The problem

o Problem: Given a set of action operators OP, (a representation of)
an initial state | and goal state G, find a sequence of operator
applications o1, .., 05, leading from the initial state to the goal state.

o Idea: Encode it into a model checking problem.

INITIAL GUAL

A C
B |—=> B
C A
T
Init : On(A, B),On(B, C),0n(C, T), Clear(A)
Goal : On(C,B),0On(B,A),On(A, T)

Move(b, s, d)

Precond : Block(b) A Clear(b) A On(b, s)A
(Clear(d) v Table(d))A
b#sAb#dAs#d

Effect : Clear(s) A =On(b, s)A
On(b, d) A —Clear(d)

Encoding in SMV

@ Initial states:
On(A, B) A On(B,C) A On(C, T) A Clear(A).

o Goal states:
On(C,B) A On(B,A) A On(A, T).

@ Action preconditions and effects:
Move(A, B, C) —
Clear(A) A On(A, B) A Clear(C)A

Clear(B') A =On(A', B')A
On(A', C") A = Clear(C").

Planning strategy

@ Specification: The goal is not reachable.

o Plan: If the property is false, NuSMV produces a counterexample.
The counterexample is a plan to reach the goal.

The Tower of Hanoi - Variables

MODULE main
-- Hanoi problem with three poles (left, middle, right)
-- and four ordered disks di, d2, d3, d4,
-- disk dl1 is the biggest omne
VAR
dl : {left,middle,right};
d2 : {left,middle,right};
d3 : {left,middle,right};
d4 : {left,middle,right};

move : 1..4; -- possible moves
DEFINE

move_dl := move=1;

move_d2 := move=2;

move_d3 := move=3;

move_d4 := move=4;

The Tower of Hanoi - Macros

-- di is clear iff dil!=dj for every j>i
DEFINE
clear_dl :=
di!=d2 &
di'!=d3 &
di'!=d4;
clear_d2 :=
d2!=d3 &
d2!=d4;
clear_d3 :=
d3!=d4;
clear_d4 := 1;

The Tower of Hanoi - Initial states

-- initially all items are on the left pole

INIT
dl = left &
d2 = left &
d3 = left &
d4d = left;

The Tower of Hanoi - Transitions

TRANS
move_dl ->
—-- only dl1 changes
next(dl) != 41 &

next(d2) = 42 &
next(d3) = d3 &
next(d4) = d4 &
-— no other disks on di
clear_dl &

-- no smaller disks on the next pole
next(dl) !'= d2 &
next(dl) != d3 &
next(dl) != d4

The Tower of Hanoi - Specification

-- spec to find a solution to the problem
SPEC
! EF (dl=right & d2=right & d3=right & d4=right)

> NuSMV hanoi4.smv
#%* This is NuSMV 2.3.0 (compiled on Mon Oct 24 13:36:47 UTC 2005)
***% For more information on NuSMV see <http://nusmv.irst.itc.it>
*** or email to <nusmv-users@irst.itc.it>.
***% Please report bugs to <nusmv@irst.itc.it>.
-- specification !EF (((d1 = right & d2 = right) & d3 = right) & d4 = right) is false
-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
dl = left
d2 = left
d3 = left
= left
move = 4

o
i
E
[
<%
w
nowonow
O O O

=]

o

<

°

2 U

w
[T
o oo

The tic-tac-toe puzzle is modeled with an array of size nine.

11213
SV DS P
41516
SR D P
718109
I

Tic-Tac-Toe - The board

-- the board, "O" means empty,

-- "1" filled by player 1, "2" filled by player 2

VAR
B : array 1..9 of {0,1,2};

-- initially, all squares are empty

INIT
B[1] =
B[2] =
B[3] =
B[4] =
B[5] =
B[6] =
B[7] =
B[8] =
B[9] =

O O OO O O o oo
PRI

Tic-Tac-Toe - The players

-- let us assume that player 1 is the first player
-- players move alternatively

VAR
player : 1..2;
ASSIGN
init(player) := 1;
next(player) := case

player =1 : 2;
player = 2 : 1;
esac;

Tic-Tac-Toe - The moves

-- move=0 means no move

-- move=i with i>0 means the current player fills B[i]

VAR move : 0..9;

INIT move=0

TRANS

next (move=0) ->

next (B[1])=B[1]
next (B[2])=B[2]
next (B[3])=B[3]
next (B[4])=B[4]
next (B[5])=B[5]
next (B[6])=B[6]
next (B[7]1)=B[7]
next (B[8])=B[8]
next (B[9])=B[9]

Frreereeee

Tic-Tac-Toe - The end of the game

-- "winl" means player 1 wins

—- "win2" means player 2 wins
p

-- "draw" means nobody wins

DEFINE
winl := (B[1]=1 & B[2]=1 & B[3]=1) |
(B[4]=1 & B[5]=1 & B[6]=1) |
(B[7]1=1 & B[8]=1 & B[9]=1) |
(B[1]=1 & B[4]=1 & B[7]=1) |
(B[2]=1 & B[5]=1 & B[8]=1) |
(B[3]=1 & B[6]=1 & B[9]=1) |
(B[1]=1 & B[5]=1 & B[9]=1) |
(B[3]=1 & B[5]=1 & B[7]1=1);

win2 :

Tic-Tac-Toe - The end of the game

draw := lwinl & 'win2 &
B[1]'=0 & B[2]'=0 & B[3]!=0 & B[4]!'=0 &

B[5]!=0 & B[6]!=0 & B[7]!=0 & B[8]!=0 & B[9]!=0;

TRANS
(winl | win2 | draw) <-> next(move)=0

Tic-Tac-Toe - Specification

—-- SPECIFICATIONS
-—- PLAYER 2

-- player 2 does not have a "winning" strategy

Tic-Tac-Toe - Specification

—-- SPECIFICATIONS
-—- PLAYER 2

-- player 2 does not have a "winning" strategy

SPEC
I (AX (EX (AX (EX (AX (EX (AX (EX (AX win2)))))))))

Tic-Tac-Toe - Specification

—-- SPECIFICATIONS
-—- PLAYER 2

-- player 2 does not have a "winning" strategy

SPEC
I (AX (EX (AX (EX (AX (EX (AX (EX (AX win2)))))))))

-- player 2 has a "non-losing" strategy

Tic-Tac-Toe - Specification

—-- SPECIFICATIONS
-—- PLAYER 2

-- player 2 does not have a "winning" strategy

SPEC
I (AX (EX (AX (EX (AX (EX (AX (EX (AX win2)))))))))

-- player 2 has a "non-losing" strategy

SPEC
AX (EX (AX (EX (AX (EX (AX (EX (AX !win1))))))))

Tic-Tac-Toe - Let's play

Suppose player one fills 5:

NuSMV > check_spec -p ’AG (B[1]=0 & B[2]=0 & B[3]=0 & B[4]=0 & B[5]=1 &
B[6]1=0 & B[7]1=0 & B[8]=0 & B[9]=0 & player=2 -> ! EX (AX (EX (AX (EX (AX
(EX (AX 'win1))))))))’ ... -> State: 2.2 <- B[5] = 1 player = 2 move = 5
-> State: 2.3 <- B[9] = 2 player = 1 move = 9 ...

Player two may fill 9.

Tic-Tac-Toe - Exercises

-- player
-- player
-- player
-- player
-- player
-- player
-- player
-- player
-- player
-- player

el = o o (G I (G I G I G)

has also a "non-winning" strategy

does not have a "losing" strategy

does not have a "drawing" strategy
has a "non-drawing" strategy

does not have a "winning" strategy
has a "non-losing" strategy

has also a "non-winning" strategy

does not have a "losing" strategy

does not have a "drawing" strategy
has a "non-drawing" strategy

	Planning problem
	Examples
	The Tower of Hanoi
	The Ferryman
	Tic-Tac-Toe

