FORMAL METHODS
LECTURE V – PART II
CTL MODEL CHECKING WITH FAIRNESS CONSTRAINTS

Alessandro Artale

Faculty of Computer Science – Free University of Bolzano
Room 2.03

artale@inf.unibz.it http://www.inf.unibz.it/~artale/

Some material (text, figures) displayed in these slides is courtesy of:
Consider a variant of the mutual exclusion protocol in which one process can stay in the critical section as long as it likes.

Do the Liveness conditions still hold?

\[\mathcal{M} \models P \square (T_1 \Rightarrow P \Diamond C_1); \]
\[\mathcal{M} \models P \square (T_2 \Rightarrow P \Diamond C_2). \]
N = noncritical, T = trying, C = critical

\[M \models \square(p \land (T_2 \Rightarrow p \land \diamond C_2)) \]

\[M \models \square(p \land (T_1 \Rightarrow p \land \diamond C_1)) \]
$M \models P \square (T_2 \Rightarrow P \lozenge C_2)$? $M \models P \square (T_1 \Rightarrow P \lozenge C_1)$?

NO: E.g., it can cycle forever in $\{C_1, T_2, \text{turn} = 1\}$

Unfair Protocol: one process might never be served!
Fairness Conditions in LTL. \(\Box \Diamond \varphi \Rightarrow \psi \), where \(\psi \) is the formula to be verified.

Using LTL the fairness conditions of the example can be expressed as:

\[
\mathcal{M} \models \Box \Diamond \neg C_2 \Rightarrow \Box (T_1 \Rightarrow \Diamond C_1)
\]

\[
\mathcal{M} \models \Box \Diamond \neg C_1 \Rightarrow \Box (T_2 \Rightarrow \Diamond C_2)
\]
Fairness Conditions in CTL. In CTL fairness constraints cannot be expressed!

Solution. Impose **Fairness Constraints** on top of the Kripke Model.

- We call **Fair Computation Paths** those paths verifying a fairness constraint *infinitely often*;
- We call **Fair Kripke Models** those models restricted to fair paths.
A Fair Kripke model $\mathcal{M}_F := \langle S, R, I, AP, L, F \rangle$ consists of:

- a set of states S;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subseteq S \times S$;
- a set of atomic propositions AP;
- a labeling $L : S \mapsto 2^{AP}$;
- a set of fairness conditions $F = \{f_1, \ldots, f_n\}$, with $f_i \subseteq S$.

E.g., $\{\{2\}\} := \{s \mid \mathcal{M}, s \models q\}$ can be a set of fair conditions of the Kripke model above.

Fair path π: At least one state for each f_i must occur infinitely often in π.

E.g., every path visiting infinitely often state 2 is a fair path.
Fair Kripke Models restrict the CTL Model Checking process to fair paths:

▷ Path quantifiers apply only to fair paths:

- \(M_F, s_i \models \Box \varphi \) iff for every fair path \(\pi = (s_i, s_{i+1}, \ldots), \forall j \geq i. M, s_j \models \varphi. \)

- \(M_F, s_i \models \Diamond \Box \varphi \) iff for some fair path \(\pi = (s_i, s_{i+1}, \ldots), \forall j \geq i. M, s_j \models \varphi. \)
Fairness Constraints: An Example

\[F := \{ \{ s \mid M, s \models \neg C_1 \} , \{ s \mid M, s \models \neg C_2 \} \} \]

\[M_F \models \Box \neg C_2 \]

\[M_F \models \Box \neg C_1 \]

\[M_F \models \Box (T_1 \Rightarrow \Box \Diamond C_1) \]

\[M_F \models \Box (T_2 \Rightarrow \Box \Diamond C_2) \]
Fairness Constraints: An Example

\[F := \{ s \mid \mathcal{M}, s \models \neg C_1 \}, \{ s \mid \mathcal{M}, s \models \neg C_2 \} \]

\[\mathcal{M}_F \models \Box (T_1 \Rightarrow \Box \Diamond C_1) ? \quad \mathcal{M}_F \models \Box (T_2 \Rightarrow \Box \Diamond C_2) ? \]

YES: every fair path satisfies the conditions.