FORMAL METHODS LECTURE V: CTL MODEL CHECKING

Alessandro Artale

Faculty of Computer Science – Free University of Bolzano Room 2.03

artale@inf.unibz.it http://www.inf.unibz.it/~artale/

Some material (text, figures) displayed in these slides is courtesy of:

Summary of Lecture V

- CTL Model Checking: General Ideas.
- CTL Model Checking: The Labeling Algorithm.
- Labeling Algorithm in Details.
- CTL Model Checking: Theoretical Issues.

CTL Model Checking

CTL Model Checking is a formal verification technique s.t.

• The system is represented as a Kripke Model $\mathcal{K}\mathcal{M}$:

The property is expressed as a CTL formula φ, e.g.:

$$\mathbb{P} \left[(p \Rightarrow \mathbb{P} \diamondsuit q) \right]$$

• The algorithm checks whether all the initial states, s_0 , of the Kripke model satisfy the formula $(\mathcal{K}\mathcal{M}, s_0 \models \varphi)$.

CTL M.C. Algorithm: General Ideas

The algorithm proceeds along two macro-steps:

1. Construct the set of states where the formula holds:

$$\llbracket \varphi \rrbracket := \{ s \in S : \mathcal{K} \mathcal{M}, s \models \varphi \}$$

($[\![\phi]\!]$ is called the denotation of ϕ);

2. Then compare the denotation with the set of initial states:

$$I \subseteq \llbracket \varphi \rrbracket$$
?

CTL M.C. Algorithm: General Ideas (Cont.)

To compute $[\![\phi]\!]$ proceed "bottom-up" on the structure of the formula, computing $[\![\phi_i]\!]$ for each subformula ϕ_i of ϕ .

For example, to compute $[\![\mathbb{P} \ \Box (p \Rightarrow \mathbb{P} \diamondsuit q)]\!]$ we need to compute:

- [q],
- $\llbracket \mathbb{P} \diamondsuit q \rrbracket$,
- [[p]],
- $[p \Rightarrow \mathbb{P} \diamondsuit q]$,
- $\llbracket \mathbb{P} \square (p \Rightarrow \mathbb{P} \lozenge q) \rrbracket$

CTL M.C. Algorithm: General Ideas (Cont.)

To compute each $[\![\phi_i]\!]$ for generic subformulas:

- Handle boolean operators by standard set operations;
- Handle temporal operators \square \square , \diamondsuit \square , \square \diamondsuit , \diamondsuit \diamondsuit , \square \square \square , \diamondsuit \square , by applying fixpoint operators.

Summary

- CTL Model Checking: General Ideas.
- CTL Model Checking: The Labeling Algorithm.
- Labeling Algorithm in Details.
- CTL Model Checking: Theoretical Issues.

The Labeling Algorithm: General Idea

- The Labeling Algorithm:
 - Input: Kripke Model and a CTL formula;
 - Output: set of states satisfying the formula.
- Main Idea: Label the states of the Kripke Model with the subformulas of φ satisfied there.

The Labeling Algorithm: An Example

- $\triangleright \quad \mathbb{P} \diamondsuit q \equiv (q \lor \mathbb{P} \bigcirc (\mathbb{P} \diamondsuit q))$
- \triangleright [$\mathbb{P} \diamondsuit q$] can be computed as the union of:
 - $[q] = \{2\}$
 - $[q \lor P \bigcirc q] = \{2\} \cup \{1\} = \{1,2\}$
 - $[q \lor P \bigcirc (q \lor P \bigcirc q)] = \{2\} \cup \{1\} = \{1,2\}$ (fixpoint).

The Labeling Algorithm: An Example (Cont.)

The Labeling Algorithm: An Example (Cont.)

- $\triangleright \quad \mathbb{P} \quad \Box \phi \equiv (\phi \land \mathbb{P} \ \bigcirc (\mathbb{P} \ \Box \phi))$
- $\triangleright \| \mathbb{P} \square \phi \|$ can be computed as the intersection of:
 - $\| \mathbf{\phi} \| = \{1, 2, 4\}$
 - $\|\phi \land \mathbb{P} \bigcirc \phi\| = \{1,2,4\} \cap \{1,3\} = \{1\}$
 - $\llbracket \phi \land \mathbb{P} \bigcirc (\phi \land \mathbb{P} \bigcirc \phi) \rrbracket = \{1,2,4\} \cap \{\} = \{\} \text{ (fixpoint)}$

The Labeling Algorithm: An Example (Cont.

- The set of states where the formula holds is empty, thus:
 - The initial state does not satisfy the property;
 - $\mathcal{K}\mathcal{M} \not\models \mathbb{P} \square (p \Rightarrow \mathbb{P} \diamondsuit q)$.
- ▷ Counterexample: A lazo-shaped path: $1,2,\{3,4\}^{\omega}$ (satisfying $\diamondsuit \diamondsuit (p \land \diamondsuit \Box \neg q)$)

Summary

- CTL Model Checking: General Ideas.
- CTL Model Checking: The Labeling Algorithm.
- Labeling Algorithm in Details.
- CTL Model Checking: Theoretical Issues.

The Labeling Algorithm: General Schema

- ⊳ Assume φ written in terms of ¬, ∧, ♦ ○, ♦ u, ♦ □ − minimal set of CTL operators
- The Labeling algorithm takes a CTL formula and a Kripke Model as input and returns the set of states satisfying the formula (i.e., the *denotation* of φ):
 - 1. For every $\varphi_i \in Sub(\varphi)$, find $[\![\varphi_i]\!]$;
 - 2. Compute $[\![\phi]\!]$ starting from $[\![\phi_i]\!]$;
 - 3. Check if $I \subseteq \llbracket \varphi \rrbracket$.
- \triangleright Subformulas $Sub(\varphi)$ of φ are checked bottom-up
- \triangleright To compute each $[\![\phi_i]\!]$: if the main operator of ϕ_i is a
 - Boolean Operator: apply standard set operations;
 - Temporal Operator: apply recursive rules until a fixpoint is reached.

Denotation of Formulas: The Boolean Case

Let $\mathcal{KM} = \langle S, I, R, L, \Sigma \rangle$ be a Kripke Model.

```
[[false]] = \{\}
[[true]] = S
[[p]] = \{s \mid p \in L(s)\}
[[\neg \varphi_1]] = S \setminus [[\varphi_1]]
[[\varphi_1 \land \varphi_2]] = [[\varphi_1]] \cap [[\varphi_2]]
```

Denotation of Formulas: The $\, \diamondsuit \, \bigcirc$ Case

- $\triangleright \ [\![\diamondsuit \bigcirc \varphi]\!] = \{s \in S \mid \exists s'. \langle s, s' \rangle \in R \text{ and } s' \in [\![\varphi]\!]\}$
- $\triangleright \| \diamondsuit \bigcirc \varphi \|$ is said to be the Pre-image of $\| \varphi \|$ (PRE($\| \varphi \|$)).

Denotation of Formulas: The � Case

- From the semantics of the \Box temporal operator: $\Box \phi \equiv \phi \wedge \bigcirc (\Box \phi)$
- Then, the following equivalence holds:

• To compute $[\![\diamondsuit \ \Box \phi]\!]$ we can apply the following recursive definition:

$$[\![\diamondsuit \, \Box \phi]\!] = [\![\phi]\!] \cap PRE([\![\diamondsuit \, \Box \phi]\!])$$

Denotation of Formulas: The � Case (Cont

• We can compute $X := [\![\diamondsuit \square \varphi]\!]$ inductively as follows:

$$X_1 := \llbracket \phi \rrbracket$$
 $X_2 := X_1 \cap \operatorname{PRE}(X_1)$
 \dots
 $X_{j+1} := X_j \cap \operatorname{PRE}(X_j)$

- When $X_n = X_{n+1}$ we reach a fixpoint and we stop.
- **Termination.** Since $X_{j+1} \subseteq X_j$ for every $j \ge 0$, thus a fixed point always exists (Knaster-Tarski's theorem).

Denotation of Formulas: The � u Case

• From the semantics of the u temporal operator:

$$\varphi \, \mathcal{U} \, \psi \equiv \psi \vee (\varphi \wedge \bigcirc (\varphi \, \mathcal{U} \, \psi))$$

Then, the following equivalence holds:

• To compute $[\![\diamondsuit (\varphi u \psi)]\!]$ we can apply the following recursive definition:

Denotation of Formulas: The 💠 u Case (Cont

• We can compute $X := [\![\diamondsuit (\varphi \mathcal{U} \psi)]\!]$ inductively as follows:

```
X_1 := \llbracket \psi 
bracket
X_2 := X_1 \cup (\llbracket \phi 
bracket \cap \operatorname{PRE}(X_1))
\cdots
X_{j+1} := X_j \cup (\llbracket \phi 
bracket \cap \operatorname{PRE}(X_j))
```

- When $X_n = X_{n+1}$ we reach a fixpoint and we stop.
- **Termination.** Since $X_{j+1} \supseteq X_j$ for every $j \ge 0$, thus a fixed point always exists (Knaster-Tarski's theorem).

The Pseudo-Code

We assume the Kripke Model to be a global variable:

```
Function Label(φ) {
   case \phi of
       true:
                        return S;
       false: return {};
       an atom p: return \{s \in S \mid p \in L(s)\};
              return S \setminus Label(\varphi_1);
       \neg \phi_1:
       \varphi_1 \wedge \varphi_2: return Label(\varphi_1)\capLabel(\varphi_2);
                   return PRE(Label(\varphi_1));
       \langle \! \! \rangle (\varphi_1 \ \mathcal{U} \ \varphi_2): return Label EU(Label(\varphi_1),Label(\varphi_2));
                      return Label EG(Label(\varphi_1));
           \Box \phi_1:
   end case
```

PreImage

```
\llbracket \diamondsuit \bigcirc \varphi \rrbracket = \operatorname{PRE}(\llbracket \varphi \rrbracket) = \{ s \in S \mid \exists s'. \langle s, s' \rangle \in R \text{ and } s' \in \llbracket \varphi \rrbracket \}
FUNCTION PRE([\![\phi]\!])
      \mathbf{var} X;
     X := \{\};
     for each s' \in [\![\phi]\!] do
           for each s \in S do
                 if \langle s, s' \rangle \in R then
                      X := X \cup \{s\};
      return X
```

Label_EG

```
\llbracket \diamondsuit \square \varphi \rrbracket = \llbracket \varphi \rrbracket \cap PRE(\llbracket \diamondsuit \square \varphi \rrbracket)
FUNCTION LABEL_EG(\|\phi\|){
    \mathbf{var} X, OLD-X;
    X := [\![ \phi ]\!];
    OLD-X := \emptyset;
    while X \neq OLD-X
    begin
         OLD-X := X;
         X := X \cap PRE(X)
    end
    return X
```

Label_EU

```
\llbracket \diamondsuit (\varphi \mathcal{U} \psi) \rrbracket = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap PRE(\llbracket \diamondsuit (\varphi \mathcal{U} \psi) \rrbracket))
FUNCTION LABEL_EU([\![\phi]\!], [\![\psi]\!])
     \mathbf{var} X, OLD-X;
     X:=\llbracket \psi 
rbracket;
     OLD-X := S;
     while X \neq OLD-X
     begin
           OLD-X := X;
          X := X \cup (\llbracket \varphi \rrbracket \cap PRE(X))
     end
     return X
```

Summary

- CTL Model Checking: General Ideas.
- CTL Model Checking: The Labeling Algorithm.
- Labeling Algorithm in Details.
- CTL Model Checking: Theoretical Issues.

Correctness and Termination

- The Labeling algorithm works recursively on the structure φ.
- For most of the logical constructors the algorithm does the correct things according to the semantics of CTL.
 - To prove that the algorithm is *Correct* and *Terminating* we need to prove the correctness and termination of both \lozenge and \lozenge u operators.

Monotone Functions and Fixpoints

Definition. Let *S* be a set and *F* a function, $F: 2^S \rightarrow 2^S$, then:

- 1. F is monotone iff $X \subseteq Y$ then $F(X) \subseteq F(Y)$;
- 2. A subset *X* of *S* is called a fixpoint of *F* iff F(X) = X;
- 3. X is a least fixpoint (LFP) of F, written $\mu X.F(X)$, iff, for every other fixpoint Y of F, $X \subseteq Y$
- 4. X is a greatest fixpoint (GFP) of F, written vX.F(X), iff, for every other fixpoint Y of F, $Y \subseteq X$

Example. Let $S = \{s_0, s_1\}$ and $F(X) = X \cup \{s_0\}$.

Knaster-Tarski Theorem

Notation: $F^i(X)$ means applying F *i*-times, i.e., F(F(...F(X)...)).

Theorem[Knaster-Tarski]. Let S be a finite set with n+1 elements. If $F: 2^S \to 2^S$ is a monotone function then:

- 1. $\mu X.F(X) \equiv F^{n+1}(\emptyset);$
- 2. $vX.F(X) \equiv F^{n+1}(S)$.

Proof. (See the textbook "Logic in CS" pg.241)

Correctness and Termination:

The function Label_EG computes:

$$[\![\diamondsuit \, \Box \phi]\!] = [\![\phi]\!] \cap PRE([\![\diamondsuit \, \Box \phi]\!])$$

applying the semantic equivalence:

$$\diamondsuit \square \phi \equiv \phi \land \diamondsuit \bigcirc (\diamondsuit \square \phi)$$

Thus, $[\![\diamondsuit \square \varphi]\!]$ is the fixpoint of the function:

$$F(X) = \llbracket \varphi \rrbracket \cap PRE(X)$$

Correctness and Termination:

Theorem. Let $F(X) = [\![\phi]\!] \cap PRE(X)$, and let S have n+1 elements. Then:

- 1. *F* is monotone;
- 2. $[\![\diamondsuit \square \varphi]\!]$ is the greatest fixpoint of F.

Proof. (See the textbook "Logic in CS" pg.242)

Correctness and Termination: $\diamondsuit u$ Case

The function Label_EU computes:

$$[\![\diamondsuit(\varphi u \psi)]\!] = [\![\psi]\!] \cup ([\![\varphi]\!] \cap PRE([\![\diamondsuit(\varphi u \psi)]\!]))$$

applying the semantic equivalence:

Thus, $[\![\diamondsuit (\varphi \mathcal{U} \psi)]\!]$ is the fixpoint of the function:

$$F(X) = \llbracket \psi \rrbracket \cup (\llbracket \varphi \rrbracket \cap PRE(X))$$

Correctness and Termination: � u Case (Cor

Theorem. Let $F(X) = [\![\psi]\!] \cup ([\![\phi]\!] \cap PRE(X))$, and let S have n+1 elements. Then:

- 1. *F* is monotone;
- 2. $[\![\diamondsuit (\varphi u \psi)]\!]$ is the least fixpoint of F.

Proof. (See the textbook "Logic in CS" pg.243)

Summary of Lecture V

- CTL Model Checking: General Ideas.
- CTL Model Checking: The Labeling Algorithm.
- Labeling Algorithm in Details.
- CTL Model Checking: Theoretical Issues.