Faculty of Computer Science Free University of Bozen-Bolzano Alessandro Artale

Formal Methods Exam – 4.July.2008

STUDENT NAME:

STUDENT NUMBER:

STUDENT SIGNATURE:

This exam will constitute the 80% of the overall course assessment.

### 1 Proving Equivalences in LTL and CTL

Formally prove the following equivalences between LTL and CTL formulas:

- LTL equivalence.  $\Diamond \varphi \equiv \top \mathcal{U} \varphi$ .
- CTL equivalence.  $\Box \Diamond \varphi \equiv \neg \otimes \Box \neg \varphi$ .

Prove that the following pairs of formulas are not equivalent by exhibiting a model of the first formula which is not a model of the other:

- LTL.  $\Box(\varphi \lor \psi)$  is not equivalent to  $\Box \varphi \lor \Box \psi$ .
- **CTL.**  $\mathbb{P} \diamond (\varphi \lor \psi)$  is not equivalent to  $\mathbb{P} \diamond \varphi \lor \mathbb{P} \diamond \psi$ .

Finally, answer the following question:

• Show the Syntax and the Semantics over **Kripke structures** (i.e., the so called *path-semantics*) of LTL and define the notion of formula satisfiability.

### 2 Expressing Properties in LTL

Express the following properties in LTL assumed to be true at all points in time:

- 1. Between the events S and T the event W is never true.
- 2. It is never the case that events  $E_1$  and  $E_2$  happen at the same time.
- 3. A person is alive till he dies. After he dies a person cannot be alive again.
- 4. If event P is true then there exists a future time (not including the current time) where the event Q is true.

Finally, answer the following question:

• Discuss on the expressive power of LTL Vs. CTL.

### 3 Model Checking in LTL

You are given the following Kripke model  $\mathcal{M}$ :



Extract from the above graphical representation of  $\mathcal{M}$  its formal definition. Furthermore, for each of the following **LTL** formulas  $\varphi$ :

- 1.  $((a_1 \land \neg b_2) \lor b_1) \to \bigcirc b_2 \lor \bigcirc \bigcirc (c_1 \lor c_2)$
- 2.  $\Box(\neg c_2 \lor \bigcirc a_1)$
- 3.  $\Box (\bigcirc b_1 \rightarrow \diamondsuit (c_1 \land \neg b_1))$
- 4.  $\Box \diamondsuit b_2 \to \Box \diamondsuit (a_1 \land a_2)$
- 5.  $(a_1 \lor a_2) \mathcal{U} (c_1 \lor c_2)$

reply to the following questions:

- 1. Find a path from the initial state which satisfies  $\varphi$ .
- 2. Check whether  $\mathcal{M} \models \varphi$ , and in case the answer is negative exhibit a path that does not satisfy the formula.

## 4 Model Checking in CTL

You are given the following Kripke model  $\mathcal{M}$ :



For each of the following **CTL** formulas  $\varphi$ :

- 1.  $\mathbb{D} \diamondsuit (b \land c)$
- 2.  $\mathbb{P} \square (b \lor (c \mathcal{U} a))$
- 3.  $\otimes \Box(a \lor \otimes \bigcirc (b \land d))$
- 4.  $\diamond \diamond (c \land \square \square \neg c)$

check whether  $\mathcal{M} \models \varphi$  holds by using the labeling algorithm.

# 5 Symbolic Model Checking

Given the Kripke model of the Exercise 4 do the following:

- 1. Write the characteristic function of the initial state,  $\xi(s_0)$ .
- 2. Construct the OBDD in canonical form for  $\xi(s_0)$  by showing all the partial OBDD's needed to reach the final OBDD.
- 3. Check whether  $\mathcal{M} \models \neg a \rightarrow (b \land c)$  holds by using the symbolic model checking algorithm.

Furthermore, explain how to build an OBDD for *PreImages* CTL formulas, i.e.  $B_{\bigotimes \bigcirc \varphi}$ .