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This paper introduces a temporal class diagram language useful to model temporal varying
data. The atemporal portion of the language contains the core constructors available in both
EER diagrams and UML class diagrams. The temporal part of the language is able to distin-
guish between temporal and atemporal constructs, and it has the ability to represent dynamic
constraints between classes. The language is characterized by a model-theoretic (temporal)
semantics. Reasoning services as logical implication and satisfiability are also defined. We
show that reasoning on finite models is different from reasoning on unrestricted ones. Then,
we prove that reasoning on temporal class diagrams is an undecidable problem on both unre-
stricted models and on finite ones.
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1. Introduction

Conceptual data modeling describes an application domain in a declarative and
reusable way by specifying constraints on the use of the data and possibly drawing new
information from it. Recently, a number of conceptual modeling languages has emerged
as de facto standards; in particular, we mention entity-relationship (ER) for the relational
data model, UML and ODMG for the object-oriented data model, and RDF, DAML+OIL
and OWL for the web ontology languages. In this paper we deal with temporally extended
conceptual data models developed to abstract the temporal aspects of information. Many
temporal models have been developed (in particular to help designing temporal databases)
and a summary of results achieved in the area can be found in two good surveys [14,17].

Here we propose a temporal class diagram formalism equipped with both a linear
and a graphical syntax along with a model-theoretic semantics. The atemporal portion
of the language contains the core constructors available in most of the conceptual models
mentioned above. Essentially, Classes and Relationships are first class citizens. Classes can
be organized in disjoint and/or covering generalized hierarchies. Relations between classes
are modeled through n-ary relationships. Full cardinality constraints can be specified on
the participation of classes into relationships. The temporal part of the language supports
valid time for classes and relationships in the line of TimeER [13] and ERT [20], while
supporting dynamic constraints for classes as presented in MADS [19].

This paper moves from previous works of the author where the temporal conceptual
model ERV T has been formally characterized [1,4]. Starting from such formalization we
devise here a temporal modeling language as a sub-language of ERV T with the main
intention to investigate whether reasoning over temporal diagrams is decidable. In addition
to the classical EER constructors (the Extended Entity-Relationship data model, see [11]),
the language proposed here is able to express the following temporal constraints:

• Timestamping. The data model distinguishes between snapshot constructs—i.e. each
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of their instances has a global lifespan—and temporary constructs—i.e. each of their
instances have a limited lifespan.

• Dynamic Constructs. They apply to classes by capturing the object migration from a
source class to a target class. They are also called transition constraints [15] and they
describe how an object can change its class membership from one class to another. For
example, an object in the Employee class may later migrate to become an object of the
Manager class.

The main result illustrated here is that reasoning on temporal conceptual models is
undecidable providing the diagrams are able both: (a) to distinguish between temporal
and non-temporal constructs; and (b) to represent dynamic constraints between classes,
i.e. classes whose instances migrate to other classes. This result is different from a similar
one presented in [5]. Indeed, in [5] the authors showed that temporal diagrams expressed
in the ERV T modeling language can be embedded into the temporal description logic
DLRUS—where U , S extend DLR [8] with the until and since temporal modalities—and
that reasoning in DLRUS was undecidable. On the other hand, here we prove that even
reasoning just on temporal class diagrams (and thus on ERV T schemas) is undecidable.
The undecidability result is proved via a reduction of the Halting Problem. In particular,
we proceed by first showing that the halting problem can be encoded as a Knowledge
Base (KB) in ALCF—where F extends the description logic ALC with the future tempo-
ral modality—and then proving that such a KB in ALCF can be captured by a schema
expressed in our temporal class diagram. Note that, in [12] the undecidability of ALCF is
proved using both: (a) complex axioms—i.e. axioms can be combined using boolean and
modal operators; and (b) both global and local axioms—i.e. axioms can be either true at
all time or true at some time, respectively. Since the temporal class diagram is able to
encode just simple global axioms, we modify the proof presented in [12] by showing that
checking concept satisfiability w.r.t. an ALCF KB made by just simple global axioms is
an undecidable problem. This new result on temporal description logics reduces the gap
between decidable and undecidable languages.

We also show that temporal class diagrams do not enjoy the Finite Model Property

(FMP) (that is, a class could be satisfiable only in models with an infinite domain). The
negative undecidability result also holds when reasoning is restricted to finite models. Still
the halting problem can be reduced to satisfiability of temporal class diagrams in finite
models.

The paper is organized as follow. The temporal description logic ALCF is briefly
introduced in Section 2. Section 3 gives a formal presentation of temporal class diagrams
along with a running example. The reasoning services over temporal class diagrams are
defined in Section 4. That reasoning in presence of dynamic constraints is undecidable in
both unrestricted and finite models is proved in Sections 5 and 6, respectively. Section 7
makes final conclusions and summarizes the complexity results already obtained when
dealing with temporal data languages with different expressivity power. In the conclusions
an interesting open problem related to the complexity of reasoning is finally mentioned.

2. The Temporal Description Logic

In this Section we introduce the ALCF description logic [2,12,21] as a the tense-
logical extension of the description logic ALC. With respect to the formal apparatus, we
will strictly follow the concept language formalism presented in [6]. In this perspective,
description logics are considered a structured fragment of predicate logic. Basic types of
ALCF are concepts and roles. A concept is a description gathering the common properties
among a collection of individuals; from a logical point of view it is a unary predicate
ranging over the domain of individuals. Inter-relationships between these individuals are
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C, D → A | (atomic concept)

> | (top)

⊥ | (bottom)

¬C | (complement)

C u D | (conjunction)

C t D | (disjunction)

∃R.C | (exist. quantifier)

∀R.C | (univ. quantifier)

3
+C | (Sometime in the Future)

2
+C | (Every time in the Future)

AI(t) ⊆ ∆I

>I(t) = ∆I

⊥I(t) = ∅

(¬C)I(t) = ∆I \ CI(t)

(C u D)I(t) = CI(t) ∩ DI(t)

(C t D)I(t) = CI(t) ∪ DI(t)

(∀R.C)I(t) = {a ∈ ∆I | ∀b.RI(t)(a, b) ⇒ CI(t)(b)}

(∃R.C)I(t) = {a ∈ ∆I | ∃b.RI(t)(a, b) ∧ CI(t)(b)}

(3+C)I(t) = {a ∈ ∆I | ∃v > t.CI(v)(a)}

(2+C)I(t) = {a ∈ ∆I | ∀v > t.CI(v)(a)}

Figure 1. Syntax and Semantics for the ALCF Description Logic

represented by means of roles, which are interpreted as binary relations over the domain
of individuals. According to the syntax rules of Figure 1, ALCF concepts (denoted by the
letters C and D) are built out of atomic concepts (denoted by the letter A) and atomic

roles (denoted by the letter R). Tense operators are added for concepts: 3
+ (sometime in

the future) and 2
+ (always in the future). Furthermore, while tense operators are allowed

only at the level of concepts—i.e. no temporal operators are allowed on roles—we will
distinguish between so called local—RL—and global—RG—roles.

Let us now consider the formal semantics of ALCF. A temporal structure T = (Tp, <)
is assumed, where Tp is a set of time points and < is a strict linear order on Tp—T is assumed
to be isomorphic to either (Z, <) or (N, <). An ALCF temporal interpretation over T is
a triple of the form I

.
= 〈T ,∆I , ·I(t)〉, where ∆I is non-empty set of objects (the domain

of I) and ·I(t) an interpretation function such that, for every t ∈ T , every concept C,
and every role R, we have CI(t) ⊆ ∆I and RI(t) ⊆ ∆I × ∆I . Furthermore, if R ∈ RG,
then, ∀t1, t2 ∈ T .RI(t1) = RI(t2). The semantics of concepts is defined in the right side of
Figure 1—note that the operator 2

+ is the dual of 3
+, i.e. 2

+C ≡ ¬3
+¬C.

A knowledge base (KB) in this context is a finite set Σ of terminological axioms of
the form C v D. An interpretation I satisfies C v D if and only if the interpretation
of C is included in the interpretation of D at all time, i.e. CI(t) ⊆ DI(t), for all t ∈ T .
Thus, axioms are (a) global, since they must hold at all time; and (b) simple, since we
cannot compose them with either boolean or modal operators—we call them simple global

axioms. A knowledge base Σ is satisfiable if there is a temporal interpretation I which
satisfies every axiom in Σ; in this case I is called a model of Σ. Σ logically implies an
axiom C v D (written Σ |= C v D) if C v D is satisfied by every model of Σ. In this
latter case, the concept C is said to be subsumed by the concept D in the knowledge base
Σ. A concept C is satisfiable, given a knowledge base Σ, if there exists a model I of Σ
such that CI(t) 6= ∅ for some t ∈ T , i.e. Σ 6|= C v ⊥.

As an example of a concept using temporal operators, consider the definition of a
“person”. The class of persons denotes individuals who are currently living beings, live in
some place, and eventually they will stop being living beings forever:

Person v LivingBeingu ∀LIVES-IN.Place u
3

+(¬LivingBeing u 2
+¬LivingBeing)

3. Temporal Class Diagrams

In this Section, the language to describe temporal class diagrams is introduced. Since
we are interested in characterizing the source of undecidability, the language we study is
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a proper subset of ERV T [4,1]1. The main constructors are Classes—denoting set of
objects—and Relationships—linking two classes. Classes can be organized in taxonomic
hierarchies. Hierarchies could be total or partial, and overlapping or disjoint as in the EER
(Extended Entity-Relationships) model [11]. Cardinality constraints specify the participa-
tion of classes into relationships. As far as temporal constructs are concerned, the language
supports timestamping for both classes and relationships in the line of TimeER [13] and
ERT [20], while supporting dynamic constraints for classes as presented in MADS [19].
Since this work considers just validity time rather than transaction time (see the consen-
sus glossary [16] for the terminology used), then the timestamping constructs model the
notion of lifespan in temporal databases, i.e. the points in time when an object or a tuple
belongs to a class or a relationship, respectively. In particular, the language is able to
distinguish between snapshot constructs—i.e. constructs which bear no explicit specifi-
cation of a given lifespan which we convey by assuming a global lifespan associated to
each of their instances—temporary constructs—i.e. each of their instances have a limited
lifespan—or mixed constructs—i.e. each of their instances can have either a global or a
temporary existence. Two temporal marks, S and T are introduced to capture snapshot
and temporary constructs, respectively. On the other hand, mixed constructs are left un-
marked meaning that the modeler does not want to temporally constraint the construct.
As logical implication is formally defined in ERV T (see Definition 4.1), missing constraints
referring to timestamping can be inferred (see the running example below).

Dynamic constructs [15,19,4] (also called transition constraints) have been introduced
to model the phenomenon called object migration. A transition models objects migrating
from a source class to a target class. At the schema level, it expresses that the instances of
the source class may migrate into the target class. A dynamic extension between a source
and a target class (represented by a dotted link labeled with dex) models the case where
instances of the source class eventually become instances of the target class. On the other
hand, a dynamic persistency (represented by a dotted link labeled with per) models the
dual case of instances persistently migrating to a target class. Before showing an example
of a temporal class diagram let us introduce the syntax and the semantics of the language.

The language is equipped with both a linear and a graphical syntax along with a
model-theoretic semantics as a temporal extension of the EER semantics [9]. Presenting
the linear syntax, we adopt the following notation: given two sets X,Y , an X-labeled tuple
over Y is a function from X to Y ; the labeled tuple T that maps the set {x1, . . . , xn} ⊆ X

to the set {y1, . . . , yn} ⊆ Y is denoted by 〈x1 : y1, . . . , xn : yn〉, and T [xi] = yi. In the
following definition we refer to Figure 2 as an example of the visual syntax2 associated to
the various constructs.

Definition 3.1. (Syntax) A diagram (also called schema) is a tuple:
Σ = (L,rel,card, isa,disj,cover,dex,per), such that:

• L is a finite alphabet partitioned into

∗ a set C of class symbols,

∗ a set R of relationship symbols,

∗ a set U of role symbols.

We will call the tuple (C,R,U) the signature of the schema Σ.

• C is partitioned into

1 As for the adequacy of ERV T for temporal conceptual modeling see [4].
2 We adopt an EER style where classes are in boxes and relationships inside diamonds, isa are directed
lines, generalized hierarchies could be disjoint (circle with a ’d’ inside) or covering (double directed lines).
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Employee S

Project
Manager T

TopManagerAreaManager

Department S InterestGroup

OrganizationalUnit S

d

dev

dex

Works-for T

Manages

Resp-for S

(1,n) act

emp

man

(1,1)

prj(1,1)

(1,n)

prj

org

Figure 2. The Company temporal diagram

∗ a set CS of snapshot classes (the S-marked classes in the graphical representation of
Fig. 2);

∗ a set CM of Mixed temporal classes (the unmarked classes);

∗ and a set CT of temporary classes (the T-marked classes).

• A similar partition applies to the set R.

• rel is a function that maps a relationship symbol in R to an U -labeled tuple over C,

rel(R) = 〈U1 : C1, . . . , Uk : Ck〉

and k is the arity of R.

• card is a function

C ×R × U 7→ N × (N ∪ {∞})

denoting cardinality constraints.
If rel(R) = 〈U1 : C1, . . . , Uk : Ck〉, then, card(C,R,U) is defined only if U = Ui and
C = Ci, for some i ∈ {1, . . . , k}. We denote with cmin(C,R,U) and cmax(C,R,U)
the first and second component of card. If not stated otherwise, cmin is assumed to
be zero, and cmax is assumed to be ∞.

• isa is a binary relationship

isa ⊆ (C × C) ∪ (R×R).

isa between relationships is restricted to relationships with the same arity.3

• disj,cover are binary relations over 2C × C, describing disjointness and covering par-
titions between classes, respectively.

• Both dex and per are binary relations over C × C describing the evolution of classes.

The model-theoretic semantics associated with the language adopts the snapshot4

representation of abstract temporal databases and temporal conceptual models [10]. Fol-
lowing this paradigm, the flow of time T = 〈Tp, <〉, where Tp is a set of time points (or
chronons) and < is a binary precedence relation on Tp, is assumed to be isomorphic to ei-

3 For isa relations, we use the notation C1 isaC2 instead of 〈C1, C2〉 ∈ isa. Similarly for disj, cover, dex,
per.

4 The snapshot model represents the same class of temporal databases as the timestamp model [17,18]
defined by adding temporal attributes to a relation [10].
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ther 〈Z, <〉 or 〈N, <〉. Thus, a temporal database can be regarded as a mapping from time
points in T to standard relational databases, with the same interpretation of constants
and the same domain.

Definition 3.2. (Semantics) Let Σ be a schema. A temporal database state for the
schema Σ is a tuple B = (T ,∆B, ·B(t)), such that: ∆B is a nonempty set; ·B(t) is a function
such that for each t ∈ T , every class C ∈ C, and every relationship R ∈ R, we have:
CB(t) ⊆ ∆B, while RB(t) is a set of U -labeled tuples over ∆B.
B is a legal temporal database state if it satisfies all of the integrity constraints expressed
in the schema:

• For each C1, C2 ∈ C, if C1 isa C2, then, C
B(t)
1 ⊆ C

B(t)
2 .

• For each R1, R2 ∈ R, if R1 isa R2, then, R
B(t)
1 ⊆ R

B(t)
2 .

• For each cardinality constraint card(C,R,U), then,
e ∈ CB(t) → cmin(C,R,U) ≤ #{r ∈ RB(t) | r[U ] = e} ≤ cmax(C,R,U).

• For each snapshot class C ∈ CS , then,
e∈CB(t) → ∀t′∈T .e∈CB(t′).

• For each temporary class C ∈ CT , then,
e∈CB(t) → ∃t′ 6= t.e 6∈CB(t′).

• For each snapshot relationship R∈RS, then,
r∈RB(t) → ∀t′∈T .r∈RB(t′).

• For each temporary relationship R∈RT , then,
r∈RB(t) → ∃t′ 6= t.r 6∈RB(t′).

• For C,C1, . . . , Cn ∈ C,

∗ If {C1, . . . , Cn} disj C, then,
∀i ∈ {1, . . . , n}.Ci isa C∧

∀j ∈ {1, . . . , n}, j 6= i.C
B(t)
i ∩ C

B(t)
j = ∅.

∗ If {C1, . . . , Cn} cover C, then,

∀i ∈ {1, . . . , n}.Ci isa C ∧ CB(t) =
⋃n

i=1 C
B(t)
i .

• For each C1, C2 ∈ C,

∗ If C1dex C2, then, e∈C
B(t)
1 → ∃t1 >t.e∈C

B(t1)
2 ;

∗ If C1per C2, then, e∈C
B(t)
1 → ∀t′ > t.e ∈ C

B(t′)
2 .

In addition to dynamic extensions, another form of migration has been studied in
the literature. Dynamic evolution is a transition where the migrating object ceases to be
an instance of the source class. We also consider here a strong dynamic evolution where
the migrating object will never go back to the source class. We give a formal definition of
these constraints and then show that dex and per are sufficient to capture them.

Definition 3.3. (Evolution) We consider two forms of evolution between classes: dy-

namic evolution (dev) and strong dynamic evolution (s-dev) with the following seman-
tics:

• Dynamic Evolution.

If C1dev C2, then, e∈C
B(t)
1 → ∃t1 >t.(e∈C

B(t1)
2 ∧ e 6∈C

B(t1)
1 )

• Strong Dynamic Evolution.

If C1s-dev C2, then, e∈C
B(t)
1 → ∃t1 >t.(e∈C

B(t1)
2 ∧ ∀t2 ≥ t1.e 6∈C

B(t2)
1 )
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Figure 3. Encoding (a) dynamic and (b) strong dynamic evolution.

The following Proposition shows that both dev and s-dev can be modeled by using
both the persistency and dynamic extension constructors—i.e. they do not add further
expressivity to our language as defined in Definition 3.1.

Proposition 3.4. The diagram of Figure 3(a) is a correct mapping of C1 dev C2. By
adding to the diagram the constraint E per NotC1 (Figure 3(b)) we encode the s-dev

constructor.

Proof. (dev) Let e ∈ C
B(t)
1 , then, by (dex) ∃t1 > t.e ∈ EB(t1). Thus, by (isa) e ∈ C

B(t1)
2

and since E is disjoint from C1, e 6∈ C
B(t1)
1 .

(s-dev) As for dev, e ∈ C
B(t1)
2 and e 6∈ C

B(t1)
1 . Furthermore, by (per), ∀t2 > t1.e ∈

NotC1B(t2), i.e. ∀t2 > t1.e 6∈ C
B(t2)
1 . 2

3.1. A Running Example

The various components of a temporal class diagram are now illustrated with respect
to the Company schema of Figure 2. We start by showing the alphabet of the example
schema. The sets of snapshot classes and relationships are:

CS = {Employee, Department, OrganizationalUnit},
RS = {Resp-for}.

The sets of temporary classes and relationships are:

CT = {Manager},
RT = {Works-for}.

The set of mixed classes and relationships are:

CM ={AreaManager, TopManager, InterestGroup, Project}
RM ={Manages}.

Instances of temporary classes and relationships are intended to have a limited lifespan.
On the other hand, the set of instances of snapshot classes and relationships never changes
in time. For mixed classes and relationships, no temporal constraint holds—i.e. their set of
instances can contain either instances with a limited lifespan or instances with unlimited
lifespan. Note that, to capture the semantics of a legacy diagram, each of its elements
should be necessarily snapshot marked. This preprocessing step is necessary to enforce
upward compatibility when legacy diagrams are included in a temporal diagram.

The function rel associates with each argument of a relationship a name, called role,
and a class describing its type, for example
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rel(Manages) = 〈man : TopManager, prj : Project〉

describes Manages as a binary relationship, where a TopManager manages a Project. To
associate cardinality constraints the function card can be used. For example:

card(TopManager, Manages, man) = 〈1, 1〉

states that a TopManager is constrained in managing exactly one project at a time.
isa, cover, and disj are used to represent generalized hierarchies. isa models the

subclass relationship, for example, ManagerisaEmployee says that manager is a subclass of
employee. cover models the fact that a set of subclasses may have common instances, but
each instance of the superclass belongs to at least one of those subclasses as, for example,
in:

{AreaManager, TopManager} cover Manager.

disj models disjoint hierarchies, and:

{Department, InterestGroup} disj OrganizationalUnit

says that department is disjoint from interest group and both are subclasses of organiza-
tional units. By using both cover and disj we can model partitions, i.e. disjoint and
covering hierarchies:

{Department, InterestGroup} disj OrganizationalUnit

{Department, InterestGroup} cover OrganizationalUnit.

dex, dev, s-dev and per express dynamic constraints between classes. They could
be used to model various form of object migration from a class to another. We can model
the fact that a mere employee becomes a manager by defining a dynamic extension from
the class Employee to the class Manager:

Employee dex Manger

The following constraint

AreaManager dev TopManger

says that an AreaManager will eventually become a TopManager while, since the two
concepts are disjoint, the migration is actually an evolution. If we want to stress that an
AreaManger will become a TopManager in the future but he will never be an AreaManager

anymore then we will specify a strong evolution:

AreaManager s-dev TopManger

The per constructor can be used to express various forms of temporal constraints. The
fact that a manager will always be a manager can be expressed as:

Manager per Manger

Please, note that this constraint is consistent with the temporary marking associated to
the manager class. Another use of per is to avoid undesired transitions. For example,
adding to the Company diagram the two disjoint classes HumanBeing and MaterialObject

(an its complement NotMaterialObject) together with the hierarchical constraints:
Employee isa HumanBeing, and OrganizationalUnit isa MaterialObject then we can
forbid transitions from humans to material with the constraint:

HumanBeing per NotMaterialObject

which would avoid altogether any transition from employees and its sub-classes to any of
the organizational units of the company.
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4. Reasoning on Temporal Models

Reasoning tasks over temporal class diagrams include verifying whether a class, rela-
tionship, or schema are satisfiable, whether a subsumption relation exists between classes
or relationships, or checking whether a new schema property is logically implied by a given
schema. The model-theoretic semantics associated with the class language allows us to
formally define the reasoning tasks.

Definition 4.1. (Reasoning problems) Let Σ be a schema, C ∈ C a class, and R ∈ R
a relationship. The following reasoning tasks over Σ can be defined:

1. C (R) is satisfiable if there exists a legal temporal database state B for Σ such that
CB(t) 6= ∅ (RB(t) 6= ∅), for some t ∈ T ;

2. Σ is satisfiable if there exists a legal temporal database state B for Σ that satisfies at
least one class in Σ (B is said a model for Σ);

3. C1 (R1) is subsumed by C2 (R2) in Σ if every legal temporal database state for Σ is
also a legal temporal database state for C1 isa C2 (R1 isa R2);

4. A schema Σ′ is logically implied by a schema Σ over the same signature if every legal
temporal database state for Σ is also a legal temporal database state for Σ′.

Remark 4.2 Logical implication is the most powerful reasoning service. Indeed, checking
whether a class C is satisfiable can be reduced to logical implication. By choosing Σ′ =
{C isaA,C isaB, {A,B}disj O}, with A,B,O arbitrary classes, then C is satisfiable iff Σ 6|=
Σ′. Furthermore, given two classes (relationships) C1, C2 (R1, R2), checking for subclass
(subrelationship) can be reduced to logical implication by choosing Σ′ = {C1 isa C2}
(Σ′ = {R1 isa R2}).

Classical implications found in the literature of temporal conceptual modeling are
captured by the logical implication service:

1. Subclasses of temporary classes are also temporary;
2. Subclasses of snapshot or mixed classes can be snapshot, temporary, or mixed classes;
3. If exactly one of a whole set of snapshot subclasses partitioning a snapshot superclass

is temporary, then, the whole set of classes is unsatisfiable;
4. Participants of snapshot relations are either snapshot or mixed classes. They are

snapshot when they participate at least once in the relationship;
5. Participants of temporary or mixed relations can be snapshot, temporary, or mixed

classes;
6. A relationship is temporary if one of the participating classes is temporary.

Note that points 1 and 2 are also true for relationships.
Other reasoning problems could be defined in a temporal setting. For example,

liveness- (i.e., infinitely often) and global-satisfiability (i.e., at all times) have been intro-
duced in [4,3]. In this paper we concentrate on the core reasoning services and we then
prove that even in such a setting complete automated reasoning is infeasible.

5. Reasoning on Temporal Class Diagrams is Undecidable

We now show that reasoning on temporal class diagrams is undecidable. The proof
is based on a reduction from the undecidable halting problem for a Turing machine to the
class satisfiability problem w.r.t. a schema Σ. We apply ideas similar to [12] (Sect. 7.5)
to show undecidability of certain products of modal logics. The proof can be divided in
the following steps:
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1. Definition of the halting problem;
2. Reduction of the halting problem to concept satisfiability problem w.r.t. an ALCF

KB;
3. Reduction of concept satisfiability w.r.t. an ALCF KB to class satisfiability w.r.t. a

temporal class diagram.

The second step has been chosen as an intermediate step to better understand the halting
problem reduction by using the concise ALCF linear syntax. Then, the final step will
show how temporal class diagrams are able to capture all the ALCF axioms present in the
reduction.

Halting problem

We show here a formal representation of the halting problem for Turing machines
as presented in [12]. A single-tape right-infinite deterministic Turing machine M is a
triple 〈A,S, ρ〉, where: A is the tape alphabet (b ∈ A stands for blank); S is a finite set
of states with the initial state, s0, and the final state, s1; ρ is the transition function,
ρ : (S − {s1}) × A → S × (A ∪ {L, R}). A Configuration of M is an infinite sequence:
〈£, a1, . . . , ai−1, 〈si, ai〉, . . . , an, b, . . .〉, where, £ 6∈ A is a symbol marking the left end of
the tape, ai ∈ A, and si ∈ S is the current state. The cell 〈si, ai〉 is the active cell. All the
cells to the right of an are blank.

Since a transition function can only modify the active cell and its neighbors we
introduce the instruction function, δ, defined on triples in (A∪{£})×((S−{s1})×A)×A,
such that:

δ(ai, 〈s, aj〉, ak) =















〈ai, 〈s
′, a′j〉, ak〉 if ρ(s, aj) = 〈s′, a′j〉

〈〈s′, ai〉, aj , ak〉 if ρ(s, aj) = 〈s′, L〉, and ai 6= £

〈£, 〈s′, aj〉, ak〉 if ρ(s, aj) = 〈s′, L〉, and ai = £

〈ai, aj , 〈s
′, ak〉〉 if ρ(s, aj) = 〈s′, R〉

A sequence 〈c0, c1, . . . , ck, ck+1, . . .〉 of configurations of M is said to be a computation

of M if the state of c0 is s0 (the initial state), and, for all k, ck+1 is obtained from ck by
replacing the triple centered around the active cell of ck by its δ-image and leaving the
rest unaltered. We say that M halts, starting with the empty tape—i.e. with starting
configuration: 〈£, 〈s0, b〉, b, . . . , b, . . .〉—if there is a finite computation, 〈c0, c1, . . . , ck〉, such
that the state of ck is s1 (the final state).

Reasoning on ALCF is undecidable

Using a reduction from the halting problem we now prove that reasoning involving an
ALCF knowledge base is undecidable. In [12] the undecidability of ALCF is proved using:
(a) complex axioms—i.e. axioms can be combined using Boolean and modal operators—
(b) both global and local axioms—i.e. axioms can be either true at all time or true at some
time, respectively. Since class diagrams are able to encode just simple global axioms, we
modify the proof presented in [12]. The following theorem proves a new result for temporal
description logics, i.e. that checking concept satisfiability w.r.t. an ALCF KB made by
just simple global axioms is an undecidable problem.

Theorem 5.1. Concept satisfiability w.r.t. an ALCF knowledge base using just simple
global axioms is undecidable.

Proof. Given a Turing machine, M = 〈A,S, ρ〉, we construct an ALCF KB, say KBM ,
with a concept that is satisfiable w.r.t. KBM iff the machine M does not halt. We start
by introducing some shortcuts. The implication, C → D, is equivalent to the concept
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expression ¬CtD. Given two concepts C,D we define next(C,D) as the following axiom:
C v 3

+Du¬3
+
3

+D. This axiom says that whenever o ∈ CI(t0), then, o ∈ DI(t0+1)∧∀t 6=
t0.o 6∈ CI(t). Let C,D1, . . . ,Dn concepts, discover(C, {D1, . . . ,Dn}) is defined as the
conjunction of the following axioms:

C vD1 t . . . t Dn

D1 vC u ¬D2 u . . . u ¬Dn

. . .

Dn−1 vC u ¬Dn

Dn vC

i.e., there is a disjoint covering between C and D1 . . . Dn.
Let A′ = A ∪ {£} ∪ (S × A). With each x ∈ A′ we introduce a concept Cx. We also
use concepts Cs, Cl, Cr to denote the active cell, its left and right cells, respectively. The
concept S1 denotes the final state. The halting problem reduces to satisfiability of C0.
Extra concepts C,D1,D2,D3, will be also used. R is a global role. KBM contains the
following axioms:

C0 v C£ u 3
+C〈s0,b〉 (1)

discover(C, {Cx | x ∈ A′}) (2)

> v ∃R.> (3)

next(C£,D1) (4)

next(D1,D2) (5)

C〈s0,b〉 v D1 (6)

C〈s0,b〉 v 2
+Cb (7)

discover(Cs, {C〈s,a〉 | 〈s, a〉 ∈ S × A}) (8)

next(Cl, Cs) (9)

next(Cs, Cr) (10)

next(Cr,D3) (11)

C£ v Cl t 3
+Cl (12)

Cl v Cα → ∀R.Cα′ (13)

Cs v Cβ → ∀R.Cβ′ (14)

Cr v Cγ → ∀R.Cγ′ (15)

Ca v (¬Cl u ¬Cs u ¬Cr) → ∀R.Ca, ∀a ∈ A ∪ {£} (16)

discover(S1, {C〈s1,a〉 | a ∈ A ∪ {£}}) (17)

Cs v ¬S1 (18)

with axioms (13–15) for each instruction δ(α, β, γ) = 〈α′, β′, γ′〉. We now prove that C0 is
satisfiable w.r.t. KBM iff M has an infinite computation starting from the empty tape.

“⇒” Let C0 be satisfiable, then, ∃〈x0, t0〉 ∈ ∆I ×T .x0 ∈ C
I(t0)
0 . Then, by axiom (1),

x0 ∈ C
I(t0)
£

, and ∃t > t0.x0 ∈ C
I(t)
〈s0,b〉. We now show that t = t0 + 1. Indeed, if C〈s0,b〉 is

true, then, by axiom (6), D1 must also be true, i.e. x0 ∈ D
I(t)
1 . On the other hand, by

axiom (4), C£ is true at just one point in time and D1 is true next time and only there

(by axiom (5)), i.e. x0 ∈ D
I(t0+1)
1 . Thus, t = t0 + 1, x0 ∈ C

I(t0)
£

, x0 ∈ C
I(t0+1)
〈s0,b〉 , and, by

axiom (7), ∀t > t0 + 1.x0 ∈ C
I(t)
b . Furthermore, by axiom (8), x0 ∈ C

I(t0+1)
s , while, by

axioms (9–12), x0 ∈ C
I(t0)
l , x0 ∈ C

I(t0+2)
r . By axiom (2), for all t ∈ T there is at most

one x ∈ A′ such that x0 ∈ C
I(t)
x , then, the sequence 〈〈x0, t0〉, 〈x0, t0 + 1〉, . . .〉 represents
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Figure 4. Encoding axioms: (a) C v ¬D; (b) C v D1 t . . . t Dn.

the starting configuration of M. Now, by axiom (3) and the assumption that R is global,
∃x1 ∈ ∆I .∀t ∈ T .〈x0, x1〉 ∈ RI(t) (we call x1 R-successor of x0). Let 〈x0, x1, x2, . . .〉 be

a chain of R-successors satisfying axiom (3). Since x0 ∈ C
I(t0)
£

and x0 ∈ C
I(t0)
l , then, by

axioms (13) and (16), and the definition of the instruction function, δ, xi ∈ C
I(t0)
£

, for all
i. Then, given the axioms (13–16), the chain of R-successor, 〈x0, x1, x2, . . .〉, represents a
computation of M. Finally, axioms (17–18) guarantee that M never halts.

“⇐” Conversely, suppose that M is a Turing machine and 〈c0, . . . , ck, . . .〉 its infinite
computation starting with the empty tape. We construct a model I

.
= 〈T ,∆I , ·I(t)〉 of

KBM such that C0 is satisfiable. In particular, we fix T = 〈N, <〉5, ∆I = N, RI = sucN

(the successor function over N), C
I(0)
0 = {0}, and C

I(j)
0 = ∅, for all j > 0. Furthermore,

∀j ∈ N:

• C
I(j)
x = {i ∈ N | the jth cell of ci contains x}, for all x ∈ A′

• C
I(j)
s = {i ∈ N | the jth cell of ci is the active one}

• C
I(j)
l = C

I(j+1)
s

• C
I(j)
r = C

I(j−1)
s

• CI(j) =
⋃

x∈A′ C
I(j)
x

• D
I(j)
1 = C

I(j−1)
£

• D
I(j)
2 = D

I(j−1)
1

• D
I(j)
3 = C

I(j−1)
r

• S1I(j) =
⋃

a∈A C
I(j)
〈s1,a〉.

It is easy to verify that I is a model of KBM where C0 is satisfiable. 2

Reducing ALCF satisfiability to temporal class diagrams satisfiability

We now show how to capture the ALCF knowledge base KBM with a temporal class
diagram, ΣM . The mapping is based on a similar reduction presented in [7] for capturing
ALC axioms. For each atomic concept and role in KBM we introduce a class and a
relationship, respectively. To simulate the universal concept, >, we introduce a snapshot
class, Top, that generalizes all the classes in ΣM . Axioms of the form C v D1 u D2 are
replaced by two axioms C v D1, C v D2. Furthermore, axioms (12-16) have the general
form C v C1 t C2 with C1, C2 generic concept expressions. As proved in [7] they can be
split by introducing new concept names C1, C2 as follows:

5 A similar proof holds if T = 〈Z, <〉.
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Figure 5. Encoding axioms: (a) C v ∀R.D and > v ∃R.>; (b) next(C, D).

C vC1 t C2

C1 vC1

C2 vC2

Given the various axioms in KBM , where the above equivalence-preserving translation
has been applied, they are encoded as temporal diagrams as follows:

1. Axioms involving discover are mapped using disjoint and covering hierarchies.
2. Axioms of the form C v D (with C,D atomic concepts) are encoded as C isa D.
3. For each axiom of the form C v ¬D we construct the hierarchy in Figure 4(a).
4. For each axiom of the form C v D1 t . . .tDn we introduce a new class, D, and then

we construct the hierarchy in Figure 4(b).
5. Axioms of the form C v ∀R.D are mapped together with the axiom > v ∃R.>

by introducing a new sub-relationship, RC , and considering R as a functional role6.
Figure 5(a) shows the mapping where R is a snapshot relationship to capture the fact
that R is a global role in KBM .

6. For each axiom of the form C v 2
+D (C v 3

+D) we use a persistency (dynamic
extension) constraint: C per D (C dex D).

7. Axioms of the form next(C,D) are mapped by using the dynamic extension con-
straints as showed in Figure 5(b).

The above reductions are enough to capture all axioms in KBM . We are now able to
prove the first result of this paper.

Theorem 5.2. Reasoning over temporal class diagrams using persistency and dynamic
constructs is undecidable.

Proof. We show that the mapping of KBM is correct. This will prove that the concept
C0 is satisfiable in KBM iff the class C0 is satisfiable in ΣM .
“⇐”. Let B be a legal temporal database state for ΣM , B = (T ,∆B, ·B(t)), such that there

exists t0 ∈ T .C
B(t0)
0 6= ∅. We show that B is a model for KBM , too. We proceed by

induction on the structure of the axioms in KBM , after the elimination of conjunction,
and disjunction between non-atomic concepts. Thus, we can just consider the following
axioms where C,D,D1, . . . ,Dn are concept names.

6 Considering R as a functional role does not change the ALCF undecidability proof.
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1. C v D.
They are mapped in ΣM as C isa D, thus, ∀t ∈ T .CB(t) ⊆ DB(t).

2. C v ¬D.
They are mapped in ΣM as in Figure 4(a), and, in particular, {C,D}disj Top. Thus,
for all t ∈ T , TopB(t) = ∆B, CB(t) ⊆ TopB(t), DB(t) ⊆ TopB(t), and, CB(t) ∩ DB(t) = ∅.
Then, CB(t) ⊆ ∆B \ DB(t).

3. discover(C, D1, . . . , Dn).
They are mapped in ΣM as:
{D1, . . . ,Dn} disj C

{D1, . . . ,Dn} cover C

Thus, for all t ∈ T and for all i ∈ {1, . . . , n}, then, D
B(t)
i ⊆ CB(t), CB(t) =

⋃n
i=1 D

B(t)
i ,

and, ∀j ∈ {1, . . . , n}, j 6= i.D
B(t)
i ∩ D

B(t)
j = ∅.

4. C v D1 t . . . t Dn.
They are mapped in ΣM as in Figure 4(b), i.e., {D1, . . . ,Dn}coverD, and C isaD.

Thus, for all t ∈ T , DB(t) =
⋃n

i=1 D
B(t)
i , and, CB(t) ⊆ DB(t).

5. C v ∀R.D (with R a functional global role).
They are mapped in ΣM together with the axiom > v ∃R.> as in Figure 5(a). Then:

• rel(R) = 〈U1 : Top, U2 : Top〉, thus
∀t ∈ T ∀r ∈ RB(t).r = 〈e1, e2〉 ∈ ∆B × ∆B

• R ∈ RS , thus
∀t ∈ T .r ∈ RB(t)

• card(Top, R, U1) = (1, 1), thus
∀e1 ∈ ∆B.∃!e2 ∈ ∆B.〈e1, e2〉 ∈ RB(t)

Then, R is a functional and global role, and B satisfies > v ∃R.>. Furthermore:

• card(C,U1, Rc) = (1, 1), thus

∀t ∈ T ∀e1 ∈ CB(t)∃!e2 ∈ ∆B.〈e1, e2〉 ∈ R
B(t)
c

• rel(Rc) = 〈U1 : C,U2 : D〉, thus

∀t ∈ T ∀〈e1, e2〉 ∈ R
B(t)
c .e2 ∈ DB(t)

• Rc isa R, thus

∀t ∈ T ∀〈e1, e2〉 ∈ R
B(t)
c .〈e1, e2〉 ∈ RB(t)

Then, since R is functional, B satisfies C v ∀R.D.
6. C v 3

+D (C v 2
+D).

They are mapped in ΣM as C dex D, thus, ∀t ∈ T ∀e ∈ CB(t)∃t′ > t.e ∈ DB(t′). A
similar proof holds for axioms of the form C v 2

+D.
7. next(C, D).

They are mapped in ΣM as in Figure 5(b). In particular, since C dex D, then, by
the previous point, B is a model of C v 3

+D. Furthermore, since

C per C1 then B is a model of C v 2
+C1

C1 per C2 then B is a model of C1 v 2
+C2

{C2,D} disj Top then B is a model of C2 v ¬D

In summary, B is a model of C v 3
+D u 2

+
2

+¬D, i.e., B is a model of next(C, D).

“⇒”. Let I be a model for C0 and KBM , I
.
= 〈T ,∆I , ·I(t)〉. We construct a temporal

interpretation J
.
= 〈T ,∆J , ·J (t)〉 that is a model for ΣM . J gives the same interpretation

as I to all concepts and roles in (C0,KBM ), and ∆J = ∆I while TopJ (t) = ∆I , for all
t ∈ T . Furthermore, J must interpret the additional classes and relationships introduced
in ΣM . We proceed by induction on the structure of the axioms in KBM by showing that
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if I is model of an axiom in KBM then J satisfies the corresponding class diagram. The
proof for axioms (1-4) is similar to the “⇐” direction.

5. C v ∀R.D (with R a functional global role).
They are mapped in ΣM together with the axiom > v ∃R.> as in Figure 5(a). Then:

• Since I models > v ∃R.>, and R is a functional, total and global role, then,
∀t ∈ T ∀x ∈ ∆I∃!y ∈ ∆I .(〈x, y〉RI(t) ∧∀t′ ∈ T .〈x, y〉 ∈ RI(t′)). Since J agrees with
I, and TopJ (t) = ∆I , it is easy to check that J satisfies the portion of Figure 5(a)
involving R and Top.

• Let us define R
J (t)
c = {〈x, y〉 ∈ RI(t) | x ∈ CI(t)}. Since R is functional and total,

and I models C v ∀R.D, then, ∀x ∈ CI(t)∃!y.(〈x, y〉 ∈ RI(t) ∧ y ∈ DI(t)). Thus, by

J definition, ∀x ∈ CJ (t)∃!y.(〈x, y〉 ∈ R
J (t)
c ∧ y ∈ DJ (t)). In conclusion, J satisfies

Figure 5(a).

6. C v 3
+D (C v 2

+D).
Similar to the “⇐” direction.

7. next(C, D).
They are mapped in ΣM as in Figure 5(b). Let us define:

C
J (t)
2 = (¬D)J (t) ≡ (¬D)I(t)

C
J (t)
1 = (2+C2)

J (t)

Thus, J satisfies the disjoint hierarchy involving C2 and D, and the dynamic con-
straint C1 per C2. Since I satisfies C v 2

+
2

+¬D, and J agrees with I on C,D,
then, J satisfies C v 2

+
2

+C2 and thus C v 2
+C1, i.e., J satisfies CperC1. Finally,

since I satisfies C v 3
+D, then, J satisfies C dex D.

2

6. Finite Model Reasoning

An usual assumption in databases is that one of a finite universe. This Section shows
that temporal class diagrams do not enjoy the finite model property (FMP, for short).
This means that reasoning on finite models is different from reasoning on infinite ones as
proved by the following theorem.

Theorem 6.1. Temporal class diagrams do not have the FMP.

Proof. Let us consider the schema, Σinf , of Figure 6. We show that C0 is satisfiable only

on models with infinite objects. Let B be a model of Σinf such that ∃e0 ∈ ∆B.e0 ∈ C
B(t0)
0 ,

for some t0 ∈ T . Thus, ∃e1 ∈ ∆B.(〈e0, e1〉 ∈ RB(t0) ∧ e1 ∈ C
B(t0)
1 ). Then, given the

dynamic extension, ∃t1 > t0.e1 ∈ C
B(t1)
2 , while, given the persistency and the disjointness

constraints, ∀t > t1.e1 6∈ C
B(t)
2 , and then, ∀t ≥ t1.e1 6∈ C

B(t)
1 . Now, since C0 is snapshot,

e0 ∈ C
B(t)
0 for all t ∈ T , and, in particular, e0 ∈ C

B(t1)
0 , while since C0 totally participates

in R, then, ∃e′1 ∈ ∆B.(〈e0, e
′
1〉 ∈ RB(t1) ∧ e′1 ∈ C

B(t1)
1 ). Since e′1 ∈ C

B(t1)
1 , while e1 6∈ C

B(t1)
1 ,

then, e′1 6= e1. For similar reasons, ∃t2 > t1 such that ∀t ≥ t2.e
′
1 6∈ C

B(t)
1 . Thus, we need

to introduce a new object, e′′1 to make C0 satisfiable, and so on so forth. 2

We are now able to show the second relevant result of this paper. The following
theorem shows that the undecidability result also holds when reasoning w.r.t. finite models
in temporal class diagrams.
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Figure 6. The Σinf schema.

Theorem 6.2. Reasoning over temporal class diagrams using persistency and dynamic
constructs is undecidable even when considering legal temporal databases with finite do-
mains.

Proof. Obviously, also ALCF lacks the FMP. We then show that concept satisfiability
w.r.t. an ALCF knowledge base is undecidable even considering finite models. The new
ALCF axioms could be captured by temporal class diagrams by adopting the mapping
already used in Theorem 5.2. Given a Turing machine, M = 〈A,S, ρ〉, we construct an
ALCF KB, say KBfin, with a concept that is satisfiable w.r.t. KBfin iff the machine M
does halt. The same notation introduced in Theorem 5.1 is used here. KBfin contains
the following axioms:

C0 v C£ u 3
+C〈s0,b〉 u Chalt (19)

discover(C, {Cx | x ∈ A′}) (20)

Chalt v 3
+S1 t ∃R.Chalt (21)

next(C£,D1) (22)

next(D1,D2) (23)

C〈s0,b〉 v D1 (24)

C〈s0,b〉 v 2
+Cb (25)

discover(Cs, {C〈s,a〉 | 〈s, a〉 ∈ S × A}) (26)

next(Cl, Cs) (27)

next(Cs, Cr) (28)

next(Cr,D3) (29)

C£ v Cl t 3
+Cl (30)

Cl v Cα → ∀R.Cα′ (31)

Cs v Cβ → ∀R.Cβ′ (32)

Cr v Cγ → ∀R.Cγ′ (33)

Ca v (¬Cl u ¬Cs u ¬Cr) → ∀R.Ca, ∀a ∈ A ∪ {£} (34)

discover(S1, {C〈s1,a〉 | a ∈ A ∪ {£}}) (35)

Chalt v 3
+Chain (36)

next(Chain,D4) (37)

D4 v ∀R.Chain (38)

with axioms (31–33) for each instruction δ(α, β, γ) = 〈α′, β′, γ′〉. We now prove that C0 is
satisfiable w.r.t. KBfin iff M has a finite computation starting from the empty tape.

“⇒” Let C0 be satisfiable, then, ∃〈x0, t0〉 ∈ ∆I×T .x0 ∈ C
I(t0)
0 . Then, by axiom (19),

x0 ∈ C
I(t0)
halt , and, by axioms (36,37), ∃t1 > t0.(x0 ∈ C

I(t1)
hain ∧x0 ∈ D

I(t1+1)
4 ). By axiom (21),
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either x0 ∈ S1I(t′0) for some t′0 > t0, or ∃x1 ∈ ∆I .(〈x0, x1〉 ∈ RI(t0)∧x1 ∈ C
I(t0)
halt ). If the last

is true, we then show that x0 6= x1. Indeed, since R is global, then, 〈x0, x1〉 ∈ RI(t1+1), and,

by axiom (38), x1 ∈ C
I(t1+1)
hain , and by axiom (37), ∀t 6= t1+1.x1 6∈ C

I(t)
hain. Since x0 ∈ C

I(t1)
hain ,

then, x0 6= x1. Thus, there is a chain of different objects in ∆I , 〈x0, x1, . . . , xn〉, with n ≥ 0,

such that x0 ∈ C
I(t0)
0 , and, xn ∈ S1I(t′n), for some t′n > t0. The chain is finite since ∆I

is finite. The fact that the chain 〈x0, x1, . . . , xn〉 represents a computation of M can be
done similarly to Theorem 5.1.

“⇐” Conversely, suppose that M is a Turing machine and 〈c0, . . . , cn〉 its finite com-
putation starting with the empty tape. We construct a model I

.
= 〈T ,∆I , ·I(t)〉 of KBfin

such that C0 is satisfiable. In particular, we fix T = 〈N, <〉, ∆I = {0, 1, . . . , n} ⊆ N,

RI = suc∆I (the successor function over N restricted to ∆I), C
I(0)
0 = {0}, C

I(j)
0 = ∅, for

all j > 0, C
I(0)
halt = ∆I , and C

I(j)
halt = ∅, for all j > 0. Furthermore, ∀j ∈ N:

• C
I(j)
x = {i ∈ ∆I | the jth cell of ci contains x}, for all x ∈ A′

• C
I(j)
s = {i ∈ ∆I | the jth cell of ci is the active one}

• C
I(j)
l = C

I(j+1)
s

• C
I(j)
r = C

I(j−1)
s

• CI(j) =
⋃

x∈A′ C
I(j)
x

• C
I(j)
hain =

{

{j − 1} if j ∈ {1, . . . , n}
∅ otherwise

• D
I(j)
1 = C

I(j−1)
£

• D
I(j)
2 = D

I(j−1)
1

• D
I(j)
3 = C

I(j−1)
r

• D
I(j)
4 = C

I(j−1)
hain

• S1I(j) =
⋃

a∈A C
I(j)
〈s1,a〉.

It is easy to verify that I is a model of KBfin where C0 is satisfiable. 2

7. Conclusions

We formally introduced a data modeling language useful to represent time-varying
data. The language is equipped with a linear and graphical syntax and a model-theoretic
semantics. A relevant aspect of the proposed formalism is the possibility to formally
specify reasoning tasks based on the associated semantics. Reasoning problems as class,
relationship and schema satisfiability and logical implication have been described.

We then investigated the complexity of reasoning on temporal models and we found
that such problem is undecidable as soon as the language is able to distinguish between
temporal and atemporal constructs (in particular, whether the language captures tempo-
ral relationships) and has the ability to represent dynamic constraints between classes.
While temporal class diagrams do not enjoy the finite model property we prove that even
reasoning on finite models is undecidable.

The main reason behind the undecidability result is the possibility to postulate that
a binary relation does not vary in time. Indeed, it has been shown in [5] that temporal
diagrams expressed in the ERV T modeling language can be embedded into the temporal
description logic DLRUS . While DLRUS is undecidable, the fragment, DLR−

US , of DLRUS

deprived of the ability to talk about temporal persistence of n-ary relations, for n ≥
2, is decidable. Indeed, reasoning in DLR−

US is an EXPTIME-complete problem [5].
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This result gives us an useful scenario where reasoning over temporal schemas becomes
decidable. In particular, if we forbid timestamping for relationships (i.e., relationships
are just unmarked) reasoning on temporal models with both concept timestamping and
full evolution constraints can be reduced to reasoning over DLR−

US . The problem of
reasoning in this setting is complete for EXPTIME since the EXPTIME-complete problem
of reasoning with ALC knowledge bases can be captured by such schemas [7].

It is an open problem whether reasoning is still decidable by regaining timestamp-
ing for relationships (and maintaining timestamping for classes) but dropping evolution
constraints altogether. We have a strong feeling that this represents a decidable scenario
since it is possible to encode temporal schemas without evolution constraints by using a
combination between the description logic DLR and the epistemic modal logic S5. Decid-
ability results have been proved for the sub-logic ALCS5 [12]. But, it is an open problem
whether this result still holds for the more complex logic DLRS5.
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