

Foundations of First Order Logic

Enrico Franconi

franconi@inf.unibz.it
http://www.inf.unibz.it/~franconi

Faculty of Computer Science, Free University of Bozen-Bolzano

Motivation

- We can already do a lot with propositional logic.
- But it is unpleasant that we cannot access the *structure* of atomic sentences.
- Atomic formulas of propositional logic are too atomic they are just statement which my be true or false but which have no internal structure.
- In *First Order Logic* (FOL) the atomic formulas are interpreted as statements about *relationships between objects*.

Predicates and Constants

Let's consider the statements:

• Mary is female

John is male

Mary and John are siblings

In propositional logic the above statements are atomic propositions:

• Mary-is-female

John-is-male

Mary-and-John-are-siblings

In FOL atomic statements use predicates, with constants as argument:

• Female(mary)

```
Male(john)
```

```
Siblings(mary, john)
```

Variables and Quantifiers

Let's consider the statements:

- Everybody is male or female
- A male is not a female

In FOL predicates may have variables as arguments, whose value is bounded by quantifiers:

- $\forall x. Male(x) \lor Female(x)$
- $\forall x. Male(x) \rightarrow \neg Female(x)$

Deduction (why?):

- Mary is not male
- ¬Male(mary)

Functions

Let's consider the statement:

• The father of a person is male

In FOL objects of the domain may be denoted by functions applied to (other) objects:

• $\forall x. Male(father(x))$

Syntax of FOL: atomic sentences

Countably infinite **supply of symbols** (*signature*):

• variable symbols: x, y, z, ... n-ary function symbols: f, g, h, ...individual constants: a, b, c, ...n-are predicate symbols: P, Q, R, ...

Terms: $t \rightarrow x$ variable| aconstant $| f(t_1, \ldots, t_n)$ function application

Ground terms: terms that do not contain variables **Formulas**: $\phi \longrightarrow P(t_1, \dots, t_n)$ atomic formulas

$$\begin{split} \textbf{E.g.,} \quad Brother(kingJohn, richardTheLionheart) \\ &> (length(leftLegOf(richard)), length(leftLegOf(kingJohn))) \end{split}$$

Syntax of FOL: propositional sentences

- (Ground) **atoms** and (ground) **literals**.
- E.g. $Sibling(kingJohn, richard) \rightarrow Sibling(richard, kingJohn)$ > $(1, 2) \lor \leq (1, 2)$ > $(1, 2) \land \neg > (1, 2)$

Syntax of full FOL

E.g.

Formulas: $\phi, \psi \to P(t_1, \ldots, t_n)$ atomic formulas false true $| \neg \phi$ negation $| \phi \wedge \psi$ conjunction $| \phi \lor \psi$ disjunction $| \phi \rightarrow \psi$ implication $| \phi \leftrightarrow \psi$ equivalence $\forall x \phi$ universal quantification $\exists x . \phi$ existential quantification

> Everyone in England is smart: $\forall x. \ In(x, england) \rightarrow Smart(x)$ Someone in France is smart: $\exists x. \ In(x, france) \land Smart(x)$

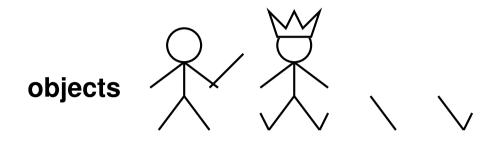
Summary of Syntax of FOL

- Terms
 - variables
 - constants
 - functions
- Literals
 - atomic formula
 - relation (predicate)
 - negation
- Well formed formulas
 - truth-functional connectives
 - existential and universal quantifiers

Semantics of FOL: intuition

- Just like in propositional logic, a (complex) FOL formula may be true (or false) with respect to a given interpretation.
- An interpretation specifies referents for *constant symbols* → **objects** *predicate symbols* → **relations** *function symbols* → **functional relations**
- An atomic sentence $P(t_1, \ldots, t_n)$ is true in a given interpretation iff the *objects* referred to by t_1, \ldots, t_n are in the *relation* referred to by the predicate P.
- An interpretation in which a formula is true is called a *model* for the formula.

Models for FOL: Example



relations: sets of tuples of objects

$$\{\langle \mathcal{R}, \mathcal{K} \rangle, \langle \mathcal{K}, \mathcal{R} \rangle, \ldots \}$$

functional relations: all tuples of objects + "value" object

$$\{\langle \mathcal{R}, \rangle, \langle \mathcal{R}, \rangle, \dots \}$$

Semantic of FOL: Interpretations

Interpretation: $\mathcal{I} = \langle \Delta, \cdot^{\mathcal{I}} \rangle$ where Δ is an arbitrary non-empty set and \mathcal{I} is a function that maps

- *n*-ary function symbols to functions over Δ : $f^{\mathcal{I}} \in [\Delta^n \to \Delta]$
- individual constants to elements of Δ : $a^{\mathcal{I}} \in \Delta$
- *n*-ary predicate symbols to relation over Δ : $P^{\mathcal{I}} \subseteq \Delta^n$

Semantic of FOL: Satisfaction

Interpretation of ground terms:

$$(f(t_1,\ldots,t_n))^{\mathcal{I}} = f^{\mathcal{I}}(t_1^{\mathcal{I}},\ldots,t_n^{\mathcal{I}}) \ (\in \Delta)$$

Satisfaction of ground atoms $P(t_1, \ldots, t_n)$:

$$\mathcal{I} \models P(t_1, \dots, t_n) \quad \text{iff} \quad \langle t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}} \rangle \in P^{\mathcal{I}}$$

$$\begin{array}{rcl} \Delta &=& \{d_1,\ldots,d_n,n>1\} && \Delta &=& \{1,2,3,\ldots\} \\ \mathbf{a}^{\mathcal{I}} &=& d_1 && \mathbf{1}^{\mathcal{I}} &=& 1 \\ \mathbf{b}^{\mathcal{I}} &=& d_2 && \mathbf{1}^{\mathcal{I}} &=& 2 \\ & & & & \mathbf{1}^{\mathcal{I}} &=& 1 \\ \mathbf{2}^{\mathcal{I}} &=& 2 && \mathbf{1}^{\mathcal{I}} \\ & & & & \mathbf{1}^{\mathcal{I}} &=& 2 \\ & & & & & \mathbf{1}^{\mathcal{I}} &=& 2 \\ & & & & & \mathbf{1}^{\mathcal{I}} &=& \{d_1\} && & \\ & & & & & \mathbf{Red}^{\mathcal{I}} &=& \{d_1\} && & \\ & & & & & \mathbf{Red}^{\mathcal{I}} &=& \Delta && & \\ & & & & & & \mathbf{I} &\models & \mathrm{Red}\,(\mathrm{b}) \\ & & & & & & \mathcal{I} &\models & \mathrm{Red}\,(\mathrm{b}) \\ & & & & & & \mathcal{I} &\models & \mathrm{Red}\,(\mathrm{b}) \end{array}$$

Semantics of FOL: Variable Assignments

V set of all variables. Function $\alpha: V \to \Delta$.

Notation: $\alpha[x/d]$ is identical to α except for the variable x.

Interpretation of terms under \mathcal{I}, α :

$$x^{\mathcal{I},\alpha} = \alpha(x)$$

$$a^{\mathcal{I},\alpha} = a^{\mathcal{I}}$$

$$(f(t_1,\ldots,t_n))^{\mathcal{I},\alpha} = f^{\mathcal{I}}(t_1^{\mathcal{I},\alpha},\ldots,t_n^{\mathcal{I},\alpha})$$

Satisfiability of atomic formulas:

$$\mathcal{I}, \alpha \models P(t_1, \dots, t_n) \quad \text{iff} \quad \langle t_1^{\mathcal{I}, \alpha}, \dots, t_n^{\mathcal{I}, \alpha} \rangle \in P^{\mathcal{I}}$$

Variable Assignment example

$$\begin{array}{lll} \alpha &=& \{(\mathbf{x} \mapsto d_1), (\mathbf{y} \mapsto d_2)\} \\ \\ \mathcal{I}, \alpha &\models & \operatorname{Red}(\mathbf{x}) \\ \\ \mathcal{I}, \alpha[\mathbf{y}/d_1] &\models & \operatorname{Block}(\mathbf{y}) \end{array}$$

Semantics of FOL: Satisfiability of formulas

A formula ϕ is satisfied by (*is true in*) an interpretation $\mathcal I$ under a variable assignment α ,

 $\mathcal{I}, \alpha \models \phi:$

$$\begin{split} \mathcal{I}, \alpha &\models P(t_1, \dots, t_n) \quad \text{iff} \quad \langle t_1^{\mathcal{I}, \alpha}, \dots, t_n^{\mathcal{I}, \alpha} \rangle \in P^{\mathcal{I}} \\ \mathcal{I}, \alpha &\models \neg \phi \quad \text{iff} \quad \mathcal{I}, \alpha \not\models \phi \\ \mathcal{I}, \alpha &\models \phi \land \psi \quad \text{iff} \quad \mathcal{I}, \alpha &\models \phi \text{ and } \mathcal{I}, \alpha \models \psi \\ \mathcal{I}, \alpha &\models \phi \lor \psi \quad \text{iff} \quad \mathcal{I}, \alpha &\models \phi \text{ or } \mathcal{I}, \alpha \models \psi \\ \mathcal{I}, \alpha &\models \forall x. \phi \quad \text{iff} \quad \text{for all } d \in \Delta : \\ \mathcal{I}, \alpha [x/d] &\models \phi \\ \end{split}$$

$$\mathcal{I}, \alpha[x/d] \models \phi$$

Examples

$$\begin{array}{rcl} \Delta &=& \{d_1,\ldots,d_n,\} \ n>1 \\ & \mathbf{a}^{\mathcal{I}} &=& d_1 \\ & \mathbf{b}^{\mathcal{I}} &=& d_1 \\ & & \\ \texttt{Block}^{\mathcal{I}} &=& \{d_1\} \\ & & \\ & & \\ \texttt{Red}^{\mathcal{I}} &=& \Delta \\ & & \\ & \alpha &=& \{(\mathbf{x}\mapsto d_1),(\mathbf{y}\mapsto d_2)\} \end{array}$$

1.
$$\mathcal{I}, \alpha \models \text{Block(c)} \lor \neg \text{Block(c)}$$
?

2. $\mathcal{I}, \alpha \models \text{Block}(x) \rightarrow \text{Block}(x) \lor \text{Block}(y)$?

3.
$$\mathcal{I}, \alpha \models \forall \mathbf{X} \; \text{Block}(\mathbf{x}) \to \text{Red}(\mathbf{x})$$
?
4. $\Theta = \left\{ \begin{array}{l} \text{Block}(\mathbf{a}), \; \text{Block}(\mathbf{b}) \\ \forall \mathbf{x} \; (\text{Block}(\mathbf{x}) \to \text{Red}(\mathbf{x})) \end{array} \right\}$
 $\mathcal{I}, \alpha \models \Theta$?

Find a model of the formula:

 $\exists y. [P(y) \land \neg Q(y)] \land \forall z. [P(z) \lor Q(z)]$

Find a model of the formula:

$$\exists y. [P(y) \land \neg Q(y)] \land \forall z. [P(z) \lor Q(z)]$$

$$\Delta = \{a, b\}$$
$$P^{\mathcal{I}} = \{a\}$$
$$Q^{\mathcal{I}} = \{b\}$$

Satisfiability and Validity

An interpretation ${\mathcal I}$ is a **model** of ϕ under $\alpha,$ if

 $\mathcal{I}, \alpha \models \phi.$

Similarly as in propositional logic, a formula ϕ can be **satisfiable**, **unsatisfiable**, **falsifiable** or **valid**—the definition is in terms of the pair (\mathcal{I}, α) .

A formula ϕ is

- satisfiable, if there is some (\mathcal{I}, α) that satisfies ϕ ,
- **unsatisfiable**, if ϕ is not satisfiable,
- falsifiable, if there is some (\mathcal{I}, α) that does not satisfy ϕ ,
- valid (i.e., a tautology), if every (\mathcal{I}, α) is a model of ϕ .

Equivalence

Analogously, two formulas are **logically equivalent** ($\phi \equiv \psi$), if for all \mathcal{I}, α we have:

$$\mathcal{I}, \alpha \models \phi \quad \text{iff} \quad \mathcal{I}, \alpha \models \psi$$

Note: $P(x) \not\equiv P(y)!$

Free and Bound Variables

$$\forall x. (R(y, z) \land \exists y. (\neg P(y, x) \lor R(y, z)))$$

Variables in boxes are **free**; other variables are **bound**.

Free variables of a formula (inductively defined over the structure of expressions):

$$\begin{aligned} & \operatorname{free}(x) &= \{x\} \\ & \operatorname{free}(a) &= \emptyset \\ & \operatorname{free}(f(t_1, \dots, t_n)) &= \operatorname{free}(t_1) \cup \dots \cup \operatorname{free}(t_n) \\ & \operatorname{free}(P(t_1, \dots, t_n)) &= \operatorname{free}(t_1) \cup \dots \cup \operatorname{free}(t_n) \\ & \operatorname{free}(\neg \phi) &= \operatorname{free}(\phi) \\ & \operatorname{free}(\varphi * \psi) &= \operatorname{free}(\phi) \cup \operatorname{free}(\psi), \, * = \lor, \land, \dots \\ & \operatorname{free}(\forall x. \phi) &= \operatorname{free}(\phi) - \{x\} \\ & \operatorname{free}(\exists x. \phi) &= \operatorname{free}(\phi) - \{x\} \end{aligned}$$

(22/41)

Open and Closed Formulas

- A formula is **closed** or a **sentence** if no free variables occurs in it. When formulating theories, we only use closed formulas.
- Note: For closed formulas, the properties *logical equivalence, satisfiability, entailment* etc. do not depend on variable assignments. If the property holds for one variable assignment then it holds for all of them.
- For closed formulas, the symbol α on the left hand side of the " \models " sign is omitted.

$$\mathcal{I} \models \phi$$

Entailment

Entailment is defined similarly as in propositional logic.

The formula ϕ is logically implied by a formula ψ , if ϕ is true in all models of ψ (symbolically, $\psi \models \phi$):

$$\psi \models \phi \quad \text{iff} \quad \mathcal{I} \models \phi \ \text{ for all models } \mathcal{I} \ \text{ of } \psi$$

More Exercises

- $\models \forall x. (P(x) \lor \neg P(x))$
- $\exists x. [P(x) \land (P(x) \rightarrow Q(x))] \models \exists x. Q(x)$
- $\models \neg(\exists x. [\forall y. [P(x) \rightarrow Q(y)]])$
- $\exists y$. $[P(y) \land \neg Q(y)] \land \forall z$. $[P(z) \lor Q(z)]$ satisfiable

Equality

Equality is a special predicate.

• $t_1 = t_2$ is true under a given interpretation $(\mathcal{I}, \alpha \models t_1 = t_2)$ if and only if t_1 and t_2 refer to the same object: $t_1^{\mathcal{I}, \alpha} = t_2^{\mathcal{I}, \alpha}$

E.g.,
$$\forall x. \ (\times (sqrt(x), sqrt(x)) = x)$$
 is satisfiable $2 = 2$ is valid

E.g., definition of (full) Sibling in terms of Parent:

$$\begin{split} \forall x, y. \\ Sibling(x, y) \leftrightarrow \\ (\neg(x = y) \land \\ \exists m, f. \neg(m = f) \land Parent(m, x) \land Parent(f, x) \land \\ Parent(m, y) \land Parent(f, y)) \end{split}$$

Universal quantification

Everyone in England is smart: $\forall x$. $In(x, england) \rightarrow Smart(x)$ $(\forall x. \phi)$ is equivalent to the *conjunction* of all possible *instantiations* in x of ϕ :

 $In(kingJohn, england) \rightarrow Smart(kingJohn)$ $\land In(richard, england) \rightarrow Smart(richard)$ $\land In(england, england) \rightarrow Smart(england)$ $\land \dots$

Typically, \rightarrow is the main connective with \forall .

Common mistake: using \wedge as the main connective with \forall :

 $\forall x. In(x, england) \land Smart(x)$

means "Everyone is in England and everyone is smart"

Existential quantification

Someone in France is smart: $\exists x. In(x, france) \land Smart(x)$

 $(\exists x. \phi)$ is equivalent to the *disjunction* of all possible *instantiations* in x of ϕ

 $In(kingJohn, france) \land Smart(kingJohn)$ \lor In(richard, france) \land Smart(richard) \lor In(france, france) \land Smart(france) \lor

Typically, \wedge is the main connective with \exists .

Common mistake: using \rightarrow as the main connective with \exists :

$$\exists x. \ In(x, france) \to Smart(x)$$

is true if there is anyone who is not in France!

Properties of quantifiers

 $(\forall x . \, \forall y . \, \phi)$ is the same as $(\forall y . \forall x . \, \phi)$ (Why?)

 $(\exists x . \exists y . \phi)$ is the same as $(\exists y . \exists x . \phi)$ (Why?)

 $(\exists x. \forall y. \phi)$ is **not** the same as $(\forall y. \exists x. \phi)$

 $\exists x. \forall y. Loves(x, y)$

"There is a person who loves everyone in the world"

 $\forall y. \exists x. Loves(x, y)$

"Everyone in the world is loved by at least one person" (not necessarily the same)

Quantifier duality: each can be expressed using the other:

 $\forall x. Likes(x, iceCream) \qquad \neg \exists x. \neg Likes(x, iceCream) \\ \exists x. Likes(x, broccoli) \qquad \neg \forall x. \neg Likes(x, broccoli) \\ \end{cases}$

Equivalences

 $(\forall x. \phi) \land \psi \equiv \forall x. (\phi \land \psi) \text{ if } x \text{ not free in } \psi$ $(\forall x. \phi) \lor \psi \equiv \forall x. (\phi \lor \psi) \text{ if } x \text{ not free in } \psi$ $(\exists x. \phi) \land \psi \equiv \exists x. (\phi \land \psi) \text{ if } x \text{ not free in } \psi$ $(\exists x. \phi) \lor \psi \equiv \exists x. (\phi \lor \psi) \text{ if } x \text{ not free in } \psi$ $\forall x. \phi \land \forall x. \psi \equiv \forall x. (\phi \land \psi)$ $\exists x. \phi \lor \exists x. \psi \equiv \exists x. (\phi \lor \psi)$

$$\neg \forall x. \phi \equiv \exists x. \neg \phi$$
$$\neg \exists x. \phi \equiv \forall x. \neg \phi$$

& propositional equivalences

The Prenex Normal Form

Quantifier prefix + (quantifier free) matrix

$$\forall x_1 \forall x_2 \exists x_3 \dots \forall x_n \phi$$

- 1. Elimination of \rightarrow and \leftrightarrow
- 2. push \neg inwards
- 3. pull quantifiers outwards

E.g.
$$\neg \forall x. ((\forall x. p(x)) \rightarrow q(x))$$

 $\neg \forall x. (\neg (\forall x. p(x)) \lor q(x))$
 $\exists x. ((\forall x. p(x)) \land \neg q(x))$

and now?

Notation: renaming of variables. Let $\phi[x/t]$ be the formula ϕ where all occurrences of x have been replaced by the term t.

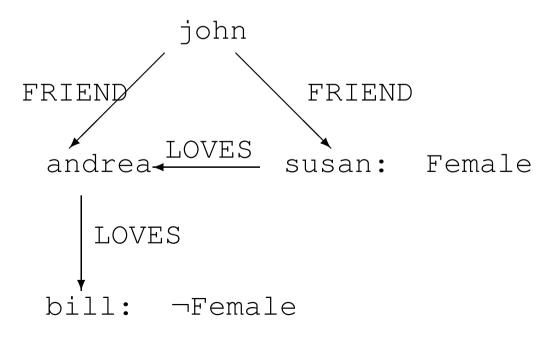
The Prenex Normal Form: theorems

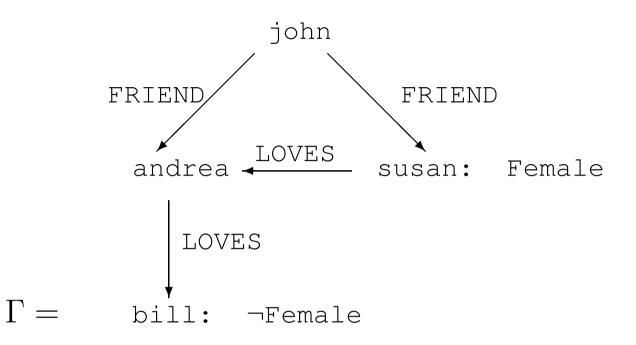
Lemma. Let y be a variable that does not occur in ϕ . Then we have $\forall x \phi \equiv (\forall x \phi)[x/y]$ and $\exists x \phi \equiv (\exists x \phi)[x/y]$.

Theorem. There is an algorithm that computes for every formula its prenex normal form.

FOL at work: reasoning by cases

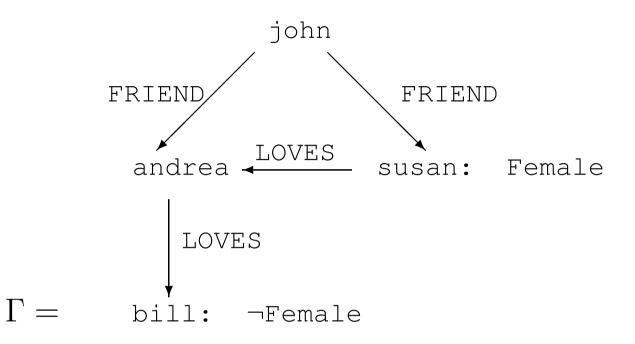
```
\begin{split} \Gamma &= \texttt{FRIEND(john, susan)} \land \\ & \texttt{FRIEND(john, andrea)} \land \\ & \texttt{LOVES(susan, andrea)} \land \\ & \texttt{LOVES(andrea, bill)} \land \\ & \texttt{Female(susan)} \land \\ & \neg\texttt{Female(bill)} \end{split}
```





Does John have a female friend loving a male (i.e. not female) person?

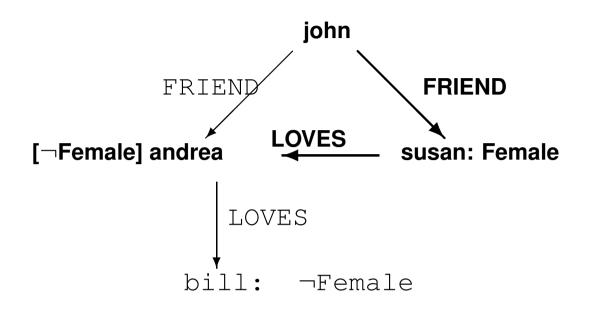
$$\begin{split} \Gamma \models \exists X, Y. \ \operatorname{FRIEND}(\operatorname{john}, X) \wedge \operatorname{Female}(X) \wedge \\ \operatorname{LOVES}(X, Y) \wedge \neg \operatorname{Female}(Y) \end{split}$$



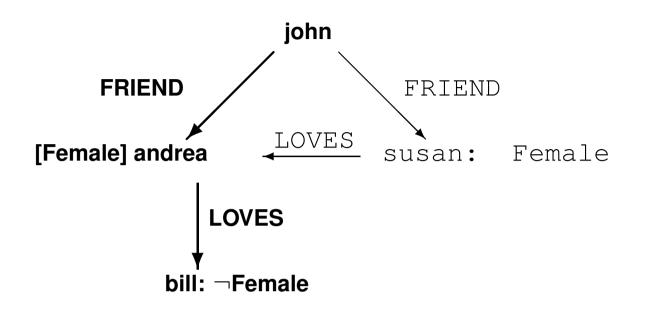
Does John have a female friend loving a male (i.e. not female) person?

YES!

$$\begin{split} \Gamma \models \exists X, Y. \ \mathsf{FRIEND}(\mathsf{john}, X) \land \mathsf{Female}(X) \land \\ \mathsf{LOVES}(X, Y) \land \neg \mathsf{Female}(Y) \end{split}$$



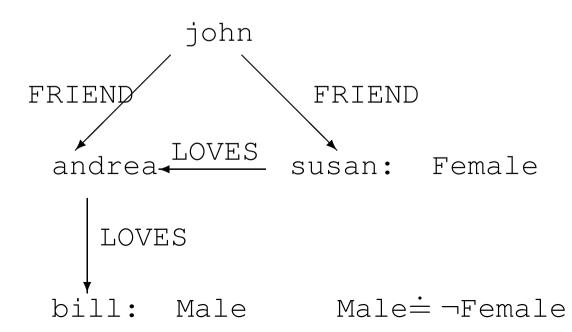
```
FRIEND(john,susan), Female(susan),
LOVES(susan,andrea), ¬ Female(andrea)
```

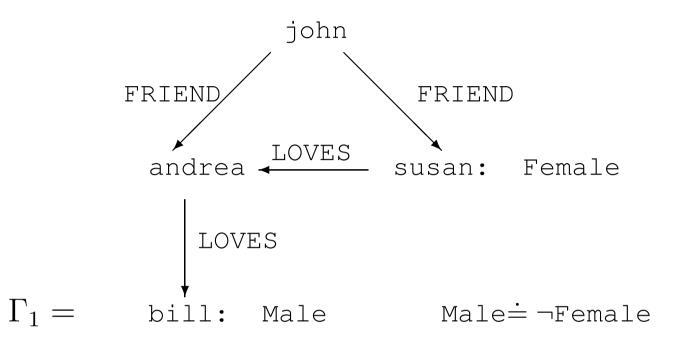


```
FRIEND(john,andrea), Female(andrea),
LOVES(andrea,bill), ¬ Female(bill)
```

Theories and Models

```
\begin{split} \Gamma_1 &= \texttt{FRIEND}(\texttt{john},\texttt{susan}) \land \\ &\quad \texttt{FRIEND}(\texttt{john},\texttt{andrea}) \land \\ &\quad \texttt{LOVES}(\texttt{susan},\texttt{andrea}) \land \\ &\quad \texttt{LOVES}(\texttt{andrea},\texttt{bill}) \land \\ &\quad \texttt{Female}(\texttt{susan}) \land \\ &\quad \texttt{Male}(\texttt{bill}) \land \\ &\quad \forall X. \ \texttt{Male}(X) \leftrightarrow \neg\texttt{Female}(X) \end{split}
```





Does John have a female friend loving a male person?

$$\begin{split} \Gamma_1 \models \exists X, Y. \ \mathsf{FRIEND}(\mathsf{john}, X) \land \mathsf{Female}(X) \land \\ \mathsf{LOVES}(X, Y) \land \mathsf{Male}(Y) \end{split}$$

Γ = FRIEND(john, susan) ∧
FRIEND(john, andrea) ∧
LOVES(susan, andrea) ∧
LOVES(andrea, bill) ∧
Female(susan) ∧
¬Female(bill)

 $\Gamma_1 = \operatorname{FRIEND}(\operatorname{john}, \operatorname{susan}) \land$ FRIEND(john, andrea) \land LOVES(susan, andrea) \land LOVES(andrea, bill) \land Female(susan) \land Male(bill) \land $\forall X. \operatorname{Male}(X) \leftrightarrow \neg \operatorname{Female}(X)$ Γ = FRIEND(john, susan) ∧
FRIEND(john, andrea) ∧
LOVES(susan, andrea) ∧
LOVES(andrea, bill) ∧
Female(susan) ∧
¬Female(bill)

 $\Gamma_1 = \operatorname{FRIEND}(\operatorname{john}, \operatorname{susan}) \land$ FRIEND(john, andrea) \land LOVES(susan, andrea) \land LOVES(andrea, bill) \land Female(susan) \land Male(bill) \land $\forall X. \operatorname{Male}(X) \leftrightarrow \neg \operatorname{Female}(X)$ $\Delta = \{\texttt{john}, \texttt{susan}, \texttt{andrea}, \texttt{bill}\}$ Female $^{\mathcal{I}} = \{\texttt{susan}\}$ Γ = FRIEND(john, susan) ∧
FRIEND(john, andrea) ∧
LOVES(susan, andrea) ∧
LOVES(andrea, bill) ∧
Female(susan) ∧
¬Female(bill)

 $\begin{array}{l} \Gamma_1 = \texttt{FRIEND}(\texttt{john},\texttt{susan}) \land \\ & \texttt{FRIEND}(\texttt{john},\texttt{andrea}) \land \\ & \texttt{LOVES}(\texttt{susan},\texttt{andrea}) \land \\ & \texttt{LOVES}(\texttt{andrea},\texttt{bill}) \land \\ & \texttt{Female}(\texttt{susan}) \land \\ & \texttt{Male}(\texttt{bill}) \land \\ & \forall X. \ \texttt{Male}(X) \leftrightarrow \neg\texttt{Female}(X) \end{array}$

 $\Delta = \{\texttt{john}, \texttt{susan}, \texttt{andrea}, \texttt{bill}\}$ Female $^{\mathcal{I}} = \{\texttt{susan}\}$

$$\begin{split} \Delta^{\mathcal{I}_1} &= \{\texttt{john},\texttt{susan},\texttt{andrea},\texttt{bill}\}\\ \texttt{Female}^{\mathcal{I}_1} &= \{\texttt{susan},\texttt{andrea}\}\\ \texttt{Male}^{\mathcal{I}_1} &= \{\texttt{bill},\texttt{john}\} \end{split}$$

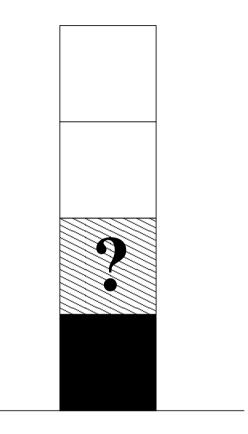
$$\begin{split} \Delta^{\mathcal{I}_2} &= \{\texttt{john},\texttt{susan},\texttt{andrea},\texttt{bill}\}\\ \texttt{Female}^{\mathcal{I}_2} &= \{\texttt{susan}\}\\ \texttt{Male}^{\mathcal{I}_2} &= \{\texttt{bill},\texttt{andrea},\texttt{john}\} \end{split}$$

$$\begin{split} \Delta^{\mathcal{I}_1} &= \{\texttt{john},\texttt{susan},\texttt{andrea},\texttt{bill}\}\\ \texttt{Female}^{\mathcal{I}_1} &= \{\texttt{susan},\texttt{andrea},\texttt{john}\}\\ \texttt{Male}^{\mathcal{I}_1} &= \{\texttt{bill}\} \end{split}$$

$$\begin{split} \Delta^{\mathcal{I}_2} &= \{\texttt{john},\texttt{susan},\texttt{andrea},\texttt{bill}\}\\ \texttt{Female}^{\mathcal{I}_2} &= \{\texttt{susan},\texttt{john}\}\\ \texttt{Male}^{\mathcal{I}_2} &= \{\texttt{bill},\texttt{andrea}\} \end{split}$$

 $\Gamma \not\models \texttt{Female}(\texttt{andrea})$ $\Gamma \not\models \neg \texttt{Female}(\texttt{andrea})$

 $\begin{array}{l} \Gamma_1 \not\models \texttt{Female}(\texttt{andrea}) \\ \Gamma_1 \not\models \neg\texttt{Female}(\texttt{andrea}) \\ \Gamma_1 \not\models \texttt{Male}(\texttt{andrea}) \\ \Gamma_1 \not\models \neg\texttt{Male}(\texttt{andrea}) \end{array}$



Is it true that the top block is on a white block touching a black block?