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Reduction to satisfiability

Just like propositional logic:

• A formula φ is satisfiable iff there is some interpretation I that satisfies φ (i.e.,

φ is true under I): I |= φ).

• Validity, equivalence, and entailment can be reduced to satisfiability:

• φ is a valid (i.e., a tautology) iff ¬φ is not satisfiable.

• φ is equivalent to ψ (φ ≡ ψ) iff φ↔ ψ is valid.

• φ ≡ ψ iff φ |= ψ and ψ |= φ

• φ entails ψ (φ |= ψ) iff φ→ ψ is valid (deduction theorem).

• φ |= ψ iff φ ∧ ¬ψ is not satisfiable .

• We need a sound and complete procedure deciding satisfiability: the tableaux

method is a decision procedure which checks the existence of a model.
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Tableaux Calculus

Just like in propositional logic:

• The Tableaux Calculus is a decision procedure solving the problem of

satisfiability.

• If a formula is satisfiable, the procedure will constructively exhibit a model of

the formula.

• The basic idea is to incrementally build the model by looking at the formula,

by decomposing it in a top/down fashion. The procedure exhaustively looks at

all the possibilities, so that it can eventually prove that no model could be

found for unsatisfiable formulas.

With respect to propositional logic, the notion of model is different.

(3/29)



Tableaux Calculus

Finds a model for a given collection of sentences KB in negation normal form.

1. Consider the knowledge base KB as the root node of a refutation tree. A

node in a refutation tree is called tableaux.

2. Starting from the root, add new formulas to the tableaux, applying the

completion rules.

3. Completion rules are either deterministic – they yield a uniquely determined

successor node – or nondeterministic – yielding several possible alternative

successor nodes (branches).

4. Apply the completion rules until either

(a) an explicit contradiction due to the presence of two opposite ground

literals in a node (a clash) is generated in each branch, or

(b) there is a completed branch where no more rule is applicable (but. . .).
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The Calculus

The completion rules for the propositional formulas:

φ ∧ ψ

φ

ψ

If a model satisfies a conjunction, then it also satisfies each of

the conjuncts

φ ∨ ψ

φ ψ

If a model satisfies a disjunction, then it also satisfies one of

the disjuncts. It is a non-deterministic rule, and it generates

two alternative branches of the tableaux.
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The Calculus

The completion rules for quantified formulas:

∀x. φ

φ{X/t}

∀x. φ

If a model satisfies a universal quantified formula, the it also

satisfies the formula where the quantified variable has been

substituted with some term. The prescription is to use all the

terms which appear in the tableaux.

∃x. φ

φ{X/a}

If a model satisfies an existential quantified formula, then it also

satisfies the formula where the quantified variable has been

substituted with a fresh new skolem constant.
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Models

• The completed branch of the refutation tree gives a model of KB: the KB is

satisfiable. Since all formulas have been reduced to ground literals (i.e., either

positive or negative atomic formulas which do not contain variables), it is

possible to find an interpretation to predicates using the constants, which

make all the sentences in the branch true.

• If there is no completed branch (i.e., every branch has a clash), then it is not

possible to find an interpretation for the predicates making the original KB

true: the KB is unsatisfiable. In fact, the original formulas from which the tree

is constructed can not be true simultaneously.
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Negation Normal Form

The above set of completion rules work only if the formula has been translated

into Negation Normal Form, i.e., all the negations have been pushed down.

Example::

¬(∃x. [ ∀y. [ P (x) → Q(y) ] ])

becomes

∀x. [ ∃y. [ P (x) ∧ ¬Q(y) ] ]

(Why?)
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Example
φ ∧ ψ

φ

ψ

φ ∨ ψ

φ ψ

∀x. φ

φ{X/t}

∃x. φ

φ{X/a}

∃y. (p(y) ∧ ¬q(y)) ∧ ∀z. (p(z) ∨ q(z))

∃y. (p(y) ∧ ¬q(y))

∀z. (p(z) ∨ q(z))

p(a) ∧ ¬q(a)

p(a)

¬q(a)

p(a) ∨ q(a)

p(a) q(a)

< COMPLETED > < CLASH >

The formula is satisfiable. The devised model is ∆ = {a}, pI = {a}, qI = ∅.
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Other Reasoning Problems

• Subsumption

• Γ |= P w Q

P and Q predicate symbols of the same arity

• P subsumes Q in Γ

• Γ |= ∀x̂. [Q(x̂) → P (x̂) ]

• Instance Checking

• The constant a is an instance of the unary predicate P

• Γ |= P (a)
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Example

Given a theory Γ,

if PERSONw STUDENT in Γ

and if STUDENT(john) is valid in Γ

then PERSON(john) is valid in Γ
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Subsumption

• Subsumption can be seen as a binary relation in the space of predicates with

same arity: P/n w Q/n.

• The subsumption relation is a partial ordering relation in the space of

predicates of same arity.

• Exercise: prove it.

• Hint : a partial ordering relation is a transitive, reflexive, and antisymmetric

relation.
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Model Checking

Verify that a given interpretation I is a model for a closed formula ϕ:

I |= ϕ

An interpretation is also called a relational structure.

Example:

∆ = {a, b},

P (a),

Q(b).

is a model of the formula:

∃y. [ P (y) ∧ ¬Q(y) ] ∧ ∀z. [ P (z) ∨Q(z) ]
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Termination and Decidability

Given a logic L, a reasoning problem is said to be decidable if there exists a

computational process (e.g., an algorithm, a Turing Machine, a computer

program, etc.) that solves the problem in a finite number of steps, i.e., the process

always terminates.

• The problem of deciding whether a formula ϕ is logically implied by a theory

Γ is undecidable in full FOL.

• Logical implication is decidable if we restrict to propositional calculus.

• Logical implication is decidable if we restrict to FOL using only at most two

variable names; such language is called L2.

The property of (un)decidability is a general property of the problem and not of a

particular algorithm solving it.
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L3

An example of L3 formula:

“The only baseball player in town is married to one of Jeremy’s daughters.”

∃x. [ B(x) ∧

(∀y. [ B(y) → x = y ] ) ∧

∃z. [ M(x, z) ∧ D(z,jeremy) ∧

(∃k. [ D(k,jeremy) ∧ z 6= k ] ) ∧

∀v. [ M(x, v) → v = z ] ] ]

∃x. [ B(x) ∧

(∀y. [ B(y) → x = y ] ) ∧

∃y. [ M(x, y) ∧ D(y,jeremy) ∧

(∃x. [ D(x,jeremy) ∧ y 6= x ] ) ∧

∀v. [ M(x, v) → v = y ] ] ]
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Expressive Power

• Some logics can be made decidable by sacrificing some expressive power.

• A logical language La has more expressive power than a logical language

Lb, if each formula of Lb denotes the “same” set of models of its

correspondent formula of La, and if there is a formula of La denoting a set of

models which is denoted by no formula in Lb.

Example:

Consider La as FOL, and Lb as FOL without negation and disjunction. Given a

common domain, the La formula ∃x. [ P (x) ∨Q(x) ] has a set of models

which can not be captured by any formula of Lb.

(Exercise: check it out with ∆ = {a}
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Problems and Algorithms

• A problem is a general question to be answered.

A problem is described by giving:

• a general description of all its parameters, and

• a statement of what properties the answer, or solution, is required to

satisfy.

An instance of a problem is obtained by specifying values for all parameters.

• An algorithm is a step-by-step procedure fro solving problems.

An algorithm is said to solve a problem Π if

• it can be applied to any instance I of Π, and

• it is guaranteed always to produce a solution for that instance I .
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Computational Complexity

• The goal of complexity theory is to classify problems as to their intrinsic

computational difficulty into general complexity classes.

• Given a problem, how much computing power and/or resources (e.g., time,

space) do we need in order to solve it in the worst case?

• The complexity class to which a problem belongs is a general property of the

problem and not of a particular algorithm solving it.

• Distinguish among:

• worst case ⇐=

• average case

• hard and easy cases
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Complexity classes

• P

• NP — coNP

• PH

• PSPACE

• EXPTIME

• NEXPTIME

• DECIDABLE
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Complexity of problems

Complexity and expressive power:

• Satisfiability of formulas in propositional calculus is NP-complete.

• Unsatisfiability of formulas in propositional calculus is coNP-complete.

• Satisfiability of QBF formulas in FOL where there is a finite nesting of

quantifiers is PSPACE-complete:

Q1x1. Q2x2. . . . [ ϕ(x1, x2, . . .) ],

where Qi is either ∀ or ∃.

• Satisfiability of formulas in the propositional dynamic normal modal logic

(PDL) is EXPTIME-complete. (Note: PDL has non first order expressible

features, but it doesn’t include full FOL)

• Satisfiability of L2 formulas is NEXPTIME-complete.
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Complexity of problems

Computational complexity depends on the reasoning problem:

• Model checking of FOL formulas is polynomial.
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The classical inference systems

Usually proof theory studies the properties of inference systems for logical

implication based on some sort of sequent calculus, or of natural deduction.

While this seems appropriate from a mere theoretical point of view, it turns out

that such systems are hardly implementable, due to their non-deterministic and

non-constructive foundations.

Basically, these proof systems formalise the notion of derivability “Γ ` ϕ” with a

set of inference rules. In this context:

• Soundness: if Γ ` ϕ then Γ |= ϕ

• Completeness: if Γ |= ϕ then Γ ` ϕ
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Incompleteness

• Sequent calculus and natural deduction form sound and complete procedures

for computing logical implication.

• However, for FOL it is not guaranteed their termination, since the problem is

undecidable.

• It is easy to have incomplete but terminating procedures, by simply dropping

some of the inference rules from the complete set.

• This is a general methodology for characterising the incompleteness of

algorithms: find a complete set of inference rules, and characterise the

incomplete procedure with a subset of them.
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Completeness

• Given an incomplete reasoning procedure for a reasoning problem,

sometimes people prefer to modify the definition of the problem in order to

obtain a complete procedure.

• This can be accomplished by slightly changing (“weakening”) the semantics

of the logical language (e.g., a variant of relevance 4-valued FOL where

modus ponens is no more valid is decidable, and it has a complete reasoning

procedure).
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Algorithm Complexity

• An sound and complete algorithm solving a reasoning problem may be or

may be not optimal with respect the computational complexity of the problem.

• For example, a polynomial problem may be implemented with a

non-polynomial algorithm, or a PSPACE problem may be implemented with

an algorithm requiring exponential space.

• Optimal implementation of sound and complete algorithms may be impossible

if there is no constructive proof for the computational complexity.
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Sub-optimal algorithms

• Recall that computational complexity considers only the worst cases.

• Sub-optimal sound and complete algorithms can be faster for simple,

average, and real instances of the problem, but less efficient for worst cases,

than optimal algorithms.

• Sub-optimal sound and complete algorithms can be compliant to software

engineering requirements, i.e., they can be modular and expandable.

• Sub-optimal sound and complete algorithms may be optimal when

considering sub-languages belonging to a lower complexity class.
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Summary of Part I of the course

• Main lesson: Logic can be a useful tool. It allows us to represent information

about a domain in a very straight-forward way then deduce additional facts

using one general domain-independent ”algorithm”: deduction. Consequently,

logic lends itself to large-scale, distributed-design problems.

• Each logic is made up of a syntax, a semantics, a definition of the reasoning

problems and the computational properties, and inference procedures for the

reasoning problems (possibly sound and complete). The syntax describes

how to write correct sentences in the language, the semantics tells us what

sentences mean in the ”real world.” The inference procedure derives results

logically implied by a set of premises.
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• Logics differ in terms of their representation power and computational

complexity of inference. The more restricted the representational power, the

faster the inference in general.

• Propositional logic: we can only talk about facts and whether or not they are

true. In the worst case, we can use the brute force truth-table method to do

inference. Proof methods such as tableaux are generally more efficient,

easier to implement, and easier to understand.

• First-order logic: we can now talk about objects and relations between them,

and we can quantify over objects. Good for representing most interesting

domains, but inference is not only expensive, but may not terminate.
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