FORMAL METHODS LECTURE V – PART II CTL MODEL CHECKING WITH FAIRNESS CONSTRAINTS

Alessandro Artale

Faculty of Computer Science – Free University of Bolzano Room 2.03

artale@inf.unibz.it

http://www.inf.unibz.it/~artale/

Some material (text, figures) displayed in these slides is courtesy of:

M. Benerecetti, A. Cimatti, M. Fisher, F. Giunchiglia, M. Pistore, M. Roveri, R.Sebastiani.

Fair Kripke Models: An Example

- Consider a variant of the mutual exclusion protocol in which one process can stay in the critical section as long as it likes.
- Do the Liveness conditions still hold?

$$\mathcal{M} \models \mathbb{P} \square (T_1 \Rightarrow \mathbb{P} \diamondsuit C_1);$$
$$\mathcal{M} \models \mathbb{P} \square (T_2 \Rightarrow \mathbb{P} \diamondsuit C_2).$$

Fair Kripke Models: An Example (Cont.)

Fair Kripke Models: An Example (Cont.)

Fairness Conditions in LTL

Fairness Conditions in LTL. $\Box \diamondsuit \phi \Rightarrow \psi$, where ψ is the formula to be verified.

 Using LTL the fairness conditions of the example can be expressed as:

$$\mathcal{M} \models \Box \diamondsuit \neg C_2 \Rightarrow \Box (T_1 \Rightarrow \diamondsuit C_1)$$
$$\mathcal{M} \models \Box \diamondsuit \neg C_1 \Rightarrow \Box (T_2 \Rightarrow \diamondsuit C_2)$$

Fairness Conditions in CTL. In CTL fairness constraints cannot be expressed!

Solution. Impose Fairness Constraints on top of the Kripke Model.

- We call Fair Computation Paths those paths verifying a fairness constraint infinitely often;
- We call Fair Kripke Models those models restricted to fair paths.

Fair Kripke Models

- > A Fair Kripke model $\mathcal{M}_F := \langle S, R, I, AP, L, F \rangle$ consists of
 - a set of states S;
 - a set of initial states $I \subseteq S$;
 - a set of transitions $R \subseteq S \times S$;
 - a set of atomic propositions AP;
 - a labeling $L: S \mapsto 2^{AP}$;

- a set of fairness conditions $F = \{f_1, \ldots, f_n\}$, with $f_i \subseteq S$. E.g., $\{\{2\}\} := \{\{s \mid \mathcal{M}, s \models q\}\}$ can be a set of fair conditions of the Kripke model above.
- > Fair path π : At least one state for each f_i must occur *infinitely* often in π .
 - E.g., every path visiting *infinitely often* state 2 is a fair path.

Fair Kripke Models restrict the CTL Model Checking process to fair paths:

- > Path quantifiers apply only to fair paths:
 - $\mathcal{M}_F, s_i \models \mathbb{P} \square \varphi$ iff for every fair path $\pi = (s_i, s_{i+1}, \ldots), \forall j \ge i.M, s_j \models \varphi.$
 - $\mathcal{M}_F, s_i \models \diamondsuit \Box \varphi$ iff for some fair path $\pi = (s_i, s_{i+1}, \ldots), \forall j \ge i.\mathcal{M}, s_j \models \varphi.$

Fairness Constraints: An Example

Fairness Constraints: An Example

