FORMAL METHODS
LECTURE V: CTL MODEL CHECKING

Alessandro Artale

Faculty of Computer Science — Free University of Bolzano
Room 2.03

artale@inf.unibz.it http://www.inf.unibz.it/~artale/

Some material (text, figures) displayed in these slides is courtesy of:

o CTL Model Checking: General Ideas.
o CTL Model Checking: The Labeling Algorithm.
o Labeling Algorithm in Detalils.

o CTL Model Checking: Theoretical Issues.

CTL Model Checking is a formal verification technique s.t.
* The system is represented as a Kripke Model x a1 :

0P

* The property is expressed as a CTL formula ¢, e.g.:
m [(p= B<0g)

* The algorithm checks whether all the initial states, s, of
the Kripke model satisty the formula (x 27 , 5o = ©).

The algorithm proceeds along two macro-steps:

1. Construct the set of states where the formula holds:

[o) :={seS: KM s =@}
(o] is called the denotation of ¢);

2. Then compare the denotation with the set of initial
states:

Icle]?

To compute [¢] proceed “bottom-up” on the structure of the
formula, computing [¢;] for each subformula ¢; of ¢.

For example, to compute [[|(p = @<>¢)] we need to
compute:

* lall
* [@ <4,

* [rl,
* [p= B<q],

c [@ L= 30q)]

To compute each [g;]| for generic subformulas:

* Handle boolean operators by standard set operations;

+ Handle temporal operators ® O, <> O by computing

pre-images;

* Handle temporal operators [

©

, B, OO,

7 o, & u , by applying fixpoint operators.

o CTL Model Checking: General Ideas.
o CTL Model Checking: The Labeling Algorithm.
o Labeling Algorithm in Detalils.

o CTL Model Checking: Theoretical Issues.

» The Labeling Algorithm:
* Input: Kripke Model and a CTL formula;
* Output: set of states satisfying the formula.

o Main Idea: Label the states of the Kripke Model with the
subformulas of ¢ satisfied there.

> BOg=(gvBO(EOg))
> [@<>q] can be computed as the union of:
* gl =12}
* [qvEOgq] ={2}U{1} = {1,2}
* [qvmO(gvEOg)] ={2}u{1} ={1,2} (fixpoint).

"p -> AF q" "AG(p —> AF q)"

> B lp=(eAnBO(E L g))
> [||| can be computed as the intersection of:

(P]] — {17274}
[oA® O] ={1,2,4}N{1,3} = {1}
[oAn B O(eA B O@)] ={1,2,4}N{} = {} (fixpoint)

> The set of states where the formula holds is empty, thus:
* The initial state does not satisfy the property;

og(g\/[

/£ o

(p= B<q).

> Counterexample: A lazo-shaped path: 1,2,{3,4}® (satisfying

OO (PN

—q))

o CTL Model Checking: General Ideas.
o CTL Model Checking: The Labeling Algorithm.
o Labeling Algorithm in Detalils.

o CTL Model Checking: Theoretical Issues.

> Assume o written in terms of -, A, © O, & u, &[] -
minimal set of CTL operators

> The Labeling algorithm takes a CTL formula and a Kripke
Model as input and returns the set of states satistying the
formula (i.e., the denoration of o):

1. For every ¢; € Sub(o), find [[¢;];
2. Compute || starting from | ¢o;];
3. Check if I C [o].

> Subformulas Sub() of ¢ are checked bottom-up

> To compute each [¢;]: if the main operator of ¢; is a
* Boolean Operator:. apply standard set operations;

» Temporal Operator. apply recursive rules until a fixpoint is
reached.

Let x » = (S,I,R,L,X) be a Kripke Model.

[false] = {}

|true] = S

[P] = {s|p€L(s)}
e = S\[¢i]

[P1 APl = [[@1]] N [[2]

> [O¢] ={s€S|3s.(s,s) eRand s’ € [o]]}
> [© O] is said to be the Pre-image of [¢]] (PRE([[@])).
> Key step of every CTL M.C. operation.

Prelmage(P) P

s From the semantics of the temporal operator:
o= O(Llp)
s Then, the following equivalence holds:

®Le=oAO® Lo)

s To compute [<> [_Jo] we can apply the following
recursive definition:

[« L] = [o] NPRE([¢ Lo])

s We can compute X := [<> (o] inductively as follows:

Xi = o]
X5 = XiN PRE(Xl)
Xj_|_1 L= Xj M PRE(XJ')

s When X, = X,,.; we reach a fixpoint and we stop.

» Termination. Since X;;; C X; for every j > 0, thus a
fixed point always exists (Knaster-Tarski’s theorem).

s From the semantics of the u temporal operator:
euy=yV(eAO(puy))

s Then, the following equivalence holds:
@ euy)=yV (AP OQ (puy))

s To compute [(¢ ¢)] we can apply the following
recursive definition:

[(9w w)] = [w]| U ([¢] NPRE([<> (¢ u y)]))

s We can compute X := [<> (¢ «)] inductively as

follows:

Xp = vl

X, = XiU([e]"PRE(X)))
X.J'.H = X;U([o] "PRE(X;))

s When X, = X,,.; we reach a fixpoint and we stop.

» Termination. Since X;;; D X; for every j > 0, thus a
fixed point always exists (Knaster-Tarski's theorem).

We assume the Kripke Model to be a global variable:
FuNcTION Label(op) {

case @ of
true: return S;
false: return {};
an atom p: return {s €S| p € L(s)};
- return S\Label(¢;);

01 AQy: return Label(¢;)NLabel(g,);

@Q(pl: return PRE(Label(¢,));

& (@1 U §,): return Label_EU(Label(g;),Label(¢,));
& Jo;: return Label EG(Label(q,));

end case

}

[© Ol = PRE([0]) = {s € S| 3s'.{s,s') € Rand 5’ € [¢]}}

FUNCTION PRE([[o]){
var X;
X :={};
for each s’ € [[¢] do
for each s € S do
if (s,s’) € R then
X :=XU{s};
return X

}

[© L] = [o] NPRE([¢ Lo])

FUNCTION LABEL_EG([[o])){
var X,OLD-X;
X :=[o];
OLD-X := 0;
while X £ OLD-X
begin
OLD-X =X;
X = XNPRE(X)
end

return X

[(9 u w)] = [w] U ([¢] NPRE([<> (¢ 1 y)]))

FUNCTION LABEL_EU([[o]], [w]){
var X,OLD-X;
X = [[w];
OLD-X :=S;
while X £ OLD-X
begin
OLD-X =X;
X =XU([[o]| "PRE(X))
end
return X

o CTL Model Checking: General Ideas.
o CTL Model Checking: The Labeling Algorithm.
o Labeling Algorithm in Detalils.

o CTL Model Checking: Theoretical Issues.

» The Labeling algorithm works recursively on the
structure o.

» For most of the logical constructors the algorithm does
the correct things according to the semantics of CTL.

» To prove that the algorithm is Correct and Terminating we
need to prove the correctness and termination of both

and <> ¢ operators.

%

Definition. Let S be a set and F a function, F : 2° — 23, then:

1. F is monotone iff X CY then F(X) C F(Y);
2. A subset X of S is called a fixpoint of F iff F(X) = X;

3. X is a least fixpoint (LFP) of F, written uX.F(X), iff, for
every other fixpoint Y of F, X CY

4. X is a greatest fixpoint (GFP) of F, written vX.F(X), iff,
for every other fixpointY of F, Y C X

Example. Let S = {So,Sl} and F(X) =XU {So}.

Notation: F'(X) means applying F i-times, i.e.,
F(F(...F(X)...)).

Theorem[Knaster-Tarski]. Let S be a finite set with n+ 1
elements. If F : 2% — 25 is a monotone function then:

1. uX.F(X) = F"Y0);
2. VX.F(X)=F"1(S).
Proof. (See the textbook “Logic in CS” pg.241)

The function LABEL_EG computes:

[© L] = [o] NPRE([¢ Lo])

applying the semantic equivalence:

®Le=oA0O(® o)

Thus, [[o] is the fixpoint of the function:

F(X) = [@] N"PRE(X)

Theorem. Let F(X) = @] NPRE(X), and let S have n+1
elements. Then:

1. F IS monotone;

2. [« o] is the greatest fixpoint of F.

Proof. (See the textbook “Logic in CS” pg.242)

The function LABEL_EU computes:

[(9w w)] = [w] U ([¢] NPRE([® (¢ u)]))

applying the semantic equivalence:

Qeuy) =yV(eA QO (puy))
Thus, [& (¢ u y)] is the fixpoint of the function:

F(X) = [w]U (o] NPRE(X))

Theorem. Let F(X) = [w] U (o] "PRE(X)), and let S have
n-+1 elements. Then:

1. F IS monotone;

2. [© (¢ u)] is the least fixpoint of F.
Proof. (See the textbook “Logic in CS” pg.243)

o CTL Model Checking: General Ideas.
o CTL Model Checking: The Labeling Algorithm.
o Labeling Algorithm in Detalils.

o CTL Model Checking: Theoretical Issues.

	Summary of Lecture V
	CTL Model Checking
	CTL M.C. Algorithm: General Ideas
	CTL M.C. Algorithm: General Ideas (Cont.)
	CTL M.C. Algorithm: General Ideas (Cont.)
	Summary
	The Labeling Algorithm: General Idea
	The Labeling Algorithm: An Example
	The Labeling Algorithm: An Example (Cont.)
	The Labeling Algorithm: An Example (Cont.)
	The Labeling Algorithm: An Example (Cont.)
	Summary
	The Labeling Algorithm: General Schema
	Denotation of Formulas: The Boolean Case
	Denotation of Formulas: The EX Case
	Denotation of Formulas: The EG Case
	Denotation of Formulas: The EG Case (Cont.)
	Denotation of Formulas: The EU Case
	Denotation of Formulas: The EU Case (Cont.)
	The Pseudo-Code
	PreImage
	Label_EG
	Label_EU
	Summary
	Correctness and Termination
	Monotone Functions and Fixpoints
	Knaster-Tarski Theorem
	Correctness and Termination: EG Case
	Correctness and Termination: EG Case (Cont.)
	Correctness and Termination: EU Case
	Correctness and Termination: EU Case (Cont.)
	Summary of Lecture V

