
Mutual Exclusion

Alessandro Artale

Faculty of Computer Science – Free Univeristy of Bolzano

artale@inf.unibz.it

You are asked to write a NuSMV program that models a three-processes
asynchronous mutual exclusion protocol. Each process has a status that
could be “NonCritical”, “Trying” or “Critical”. The rule to access the
resource is based on a FIFO queue: each process’s request to access the
resource is stored in a “Waiting List”, the first process in this list is the one
which can access first the resource. The following is an un-complete NuSMV
program:

MODULE main

VAR

-- ‘‘Wait_List_i’’ captures the ‘‘i’’ position in the queue.

-- - The values of each position are:

-- - 0: No process is stored for that position;

-- - 1: Process ‘‘1’’ is stored;

-- - 2: Process ‘‘2’’ is stored;

-- - 3: Process ‘‘3’’ is stored.

-- - Example: Wait_List1=3, Wait_List2=1, Wait_List3=0, means:

-- - There are processes ‘‘1’’ and ‘‘3’’ waiting and

-- - process ‘‘3’’ will be the first one accessing the resource.

Wait_List1: {0,1,2,3};

Wait_List2: {0,1,2,3};

Wait_List3: {0,1,2,3};

pr1: process prc(Wait_List1,Wait_List2,Wait_List3,resource_st,1);

pr2: process prc(Wait_List1,Wait_List2,Wait_List3,resource_st,2);

1

pr3: process prc(Wait_List1,Wait_List2,Wait_List3,resource_st,3);

ASSIGN

init(Wait_List1) := 0;

init(Wait_List2) := 0;

init(Wait_List3) := 0;

-- ‘‘resource_st’’ is a boolean variable that is true

-- when the resource is used by one of the processes.

DEFINE

resource_st := (pr1.st = c) | (pr2.st = c) | (pr3.st = c);

--

---------- PROCESS MODULE ----------------------------------

--

MODULE prc(Wait_List1,Wait_List2,Wait_List3,resource_st,myturn)

VAR

-- Variable "st" codifies the current status of each process

-- - "n": NonCritical: outside the critical section;

-- - "t": Trying: trying to enter the critical section;

-- - "c": Critical: inside the critical section.

st: {n, t, c};

ASSIGN

init(st) := n;

next(st) := case

(st = n) : {t,n};

(st = t) & !resource_st & Wait_List1=myturn : c;

(st = c) : {c,n};

1 : st;

esac;

next(Wait_List1) := case

2

???

esac;

next(Wait_List2) := case

???

esac;

next(Wait_List3) := case

???

esac;

FAIRNESS

running;

FAIRNESS

!(st = c);

You need to complete the program by specifying the next states for the
waiting list. You need also to add CTL/LTL specifications to guarantee the
following properties:

1. Two processes cannot be at the same time in their critical section.

2. If a process tries to enter its critical section, it will eventually succeed.

Remark: You are free to change the above SMV skeleton adopting a
different solution as soon as the two properties above remain true and the
FIFO selection is respected.

3

