by adding a further constraint to the dynamic evolution:

Es v
∗
3

+(Et u ¬Es u 2
+¬Es) (Uni-directional evolution)

i.e., when the target (Et) is reached, the object cannot be involved a second time in the source (Es). For
example, there is a uni-directional evolution between being alive and being dead. It is also possible to
constraint all the instances of the target to be involved in the migration process:

Et v
∗
3

−Es (Total Dynamic)

i.e., every instance of the target entity was an instance of the source at some moment in the past. Adding
this axiom to the previous ones it is possible to model: total dynamic extensions, total dynamic evolutions
and total uni-directional evolutions. DLRUS can also enforce the absence of an evolution between two
entities:

Es v
∗
2

∗¬Et (Incompatible entities)

A typical example of incompatible entities can be male and female. Global consistency restricts the
dynamic behaviour of an entity in such a way that it is always populated by some instance at each
moment of time:

2
∗¬(E v⊥) (Global consistency)

i.e., at any moment of time, the entity E denotes a non empty set7. For example, it would be sensible to
require that at any moment of time the company has at least one employee:

7Note that global consistency constraints all the temporal models to assign to the entity a non empty extension at all times,
thus it is a constraint that selects exactly those temporal models where the entity is globally satisfiable.
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2
∗¬(Employeev⊥).

Global consistency is an example of a so called safety constraint [Pnueli, 1986] which intuitively says
that “nothing bad ever happens”. On the other hand, liveness constraints [Pnueli, 1986] saying that
“something good will happen” can be expressed by existential temporal formulas: 3

∗¬(E v ⊥), that
constraint a temporal model to satisfy (not globally) the entity.

DLRUS is also able to capture generation relationships where an instance (set of instances) from a
source entity is (are) transformed in an instance of the target entity, and all the instances of the source are
consumed in the transformation process. Let R be a generation relationship between the source entity
Es and the target entity Et, then the following formulas hold:

R v∗ source : (	Es u ¬Es u 2
+¬Es) u target : (Et u 2

−¬Et)
Es v∗ ∃≥1[source]3+R

}

(Generation relationship)

i.e., a generation relationship generates new instances in the target entity starting from instances that
where in the source entity at the previous time. The entities from the source are consumed—they do
not belong anymore to the source, while the generated entities are new in the target—they where not
instances of the target in any past time. Furthermore, all the instances of the source will be involved in
the generation relationship. All the instances of the target can be constrained to be just the generated
one:

Et v∗ ∃≥1[target]R (Total transformation)

The example diagram in Figure 3 gives rise to the following formulas:
Generate v∗ source : (	 Orangeu ¬Orangeu 2

+¬Orange)u target : (Juice u 2
−¬Juice)

Orange v∗ ∃≥1[source]3+Generate

Juice v∗ ∃≥1[target]Generate

Schema evolution

The problem of schema evolution arises in the context of long-lived database applications, where stored
data are considered worth surviving changes in the database schema[Roddick, 1995; Franconi et al.,
2000; Peters and Özsu, 1997]. According to a widely accepted terminology [Jensen et al., 1998], a
database supports schema evolution if it permits modifications of the schema without the loss of extant
data. We consider here a simplified case of conceptual schema evolution, which can be called a mono-
tonic approach. This allows only for changes such that the resulting conceptual schema is compatible
with the previous global constraints.

By using complex combinations of DLRUS -formulas, it is possible to express conditional mono-
tonic changes. Let Γ and φp be atomic formulas, or possibly a Boolean combination of atomic formulas,
which introduce, respectively, a new schema portion and a condition to be checked. The formula

2
∗(¬φp ∨ 2

+Γ) (Monotonic change)

states that as soon as the property φp becomes true for the data, the conceptual schema will include the
additional Γ constraint. A simple example is:

φp ≡ (InterestGroupv⊥)
Γ ≡ (∃≥1[amount](Salaryu payee/2 : TopManager)v LowAmount)

meaning that as soon as the organisation does not include interest groups anymore, the salary of top
managers should be in the “low amount” class.

Other subtler cases of schema evolution can be also expressed as DLRUS formulas. Here we show a
variant of temporal existence dependency: as soon as a condition becomes true, a particular entity starts
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its existence, in the sense that before that moment it was necessarily empty. For example, the annual
budget of a company ceases to be necessarily an empty entity only after every single project budget has
been accepted by the administration:

2
∗((CompanyBudgetv⊥) U (ProjectBudgetv AcceptedBudget))

As a consequence of this formula, the entity CompanyBudget is a case of not globally satisfiable
entity.

5.4 Extending ERV T

The correspondence established between ERV T schemas and DLRUS knowledge bases allows us to
use the greater expressive power of DLRUS to represent complex dependencies between elements of
the schema. Using formulas in DLRUS we can express complex temporal integrity constraints taking
them in full account when reasoning over ERV T schemas. For example, we can add the following
formulas to our running knowledge base Σex:

Employeeu ¬(∃≥1[emp]Works-for) v∗ Manager

Managerv∗ ¬(∃≥1[emp]Works-for) u (Qualified S (Employee u ¬Manager))

saying that employees not working for a project are exactly the managers, and managers should be
qualified, i.e., should have passed a period of being employees. The conceptual schema Σex logically
implies that, for every project, there is at least one employee who is not a manager, and that a top
manager worked in a project before managing some (possibly different) project:

Σ |= Projectv∗ ∃≥1[act](Works-for u emp : ¬Manager)
Σ |= TopManagerv∗

3
−∃≥1[emp](Works-for u act : Project)

Note also that if we add to Σex the formula:

Employeev∗ ∃≥1[emp]Works-for

saying that every employee should work for at least one project, then all the entities and the relations
mentioned in the conceptual schema are interpreted as the empty set in every model of Σex, i.e., they are
not satisfiable relative to Σex.

6 Temporal queries

Another important reasoning task is known as the problem of query containment (see, e.g.,[Chomicki
and Toman, 1998; Chomicki, 1994; Abiteboul et al., 1996] for a survey and a discussion about temporal
queries). A non-recursive Datalog query (i.e., a disjunction of conjunctive queries or SPJ-queries) over
a DLRUS schema Σ is an expression of the form

Q(−→x ):-
∨

j Qj(
−→x ,−→yj ,

−→cj ),

where each Qj is a conjunction of atoms

Qj(
−→x ,−→yj ,

−→cj ) ≡
∧

i P
i
j (
−→x ij,

−→y ij,
−→c ij),

P ij are DLRUS entity or relation expressions,−→x ij,
−→y ij, and −→c ij are sequences of distinguished variables,

existential variables, and constants, respectively, the number of which is in agreement with the arity of
P ij . The variables−→x in the head are the union of all the distinguished variables in each Qj ; the existential
variables are used to make coreferences in the query, and constants are fixed values. The arity of Q is
the number of variables in−→x .
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It is to be noted that we allow entities and relations in the query to occur in the conceptual schema Σ.
This approach is similar to that of[Calvanese et al., 1998a], where atoms in a query can be constrained by
means of schema formulas. Furthermore, query expressions do not directly manipulate explicit temporal
attributes, but time is implicit in each query expression. Indeed, the temporal dimension is handled by
means of the temporal modal operators in DLRUS . In this perspective, the query language is in strict
relation with the First-Order Temporal Logic over since and until, L{since, until}, used in [Chomicki and
Toman, 1998] for querying temporal databases.

The semantics of queries is based on the snapshot representation of a temporal database, and defined
as follows. Given a temporal schema Σ, let I be a temporal model, and t be a time point in T such that
I satisfies Σ at t, i.e., I, t |= Σ. The snapshot interpretation

I(t) =
〈

∆I , {EI(t) | E ∈ EN}, {RI(t) | R ∈ RN}
〉

can be regarded as a usual first-order structure (i.e., a snapshot, non-temporal, database at time t con-
forming in a sense to the conceptual schema), and so the whole I as a first-order temporal model (with
constant domain ∆I in which some values of the query constants are specified). The evaluation of a
query Q of arity n, under the constraints Σ, in the model I that satisfies Σ at moment t, and the answer
to the query Q, are respectively the sets:

eval(Q, I(t)) = {−→o ∈ (∆I)n | I, t |=
∨

j ∃
−→yj .Qj(

−→o ,−→yj ,
−→cj )}

ans(Q, I) = {〈t,−→o 〉 ∈ T × (∆I)n | −→o ∈ eval(Q, I(t))}

We obtain a so called sequenced semantics [Böhlen et al., 2000] for queries, which is based on the
view of a database as a time-indexed collection of snapshots. The query language is also Snapshot-
Reducible [Böhlen et al., 2000] in the sense that non-temporal queries—i.e., queries without any tempo-
ral connective—are still valid queries, and are interpreted using the sequenced semantics. Our language
allows also for Upward Compatible queries [Böhlen et al., 2000]. Intuitively, a non-temporal query is
upward compatible if the answer set on a temporal database is the same as the answer set on an associ-
ated non-temporal database. We obtain this behaviour by post-fixing a query with “@now” that does a
temporal slice of the temporal database at the current time:

ans(Q@now, I) = {〈t,−→o 〉 ∈ T × (∆I)n | t = now ∧ −→o ∈ eval(Q, I(now))}

Example 6.1. We now show the expressivity of the query language by formulating some of the temporal
queries used in [Chomicki and Toman, 1998].

1. “Find all people who have worked for only one project”

Q(x) :-(∃=1[emp](3∗Works-for))(x)

2. “Find all managers whose terminal project has code prj342”

Q(x) :-Manager(x)∧ Manages(x, prj342) ∧ (2+¬Manages)(x, y)

3. “Find all project-hoppers—people who never spent more than two consecutive years in a project”

Q(x) :-(2∗¬∃≥1[emp](Works-for u⊕ Works-for u⊕⊕ Works-for))(x)

4. “Find all people who did not work between two projects”

Q(x) :-(3−∃≥1[emp]Works-for)(x) ∧ (¬∃≥1[emp]Works-for)(x) ∧ (3+∃≥1[emp]Works-for)(x)

We now formalise the notion of query containment. Given two queries (of the same arity) Q1 and
Q2 over Σ, we say that Q1 is contained in Q2 under the constraints Σ, and write Σ |= Q1 ⊆ Q2, if,
for every temporal model I of Σ we have ans(Q1, I) ⊆ ans(Q2, I). Note that the query satisfiability
problem—given a query Q over a schema Σ, to determine whether there are I and t such that I, t |= Σ,
and eval(Q, I(t)) 6= ∅—is reducible to query containment: Q is satisfiable iff Σ 6|= Q(−→x ) ⊆ P (−→x ) ∧
¬P (−→x ), where P is a DLRUS-relation of the same arity as Q.
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Example 6.2. We now consider the problem of query containment under constraints, where the con-
straints are expressed by the ERV T schema ΣexS as illustrated in Figure 4. Consider the following query:
“Find all people that will be manager that work for a project, and all departments responsible for the
project”:

Q1(x, y) :-Works-for(x, z) ∧ Resp-for(z, y) ∧ Department(y)∧ (3+Manager)(x)

Given now the following query:

Q2(x, y) :-Works-for(x, z) ∧ Resp-for(z, y) ∧ ¬InterestGroup(y)∧
(3+(AreaManagert TopManager))(x)

it is not hard to see that these two queries are equivalent under the constraints in Σex (the DLRUS

translation of the ERV T schema ΣexS ), i.e.,

Σex |= Q1 ⊆ Q2 and Σex |= Q2 ⊆ Q1.

7 Decidability and complexity

In this section we analyse the computational behaviour of DLRUS and its fragments over the flow of
time 〈Z, <〉. Unfortunately, full DLRUS , even restricted to atomic formulas, turns out to be undecidable.

Theorem 7.1. The global satisfiability problem for DLRUS conceptual schemas containing only atomic
formulas is undecidable.

Remark 7.2. It follows, in particular, that (a) the general problem of formula satisfiability in DLRUS is
undecidable, and (b) the general problem of global logical implication in DLRUS—even involving only
atomic formulas—is undecidable as well.

The proof (see Appendix) is based on the ability to simulate the Z × N-grid in DLRUS ; this is
possible by temporalising binary relations (see the first two formulas in the proof). In fact, the proof uses
a very small fragment of DLRUS : even ALC with 2

+ or one global role is enough to get undecidability;
see [Wolter and Zakharyaschev, 1999a]. This gives us some grounds to conjecture that already the basic
temporal EER model with just snapshot relations is undecidable.

The fragment DLR−
US , in which the temporal operators can be applied only to entities and formulas,

exhibits a much better computational behaviour. In this case we have the following hierarchy:

Theorem 7.3. Let the flow of time be 〈Z, <〉. Then
(1) the problem of logical implication in DLR−

US involving only atomic formulas is EXPTIME-
complete;

(2) the formula satisfiability problem (and so the problem of logical implication) in DLR−
US is

EXPSPACE-complete;
(3) the query-containment problem for non-recursive Datalog queries under DLR−

US-constraints is
decidable in 2EXPTIME and is EXPSPACE-hard.

The language used in (1) is enough to capture most of the modelling constructs discussed in Section 4
(in fact, in the case of (global) logical implication for atomic formulas, there is no difference between
v and v∗), with the exception of (a) global entity consistency, (b) schema evolution constraints, (c)
snapshot relations and attributes, and (d) temporal cardinalities. Full DLR−

US used in (2) is able to
express (a) and (b). However, (c) and (d) require temporalised relations which, by Theorem 7.1, lead to
undecidability.
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8 Conclusion

This work introduces the temporal description logic DLRUS and illustrates its expressive power by
providing for the first time a systematic formalisation of various temporal entity-relationship conceptual
data models appeared in the literature. A temporal query language was defined and the problem of query
containment under the constraints defined by a DLRUS conceptual schema is investigated.

Tight complexity results were proved. In particular, reasoning in the full logic DLRUS was shown
to be undecidable, while decidability was obtained using a still expressive fragment, DLR−

US . We
have shown the following hierarchy of complexity results: (1) reasoning in DLR−

US with atomic for-
mulas is EXPTIME-complete, (2) satisfiability and logical implication of arbitrary DLR−US formulas
is EXPSPACE-complete, and (3) the problem of checking query containment of non-recursive Datalog
queries under constraints with arbitrary DLR−

US formulas is decidable in 2EXPTIME with an EX-
PSPACE lower bound. The latter result is the first decidability result we are aware of on containment of
temporal conjunctive queries under expressive constraints.
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Appendix: proofs

A A formalisation of ERV T

Proposition 2.5. In every ERV T schema the following temporal properties hold:

1. Sub-entities of temporary entities are also temporary.

2. Sub-entities of snapshot entities, and super-entities of temporary or un-marked entities can be
either snapshot, temporary or un-marked entities.

3. Super-entities of snapshot entities are also snapshot.

4. A schema is inconsistent if exactly one of a whole set of snapshot partitioning sub-entities is
temporary.

5. Participants of snapshot relations are either snapshot or un-marked entities. They are snapshot
when they participate at least once in the relationship.

6. Participants of temporary or un-marked relations can be either snapshot, temporary or un-marked
entities.

7. A relationship is temporary if one of the participating entities is temporary.

8. The temporal behaviour for an entity is independent from that of its attributes.

Points 1 − 3 are true also for relationships.

Proof We prove two cases, the rest easily follows.
(1) Let assume that E1ISASE2 and E2 is a temporary entity. Then we prove that there cannot be an

instance, e, of E1 such that ∀t ∈ T .e ∈ E
I(t)
1 . Indeed, if this is the case then for t0 ∈ T , e ∈ E

I(t0)
1

and, by the ISAS statement, e ∈ E
I(t0)
2 . Since E2 is temporary ∃t1 6= t0.e 6∈ E

I(t1)
2 which implies that

e 6∈ E
I(t1)
1 that is a contradiction.

(5) We first prove that the entity cannot be temporary. By absurd, let R be a snapshot relationship
and Ei be a participating temporary entity. Now, let 〈e1, . . . , ei, . . . , en〉 an instance of R, then, ∀t ∈

T .〈e1, . . . , ei, . . . , en〉 ∈ RI(t). This implies that ∀t ∈ T .ei ∈ E
I(t)
i , which contradicts the assumption

that Ei is a temporary entity—this prove the first part. If now Ei participates at least once in R, then,
∀ei ∈ E

I(t)
i .〈e1, . . . , ei, . . . , en〉 ∈ RI(t), but 〈e1, . . . , ei, . . . , en〉 ∈ RI(t), for all t ∈ T , and then also

ei ∈ E
I(t)
i , for all t ∈ T , i.e., Ei is a snapshot entity. 2

B Encoding ERV T in DLRUS

Proposition 4.3. Let ΣS = (LS , RELS , ATTS , CARDS , CARDLS , ISAS , DISJS ,
COVERS , DISCOVERS , SS , TS , KEYS) be an ERV T schema, then:

1. For each legal temporal database state B for ΣS there is a temporal model I of Φ(ΣS) such that
for each symbol X ∈ ES ∪ AS ∪RS ∪ DS then Φ(X)I(t) = XB(t), for each t ∈ T .

2. For each temporal model I = 〈T ,∆I , ·I(t)〉 of Φ(ΣS) there is a legal temporal database state B
for ΣS , a set of basic domains BD, and a one-to-one partial function B∆ : ∆I → BD—total on
⋃

Di∈DS
Φ(Di)

I(t)—such that:
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(a) For each symbol X ∈ ES ∪RS : XB(t) = Φ(X)I(t), for each t ∈ T ;

(b) For each Di ∈ DS : DB(t)
i = B∆(Φ(Di)

I(t)), for each t ∈ T ;

(c) For each A ∈ AS : 〈d1, d2〉 ∈ AI(t) iff 〈d1,B∆(d2)〉 ∈ AB(t), for each t ∈ T .

Proof (1) Let B = (T ,∆B ∪∆B
D, ·

B(t)) be a legal temporal database state. We define a temporal model
I = (T ,∆I , ·I(t)) of Φ(ΣS) as follows:

• ∆I = ∆B ∪ ∆B
D.

• For each symbol X ∈ ES ∪ AS ∪RS ∪ DS then Φ(X)I(t) = XB(t), for each t ∈ T .

We prove that such a model, I , satisfies all the formulas (f1-f18) in Φ(ΣS).

(f1) ∀t ∈ T ,∀Di ∈ DS .Φ(Di)
I(t) = D

B(t)
i ≡ ∆B

Di
, by definition of Iand B, i.e., ∀t1, t2 ∈ T .Φ(Di)

I(t1) =

Φ(Di)
I(t2).

(f2) Let R ∈ RS be such that RELS(R) = 〈U1 : E1, . . . , Uk : Ek〉, and let r ∈ RB(t). Then, by

definition of I , r ∈ Φ(R)I(t). So, r = 〈U1 : e1, . . . , Uk : ek〉 ≡ 〈e1, . . . , ek〉, with ei ∈ E
B(t)
i =

Φ(Ei)
I(t), for i ∈ {1, . . . , k}.

(f6.a) For each role symbol Ui ∈ US between R ∈ RS and E ∈ ES , if m = CMINLS(E,R,Ui) 6= 0
then ∀e ∈ EB(t).CMINLS(E,R,Ui) ≤ #

⋃

t′∈T {r ∈ RB(t′) | r[Ui] = e}. By definition of I ,
e ∈ Φ(E)I(t), and the proof follows by considering that: #{r ∈ (3∗R)I(t) | r[Φ(Ui)] = e} ≡
#

⋃

t′∈T {r ∈ RI(t′) | r[Φ(Ui)] = e} ≡ #
⋃

t′∈T {r ∈ RB(t′) | r[Ui] = e}.

(f10) For each entity E ∈ ES if 〈E,Ai〉 ∈ SS then ∀e ∈ EB(t).〈e, ai〉 ∈ A
B(t)
i → ∀t′ ∈ T .〈e, ai〉 ∈

A
B(t′)
i . By definition of I , e ∈ Φ(E)I(t) and ∀t′ ∈ T .〈e, ai〉 ∈ Φ(Ai)

I(t′).

The proof of the remaining formulas is similar to the above cases.

(2) Let I = (T ,∆I , ·I(t)) be a temporal model of Φ(ΣS). We first define the set of active domains
in ΣS , ∆B

D, starting from Φ(Di)
I(t). By formula f1, the interpretation of Φ(Di) is time-invariant,

and, by formula f14, each Φ(Di) denotes a set disjoint from all the other Φ(Dj), for i 6= j. Given
a set of basic domains BD, and a one-to-one partial function B∆ : ∆I → BD, we choose ∆B

Di
=

B∆(Φ(Di)
I(t)), for some t ∈ T , and ∆B

D =
⋃

Di∈DS
∆B
Di

. We can now define the temporal database

state B = (T ,∆B ∪ ∆B
D, ·

B(t)):

• ∆B = ∆I \
⋃

Di∈DS
Φ(Di)

I(t), for some t ∈ T .

• ·B(t) verifies the conditions (a-c) stated in the theorem.

B can be proven to be a legal temporal database state by showing that B satisfies all the constraints of
Definition 2.3.

(c1) Follows from formula f7.a and the fact that, by definition of B, ∀E ∈ ES ,∀t ∈ T .EB(t) = EI(t).

(c3) For eachE ∈ ES if ATTS(E) = 〈A1 : D1, . . . , Ah : Dh〉 then, by formula f4, ∀e ∈ Φ(E)I(t),∀i ∈
{1, . . . , h},∃!di.〈e, di〉 ∈ Φ(Ai)

I(t) ∧∀di.(〈e, di〉 ∈ Φ(Ai)
I(t) → di ∈ Φ(Di)

I(t)). By definition

of B and the B∆ function, e ∈ EB(t), B∆(di) = ai ∈ D
B(t)
i = ∆B

Di
, and 〈e, ai〉 ∈ A

B(t)
i .
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(c6) For each role symbol Ui ∈ US between R ∈ RS and E ∈ ES , if m = CMINLS(E,R,Ui) 6= 0
then, by formula f6.a, ∀e ∈ Φ(E)I(t).#{r ∈ (3∗Φ(R))I(t) | r[Φ(Ui)] = e} ≥ m, i.e., by the
semantics of 3

∗Φ(R), ∀e ∈ Φ(E)I(t).#
⋃

t′∈T {r ∈ Φ(R)I(t′) | r[Φ(Ui)] = e} ≥ m. Now, by
definition of B, e ∈ EB(t) and r ∈ RB(t′), the case where CMAXLS(E,R,Ui) 6= N is similar, then
c6 is true.

(c7) For each snapshot entity E ∈ ESS formula f8 is true: Φ(E)
.
= 2

∗Φ(E). Then, e ∈ EI(t) implies
that ∀t′ ∈ T .e ∈ EI(t′). By definition of B, constraint c7 easily follows.

(c8) For each temporary entity E ∈ ETS formula f11 is true: Φ(E) v∗ (3+¬Φ(E)) t (3−¬Φ(E)).
Then, e ∈ EI(t) implies that ∃t1 > t.e 6∈ EI(t1) ∨ ∃t2 < t.e 6∈ EI(t2). By definition of B,
constraint c8 easily follows.

(c11) For each entity E ∈ ES if ATTS(E) = 〈A1 : D1, . . . , Ah : Dh〉 and 〈E,Ai〉 ∈ SS , then formula

f10 is true. Then, ∀e ∈ EI(t).〈e, di〉 ∈ A
I(t)
i → ∀t′ ∈ T .〈e, di〉 ∈ A

B(t′)
i . By definition of B and

the B∆ function, the constraint c11 easily follows.

The proof of the remaining constraints is similar to the above cases. 2

C Decidability and complexity

Theorem 7.1. The global satisfiability problem for DLRUS conceptual schemas containing only atomic
formulas is undecidable.

Proof The proof is by reduction of the well-known undecidable tiling problem[Robinson, 1971]: given
a finite set of square tiles of fixed orientation and with coloured edges, decide whether it can tile the grid
Z×N. Suppose T = {T1, . . . , Tk} is a set of tiles with colours left(Ti), right(Ti), up(Ti), and down(Ti).
Consider the following schema Σ, where D1, . . . ,Dk are concepts and R is a binary relation:

• R
.
= 2

+R, R
.
= 3

+R, >
.
= ∃R.>,

• Di v ¬Dj, >
.
= D1 t · · · tDk, for i 6= j,

• Di v
⊔

right(Ti)=left(Tj)

∀R.Dj , for i ≤ k,

• Di v
⊔

up(Ti)=down(Tj )

⊕Dj , for i ≤ k.

(Here ∃R.C = ∃≥1[1](R u 2/2 : C), ∀R.C = ¬∃R.¬C .) It is readily checked that Σ is globally
satisfiable iff T tiles Z × N. 2

Theorem 7.3. Let the flow of time be 〈Z, <〉. Then
(1) the problem of logical implication in DLR−

US involving only atomic formulas is EXPTIME-
complete;

(2) the formula satisfiability problem (and so the problem of logical implication) in DLR−US is
EXPSPACE-complete;

(3) the query-containment problem for non-recursive Datalog queries under DLR−
US-constraints is

decidable in 2EXPTIME and is EXPSPACE-hard.

In the remainder of the section we sketch a proof of this theorem. To make it more transparent, we
confine ourselves to considering only the ‘future fragment’ DLR−U of DLR−

US . (From now on 2 stands
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for 2
+ and © for ⊕ .) The main technical tool in the proof is the method of quasimodels developed in

[Wolter and Zakharyaschev, 1998; 1999b]. The idea behind the notion of a quasimodel is to represent
‘the state’ of the (in general, infinite) domain of a temporal model at a each moment of time by finitely
many ‘types’ of the domain objects at this moment (modulo a given finite set of formulas); the evolution
of types in time is described by special functions called runs.

Suppose that Γ consists of a finite set f(Γ) of DLR−U -formulas and a finite set c(Γ) of concepts,
f(Γ) is closed under sub-formulas, c(Γ) under subconcepts, both are closed under (single) negation, and
each concept occurring in f(Γ) belongs c(Γ). A concept type for Γ is a subset t of c(Γ) such that

• C uD ∈ t iff C,D ∈ t, for all C uD ∈ c(Γ);

• ¬C ∈ t iff C /∈ t, for all C ∈ c(Γ).

A formula type for Γ is a subset Φ of f(Γ) such that

• ψ ∧ χ ∈ Φ iff ψ, χ ∈ Φ, for all ψ ∧ χ ∈ f(Γ);

• ¬ψ ∈ Φ iff ψ /∈ Φ, for all ψ ∈ f(Γ).

A pair 〈T,Φ〉, where T is a set of concept types and Φ a formula type for Γ, is called a quasistate
candidate for Γ. We say that the quasistate candidate C = 〈T,Φ〉 is a quasistate for Γ if the following
(non-temporal) DLR-formula α�

(

⊔

t∈T

c(t)
.
= >

)

∧
∧

t∈T

¬(c(t)
.
= ⊥) ∧

∧

Φ

is satisfiable. Here c(t) denotes the conjunction of all concepts in t, concepts of the form C U D are
regarded as atomic conceptsACUD, and formulas of the form ϕUψ in Φ are regarded as atomic formulas
AϕUψ = >.

Consider now a sequence of quasistates

Q = 〈Q(n) : n ∈ Z〉 ,

where Q(n) = 〈Tn,Φn〉. A run in Q is a sequence r = 〈r(n) : n ∈ Z〉 such that

1. r(n) ∈ Tn for every n ∈ Z;

2. for every C U D ∈ c(Γ) and every n ∈ Z, we have C U D ∈ r(n) iff there is l > n such that
D ∈ r(l) and C ∈ r(k) for all k ∈ (n, l).

Finally, Q is called a quasimodel for Γ if the following conditions hold:

3. for every n ∈ Z and every t ∈ Tn there is a run r in Q such that r(n) = t;

4. for every ψ U χ ∈ f(Γ) and every n ∈ Z, we have ψ U χ ∈ Φn iff there is l > n such that χ ∈ Φl
and ψ ∈ Φk for all k ∈ (n, l).

Given a DLR−
U -formula ϕ, we denote by cl(ϕ) the closure under (single) negation of the set of subfor-

mulas and subconcepts of ϕ.

Theorem C.1. A DLR−
U -formula ϕ is satisfiable iff there is a quasimodel for cl(ϕ) such that ϕ ∈ Φ0.

Proof Suppose ϕ is satisfied in a model I with domain ∆. For every n ∈ Z, define Q(n) = 〈Tn,Φn〉
by taking

Tn = {tn(x) : x ∈ ∆}, Φn = {ψ ∈ cl(ϕ) : I, n |= ψ},

where tn(x) = {C ∈ cl(ϕ) : x ∈ CI(n)}. It is not hard to see that 〈Q(n) : n ∈ Z〉 is a quasimodel for
ϕ. (Note that the sequence 〈tn(x) : n ∈ Z〉 is a run through tn(x), for every n ∈ Z and every x ∈ ∆).
To show the converse we require the following lemma.
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Lemma C.2. For any cardinal κ ≥ ℵ0 and any quasistate C for ϕ, the formula α� is satisfied in a
(non-temporal) DLR-model J in which

∣

∣[x]J
∣

∣ = κ for all x in the domain ∆ of J , where

[x]J = {y ∈ ∆ : ∀C ∈ cl(ϕ)(x ∈ CJ ⇔ y ∈ CJ )}.

Proof As DLR is a fragment of first-order logic, we have a countable DLR-model I satisfying α� .
Define J as the disjoint union of κ copies of I; more precisely, let

∆J = {〈x, ξ〉 : x ∈ ∆I , ξ < κ},

PJ
i = {〈〈x0, ξ〉 , . . . , 〈xn, ξ〉〉 :

〈x0, . . . , xn〉 ∈ P I
i , ξ < κ},

(>n)
J = {〈〈x0, ξ〉 , . . . , 〈xn, ξ〉〉 :

〈x0, . . . , xn〉 ∈ (>n)
I , ξ < κ}.

It is not hard to see that J is as required. 2

Suppose now that ϕ ∈ Φ0, for a quasimodel Q. Let κ be a cardinal exceeding the cardinality of the
set Ω of all runs in Q and ℵ0, and let

∆ = {〈r, ξ〉 : r ∈ Ω, ξ < κ}.

Note that |{〈r, ξ〉 ∈ ∆ : r(n) = t}| = κ, for every n ∈ Z and every t ∈ Tn. By Lemma C.2, for
every n ∈ Z there is a DLR-model J (n) with domain ∆ satisfying αQ(n) and such that {C ∈ cl(ϕ) :

〈r, ξ〉 ∈ CJ (n)} = r(n), for all r ∈ Ω and ξ < κ. It is not hard to see that the temporal DLR-model
I =

〈

Z,∆, ·I(n)
〉

defined by taking I(n) = J (n), for every n ∈ Z, satisfies ϕ at moment 0. 2

Thus, the satisfiability problem for DLR−U -formulas reduces to checking ‘satisfiability’ in quasi-
models. Consider now a DLR−

U -schema Σ and two queries

Qi(~x):-
∨

j

Qi
j(~x, ~yij , ~wij), i = 1, 2.

Denote by cl(Σ,Q1,Q2) the closure under (single) negation of the set of all formulas and concepts
occurring in Σ, Q1 and Q2. Given a formula or a concept χ, denote by χ the result of replacing all
subformulas (subconcepts) in χ of the form χ1 U χ2 with Aχ1Uχ2 = > (respectively, Aχ1Uχ2). Thus, χ
is a DLR formula or concept, and the Qi are non-temporal DLR-queries.

Theorem C.3. Q1 is not contained in Q2 relative to Σ iff there is a quasimodel Q for cl(Σ,Q1,Q2)
such that Q1 is not contained in Q2 relative to Σ ∪ {αQ(0)}.

Proof (⇒) Without loss of generality we may assume that we have a model I such that I(0) |= Σ
and ans(Q1, I(0)) 6⊆ eval(Q2, I(0)). Construct a quasimodel Q for cl(Σ,Q1,Q2) as in the proof of
Theorem C.1. To show that Q1 is not contained in Q2 relative to Σ∪ {αQ(0)}, it is enough to extend the
(non-temporal) model I(0) to the new ‘surrogate’ atoms of the form AC1UC2 and Aχ1Uχ2 in accordance

with their behaviour in I at time point 0: AI(0)
C1UC2

= (C1UC2)
I(0) and

A
I(0)
χ1Uχ2

=

{

> if I(0) |= χ1 U χ2

⊥ otherwise.

(⇐) is also proved similarly to Theorem C.1. The only difference is that now we select J (0) so that
J (0) |= Σ ∧ αQ(0) and eval(Q1,J (0)) 6⊆ ans(Q2,J (0)). 2
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So, the query-containment problem for DLR−
U reduces to satisfiability in quasimodels and the query-

containment problem for (non-temporal) DLR. The latter problem was shown to be decidable in 2EX-
PTIME time in [Calvanese et al., 1998a]. But how to check satisfiability in quasimodels? First of all,
we need a procedure deciding whether a quasistate candidate is a quasistate for a given set of formulas
and concepts. The following proposition can be proved using the reduction in[Calvanese et al., 1998a].

Proposition C.4. (i) Given a DLR−
U -formula ϕ, it is decidable in NEXPTIME whether a quasistate

candidate for cl(ϕ) is a quasistate.
(ii) Given a DLR−

U -schema Σ and queries Q1, Q2, it is decidable in 2EXPTIME whether Q1 is
contained in Q2 relative to Σ ∪ {α � } for a quasistate candidate C for cl(Σ,Q1,Q2).

Now, given a set Γ as defined above, we have at most O(22
|Γ|

) distinct quasistates for Γ. The
problem then is whether they can be properly arranged to form a quasimodel for Γ. As we have no
past temporal operators, it is enough to consider the flow of time 〈N, <〉 and quasimodels of the form
Q = 〈Q(n) : n ∈ N〉.

Let Q be a sequence of quasistates Q(i) = 〈Ti,Φi〉, i ∈ N, and r a sequence of elements from Ti
such that r(i) ∈ Ti. Say that r realises CUD ∈ r(n) in m steps if there is l ≤ m such that D ∈ r(n+ l)
and C ∈ r(n+ k) for all k ∈ (0, l). A formula ψUχ ∈ Φn is realised in m steps if there is l ≤ m such
that χ ∈ Φn+l and ψ ∈ Φn+k for all k ∈ (0, l). We also say that a pair t, t′ of concept types is suitable
if for every CUD ∈ Γ, CUD ∈ t iff either D ∈ t′ or C ∈ t′ and CUD ∈ t′.

Suppose Q1 and Q2 are finite sequences of quasistates for Γ of length l1 and l2, respectively, and let
Q = Q1 ∗ Q

∗
2 (i.e., Q = Q1 ∗ Q2 ∗ Q2 ∗ Q2 ∗ . . . ) with Q(n) = 〈Tn,Φn〉. One can check that Q is a

quasimodel for Γ if the following conditions hold:

(a) for every i ≤ l1 + l2 and every t′ ∈ Ti+1, there is t ∈ Ti such that the pair t, t′ is suitable;

(b) for every i ≤ l1 + 1 and every ti ∈ Ti, all concepts of the form CUD ∈ ti are realised in
l1 + l2 − i steps in some sequence ti, ti+1, . . . , tl1+l2 in which ti+j ∈ Ti+j and every pair of
adjacent elements is suitable;

(c) for every i ≤ l1 + l2, and every ψUχ ∈ Γ, ψUχ ∈ Φi iff either χ ∈ Φi+1 or ψ ∈ Φi+1 and
ψUχ ∈ Φi+1;

(d) for every i ≤ l1 + 1, all formulas of the form ψUχ ∈ Φi are realised in l1 + l2 − i steps.

Moreover, given a quasimodel for Γ, one can always extract from it a subquasimodel Q = Q1 ∗ Q∗
2

which satisfies (a)–(d) above, all quasistates in Q1 are distinct and |Q2| = O(22|Γ|
).

Using this observation together with Proposition C.4 one can construct an EXPSPACE formula-
satisfiability checking algorithm and a 2EXPTIME query-containment checking algorithm. A proof of
EXPSPACE-hardness of the formula-satisfiability problem (for a much weaker logic) can be found at
http://www.dcs.kcl.ac.uk/staff/mz. It follows, in particular, that the query-containment
problem is EXPSPACE-hard as well. It is an open problem, however, whether there exists an EXPSPACE
algorithm deciding this problem.

Finally, we show EXPTIME-completeness of the logical implication for atomic formulas in DLR−
U

by means of a polynomial reduction of DLR−
U to the logic DLRreg of [Calvanese et al., 1998a]. For our

purposes, it is enough to know that DLRreg allows one to form the transitive closure R∗ of every binary
relation R, and that the satisfiability problem in DLRreg is in EXPTIME. To simplify presentation, we
reduce here the fragment DLR−

2© of DLR−
U with the temporal operators 2 and © only (the reader

should not have problems to extend this reduction to the language with U).
Fix a binary relation R and define a translation ? from DLR−

2© to DLRreg as follows: P? = P for
every atom P of DLR,

(©C)? = ∀R.C?

(2C)? = ∀R∗.C?;
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? commutes with the remaining constructs, and (P1 v P2)
? = P ?1 v P ?2 .

Lemma C.5. Suppose that Γ ∪ {ϕ} is a set of atomic DLR−
©2

-formulas and that R does not occur in
Γ ∪ {ϕ}. Then Γ |= ϕ iff ϕ? is a logical consequence of the following set Ξ of DLRreg-formulas

Γ?, ∃=1R.>
.
= >, ∃=1R−.>

.
= >,

where ∃=1R−.C = ∃=1[2](R u 1/2 : C).

Proof Suppose Γ 6|= ϕ. Then there is a model I such that I, 0 6|= ϕ, but I, n |= Γ for all n ∈ Z. Define
a DLR-model

J =
〈

∆′, PJ
1 , . . . , R

J
〉

by taking

• ∆′ = ∆I × Z,

• 〈〈x1, n1〉 , . . . , 〈xl, nl〉〉 ∈ P
J
i iff ni = nj , for i, j ≤ l, and 〈x1, . . . , xn〉 ∈ P

I(n1)
i ,

• 〈〈x1, n1〉 , 〈x2, n2〉〉 ∈ RJ iff x1 = x2 and n2 = n1 + 1.

It is readily checked J |= Ξ and J 6|= ϕ?.
Conversely, suppose that J =

〈

∆, PJ
1 , . . . , R

J
〉

is a model such that J |= Ξ but J 6|= ϕ?. Let
Σ =

⋃

{cl(χ) : χ ∈ Γ ∪ {ϕ}} and, for every x ∈ ∆,

t(x) = {C ∈ c(Σ) : x ∈ (C?)J }.

Then the pair 〈T,Φ〉, where T = {t(x) : x ∈ ∆} and Φ = {χ ∈ f(Σ) : J |= χ?}, is a quasistate for Σ.
Define a map Q by taking Q(n) = 〈T,Φ〉 for all n ∈ Z. It is easy to see that Q is a quasimodel. Hence,
by Theorem C.1, we have a model I such that I |= Γ but I, 0 6|= ϕ. 2
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