A.A. 2006-2007, CDLS in Informatica

Introduction to Formal Methods

06: SAT Based Bounded Model Checking

Roberto Sebastiani – rseba@dit.unitn.it

Some material (text, figures) displayed in these slides is courtesy of M. Benerecetti, A. Cimatti, P. Pandya, M. Pistore, M. Roveri, S.Tonetta. S. Tonetta.

Last update: December 6, 2006
Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTIVATIONS</td>
<td>2</td>
</tr>
<tr>
<td>BACKGROUND ON SAT</td>
<td>5</td>
</tr>
<tr>
<td>A SIMPLE EXAMPLE</td>
<td>21</td>
</tr>
<tr>
<td>BOUNDED MODEL CHECKING</td>
<td>26</td>
</tr>
<tr>
<td>COMPUTING THE BOUNDS</td>
<td>38</td>
</tr>
<tr>
<td>INDUCTIVE REASONING ON INVIANTS</td>
<td>44</td>
</tr>
</tbody>
</table>
SAT-based Bounded Model Checking

▷ Key problems with BDD’s:
 • they can explode in space
 • an expert user can make the difference (e.g. reordering, algorithms)

▷ A possible alternative:
 • Propositional Satisfiability Checking (SAT)
 • SAT technology is very advanced

▷ Advantages:
 • reduced memory requirements
 • limited sensitivity: one good setting, does not require expert users
 • much higher capacity (more variables) than BDD based techniques
Key ideas:

- look for counter-example paths of increasing length k
 - oriented to finding bugs
- for each k, builds a boolean formula that is satisfiable iff there is a counter-example of length k
 - can be expressed using $k \cdot |s|$ variables
 - formula construction is not subject to state explosion
- satisfiability of the boolean formulas is checked using a SAT procedure
 - can manage complex formulae on several 100K variables
 - returns satisfying assignment (i.e., a counter-example)
Content

√ • MOTIVATIONS ... 2
⇒ • BACKGROUND ON SAT 5
• A SIMPLE EXAMPLE ... 21
• BOUNDED MODEL CHECKING 26
• COMPUTING THE BOUNDS 38
• INDUCTIVE REASONING ON INVARIANTS ... 44
Basic notation & definitions

- **Boolean formula**
 - \top, \bot are formulas
 - A propositional atom A_1, A_2, A_3, \ldots is a formula;
 - if φ_1 and φ_2 are formulas, then $\neg \varphi_1$, $\varphi_1 \land \varphi_2$, $\varphi_1 \lor \varphi_2$, $\varphi_1 \rightarrow \varphi_2$, $\varphi_1 \leftrightarrow \varphi_2$ are formulas.

- **Literal**: a propositional atom A_i (positive literal) or its negation $\neg A_i$ (negative literal)

- N.B.: if $l := \neg A_i$, then $\neg l := A_i$

- **Atoms(φ)**: the set $\{A_1, \ldots, A_N\}$ of atoms occurring in φ.

- a boolean formula can be represented as a tree or as a DAG
Basic notation & definitions (cont)

- **Total truth assignment** μ for φ:
 $\mu : Atoms(\varphi) \mapsto \{ \top, \bot \}$.

- **Partial Truth assignment** μ for φ:
 $\mu : \mathcal{A} \mapsto \{ \top, \bot \}, \mathcal{A} \subset Atoms(\varphi)$.

- **Set and formula representation of an assignment:**
 - μ can be represented as a set of literals:
 \[
 \{ \mu(A_1) := \top, \mu(A_2) := \bot \} \implies \{ A_1, \neg A_2 \}
 \]
 - μ can be represented as a formula:
 \[
 \{ \mu(A_1) := \top, \mu(A_2) := \bot \} \implies A_1 \land \neg A_2
 \]
Basic notation & definitions (cont)

- $\mu \models \varphi$ (μ satisfies φ):
 - $\mu \models A_i \iff \mu(A_i) = \top$
 - $\mu \models \neg \varphi \iff \text{not } \mu \models \varphi$
 - $\mu \models \varphi_1 \land \varphi_2 \iff \mu \models \varphi_1 \text{ and } \mu \models \varphi_2$
 - ...

- φ is satisfiable iff $\mu \models \varphi$ for some μ

- $\varphi_1 \models \varphi_2$ (φ₁ entails φ₂):
 - $\varphi_1 \models \varphi_2$ iff for every μ $\mu \models \varphi_1 \implies \mu \models \varphi_2$

- $\models \varphi$ (φ is valid):
 - $\models \varphi$ iff for every μ $\mu \models \varphi$

- φ is valid $\iff \neg \varphi$ is not satisfiable
Equivalence and equi-satisfiability

- ϕ_1 and ϕ_2 are equivalent iff, for every μ,
 $$\mu \models \phi_1 \iff \mu \models \phi_2$$

- ϕ_1 and ϕ_2 are equi-satisfiable iff
 exists μ_1 s.t. $\mu_1 \models \phi_1$ iff exists μ_2 s.t. $\mu_2 \models \phi_2$

- ϕ_1, ϕ_2 equivalent

- $\phi_1 \lor \phi_2$ and $(\phi_1 \lor \neg A_3) \land (A_3 \lor \phi_2)$, A_3 not in $\phi_1 \lor \phi_2$, are equi-satisfiable but not equivalent.
The problem of deciding the **satisfiability** of a propositional formula is **NP-complete**.

The most important logical problems (**validity**, **inference**, **entailment**, **equivalence**, ...) can be straightforwardly reduced to **satisfiability**, and are thus **(co)NP-complete**.

↓

No existing worst-case-polynomial algorithm.
POLARITY of subformulas

Polarity: the number of nested negations modulo 2.

- **Positive/negative occurrences**
 - ϕ occurs positively in ϕ;
 - if $\neg \phi_1$ occurs positively [negatively] in ϕ, then ϕ_1 occurs negatively [positively] in ϕ;
 - if $\phi_1 \land \phi_2$ or $\phi_1 \lor \phi_2$ occur positively [negatively] in ϕ, then ϕ_1 and ϕ_2 occur positively [negatively] in ϕ;
 - if $\phi_1 \rightarrow \phi_2$ occurs positively [negatively] in ϕ, then ϕ_1 occurs negatively [positively] in ϕ and ϕ_2 occurs positively [negatively] in ϕ;
 - if $\phi_1 \leftrightarrow \phi_2$ occurs in ϕ, then ϕ_1 and ϕ_2 occur positively and negatively in ϕ;
Negative normal form (NNF)

- φ is in **Negative normal form** iff it is given only by applications of \&, \lor \text{ to literals.}

- *every φ can be reduced into NNF:*
 1. substituting all →’s and ↔’s:

 \[\phi_1 \rightarrow \phi_2 \implies \neg \phi_1 \lor \phi_2 \]

 \[\phi_1 \leftrightarrow \phi_2 \implies (\neg \phi_1 \lor \phi_2) \land (\phi_1 \lor \neg \phi_2) \]

 2. pushing down negations recursively:

 \[\neg (\phi_1 \land \phi_2) \implies \neg \phi_1 \lor \neg \phi_2 \]

 \[\neg (\phi_1 \lor \phi_2) \implies \neg \phi_1 \land \neg \phi_2 \]

 \[\neg \neg \phi_1 \implies \phi_1 \]

- The reduction is **linear** if a DAG representation is used.

- Preserves the **equivalence** of formulas.
Conjunctive Normal Form (CNF)

- φ is in **Conjunctive normal form** iff it is a conjunction of disjunctions of literals:
 $$\bigwedge L \bigvee_{i=1}^{K_i} \bigvee_{j_i=1}^{l_{j_i}}$$

- the disjunctions of literals $\bigvee_{j_i=1}^{K_i} l_{j_i}$ are called **clauses**

- Easier to handle: list of lists of literals.
 \(\implies\) no reasoning on the recursive structure of the formula
Classic CNF Conversion $CNF(\varphi)$

- Every φ can be reduced into CNF by, e.g.,
 1. converting it into NNF;
 2. applying recursively the DeMorgan’s Rule:
 \[
 (\varphi_1 \land \varphi_2) \lor \varphi_3 \implies (\varphi_1 \lor \varphi_3) \land (\varphi_2 \lor \varphi_3)
 \]
- Worst-case exponential.
- $Atoms(CNF(\varphi)) = Atoms(\varphi)$.
- $CNF(\varphi)$ is equivalent to φ.
- **Normal**: if φ_1 equivalent to φ_2, then $CNF(\varphi_1)$ identical to $CNF(\varphi_2)$ modulo reordering.
- Rarely used in practice.
Labeling CNF conversion $CNF_{label}(\varphi)$

- Every φ can be reduced into CNF by, e.g., applying recursively bottom-up the rules:
 \[
 \varphi \quad \Rightarrow \quad \varphi[(l_i \lor l_j)\mid B] \land CNF(B \leftrightarrow (l_i \lor l_j))
 \]
 \[
 \varphi \quad \Rightarrow \quad \varphi[(l_i \land l_j)\mid B] \land CNF(B \leftrightarrow (l_i \land l_j))
 \]
 \[
 \varphi \quad \Rightarrow \quad \varphi[(l_i \leftrightarrow l_j)\mid B] \land CNF(B \leftrightarrow (l_i \leftrightarrow l_j))
 \]
 l_i, l_j being literals and B being a “new” variable.

- Worst-case linear.

- $Atoms(CNF_{label}(\varphi)) \supseteq Atoms(\varphi)$.

- $CNF_{label}(\varphi)$ is equi-satisfiable w.r.t. φ.

- Non-normal.

- More used in practice.
- **Davis-Putnam-Longeman-Loveland procedure** (DPLL)
- Tries to build recursively an assignment μ satisfying φ;
- At each recursive step assigns a truth value to (all instances of) one atom.
- Performs deterministic choices first.
DPLL Algorithm

function $DPLL(\varphi, \mu)$

if $\varphi = \top$

 then return True; /* base */

if $\varphi = \bot$

 then return False; /* backtrack */

if \{a unit clause l occurs in φ\}

 then return $DPLL(assign(l, \varphi), \mu \land l)$; /* unit */

if \{a literal l occurs pure in φ\}

 then return $DPLL(assign(l, \varphi), \mu \land l)$; /* pure */

$l := \text{choose-literal}(\varphi)$; /* split */

return $DPLL(assign(l, \varphi), \mu \land l)$ or
$DPLL(assign(\neg l, \varphi), \mu \land \neg l)$;
Variants of DPLL

DPLL is a family of algorithms.

- different splitting heuristics
- preprocessing: (subsumption, 2-simplification)
- backjumping
- learning
- random restart
- horn relaxation
- ...

CDLS in Informatica
DPLL – summary

▶ Handles **CNF formulas**

▶ Probably **the most efficient SAT algorithm**

▶ Requires **polynomial space!!!**
 ➞ very limited memory requirements

▶ **ChooseLiteral() critical!**

▶ **Advanced optimization techniques**

▶ Many very efficient implementations [e.g., Chaff]
Many applications of SAT

- Many successful applications of SAT:
 - Boolean circuits
 - (Bounded) Planning
 - (Bounded) Model Checking
 - Cryptography
 - Scheduling
 - ...

- All NP-complete problem can be (polynomially) converted to SAT.

- Key issue: find an efficient encoding.
Content

<table>
<thead>
<tr>
<th></th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>MOTIVATIONS</td>
<td>2</td>
</tr>
<tr>
<td>✓</td>
<td>BACKGROUND ON SAT</td>
<td>5</td>
</tr>
<tr>
<td>=></td>
<td>A SIMPLE EXAMPLE</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>BOUNDED MODEL CHECKING</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>COMPUTING THE BOUNDS</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>INDUCTIVE REASONING ON INVARIANTS</td>
<td>44</td>
</tr>
</tbody>
</table>
Bounded Model Checking: Example

- LTL Formula: $G(p \rightarrow Fq)$
- Negated Formula (violation): $F(p \& G \lnot q)$
- $k = 0$:

 - No counter-example found.
Bounded Model Checking: Example

- **LTL Formula:** \(G(p \rightarrow Fq) \)
- **Negated Formula (violation):** \(F(p \land G \neg q) \)
- \(k = 1: \)

 - No counter-example found.
Bounded Model Checking: Example

- LTL Formula: \(G(p \rightarrow Fq) \)
- Negated Formula (violation): \(F(p \land G \neg q) \)
- \(k = 2 \):
- No counter-example found.
Bounded Model Checking: Example

- LTL Formula: \(G(p \rightarrow Fq) \)
- Negated Formula (violation): \(F(p \& G!q) \)
- \(k = 3 \):

\[1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \]

- The 2nd trace is a counter-example!
The problem [Biere et al, 1999]

Ingredients:

- A system written as a Kripke structure \(M := \langle S, I, T, L \rangle \)
- A property \(f \) written as a LTL formula:
- an integer \(k \) (bound)

Problem:

- Is there an execution path of \(M \) of length \(k \) satisfying the temporal property \(f \)?:
 \[
 M \models_k Ef
 \]
- check repeated for increasing values of \(k = 1, 2, 3, ... \)
The encoding

Equivalent to the satisfiability problem of a boolean formula $\left[\left[M, f \right]\right]_k$ defined as follows:

\[
\left[\left[M, f \right]\right]_k := \left[\left[M \right]\right]_k \land \left[\left[f \right]\right]_k
\]

(1)

\[
\left[\left[M \right]\right]_k := I(s^0) \land \bigwedge_{i=0}^{k-1} R(s^i, s^{i+1}),
\]

(2)

\[
\left[\left[f \right]\right]_k := (\neg \bigvee_{l=0}^{k} R(s^k, s^l) \land \left[\left[f \right]\right]_l^0) \lor \bigvee_{l=0}^{k} (R(s^k, s^l) \land l\left[\left[f \right]\right]_l^0),
\]

(3)

- the vector s of propositional variables is replicated $k+1$ times $s^0, s^1, ..., s^k$
- $\left[\left[M \right]\right]_k$ encodes the fact that the k-path is an execution of M
- $\left[\left[f \right]\right]_k$ encodes the fact that the k-path satisfies f
The Encoding [cont.]

In general, the encoding for a formula \(f \) with \(k \) steps

\[
[[f]]_k
\]

is the disjunction of

▷ the constraints needed to express a model without loopback,

\[
(\neg (\bigvee_{l=0}^{k} R(s^k, s^l)) \land [[[f]]_k]^0)
\]

▷ the constraints needed to express a given loopback, for all possible points of loopback

\[
\bigvee_{l=0}^{k} (R(s^k, s^l) \land l[[f]]_k^0)
\]
The encoding of $[[f]]^i_k$ and $l[[f]]^i_k$

<table>
<thead>
<tr>
<th>f</th>
<th>$[[f]]^i_k$</th>
<th>$l[[f]]^i_k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>p_i</td>
<td>p_i</td>
</tr>
<tr>
<td>$\neg p$</td>
<td>$\neg p_i$</td>
<td>$\neg p_i$</td>
</tr>
<tr>
<td>$h \land g$</td>
<td>$[[h]]^i_k \land [[g]]^i_k$</td>
<td>$l[[h]]^i_k \land l[[g]]^i_k$</td>
</tr>
<tr>
<td>$h \lor g$</td>
<td>$[[h]]^i_k \lor [[g]]^i_k$</td>
<td>$l[[h]]^i_k \lor l[[g]]^i_k$</td>
</tr>
<tr>
<td>X_g</td>
<td>$[[g]]^i_k$ if $i < k$ (\perp) otherwise.</td>
<td>$l[[g]]^i_k$ if $i < k$ (\perp) otherwise.</td>
</tr>
<tr>
<td>G_g</td>
<td>\perp</td>
<td>$\land_{j=\min(i,l)}^{k} l[[g]]^j$</td>
</tr>
<tr>
<td>F_g</td>
<td>$\lor_{j=i}^{k} [[g]]^j_k$</td>
<td>$\lor_{j=\min(i,l)}^{k} l[[g]]^j$</td>
</tr>
<tr>
<td>hUg</td>
<td>$\lor_{j=i}^{k} \left([[g]]^j_k \land \land_{n=i}^{j-1} [[h]]^n_k \right)$</td>
<td>$\lor_{j=i}^{k} \left(l[[g]]^j_k \land \land_{n=i}^{j-1} l[[h]]^n_k \right) \lor$ $\lor_{j=1}^{i-1} \left(l[[g]]^j_k \land \land_{n=i}^{k} l[[h]]^n_k \land \land_{n=l}^{j-1} l[[h]]^n_k \right)$</td>
</tr>
<tr>
<td>hRg</td>
<td>$\lor_{j=i}^{k} \left([[h]]^j_k \land \land_{n=i}^{j} [[g]]^n_k \right)$</td>
<td>$\lor_{j=\min(i,l)}^{k} l[[g]]^j$ \lor $\lor_{j=i}^{k} \left(i[[h]]^j_k \land \land_{n=i}^{j} l[[g]]^n_k \right)$ \lor $\lor_{j=1}^{i-1} \left(i[[h]]^j_k \land \land_{n=i}^{k} l[[g]]^n_k \land \land_{n=l}^{j-1} l[[g]]^n_k \right)$</td>
</tr>
</tbody>
</table>
Example: $\mathbf{F}p$ (reachability)

- $f := \mathbf{F}p$: is there a reachable state in which p holds?
- a finite path can show that the property holds
- $[[M, f]]_k$ is:

\[
I(s^0) \land \bigwedge_{i=0}^{k-1} R(s^i, s^{i+1}) \land \bigvee_{j=0}^k p^j
\]

\[
\begin{align*}
\neg p & \quad \rightarrow \\
S_0 & \quad \rightarrow \\
\neg p & \quad \rightarrow \\
S_1 & \quad \rightarrow \\
\ldots & \quad \rightarrow \\
\neg p & \quad \rightarrow \\
S_{k-1} & \quad \rightarrow \\
p & \quad \rightarrow \\
S_k &
\end{align*}
\]
Example: \(G_p \)

▷ \(f := G_p \): is there a path where \(p \) holds forever?

▷ We need to produce an infinite behaviour, with a finite number of transitions

▷ We can do it by imposing that the path loops back

\[
\frac{\text{[[}M, f\text{]]}_k}{\begin{align*}
I(s^0) \land \bigwedge_{i=0}^{k-1} R(s^i, s^{i+1}) \land \\
\bigvee_{l=0}^{k} R(s^k, s^l) \land \\
\bigwedge_{j=0}^{k} p^j
\end{align*}}
\]
Example: $\mathbf{GF}_q \land \mathbf{F}p$ (fair reachability)

- $f := \mathbf{GF}_q \land \mathbf{F}p$: provided that q holds infinitely often, is there a reachable state in which p holds?
- Again, we need to produce an infinite behaviour, with a finite number of transitions

$[[M,f]]_k$ is:

$$I(s^0) \land \bigwedge_{i=0}^{k-1} R(s^i,s^{i+1}) \land \bigvee_{j=0}^k p_j \land \bigvee_{l=0}^k \left(R(s^k,s^l) \land \bigvee_{j=l}^k q \right)$$
Example: a bugged 3-bit shift register

▷ System M:
 - $I(x) := \top$ (arbitrary initial state)
 - Correct R:
 \[
 R(x, x') := (x'[0] \leftrightarrow x[1]) \land (x'[1] \leftrightarrow x[2]) \land (x'[2] \leftrightarrow 0)
 \]
 - Bugged R:
 \[
 R(x, x') := (x'[0] \leftrightarrow x[1]) \land (x'[1] \leftrightarrow x[2]) \land (x'[2] \leftrightarrow 1)
 \]

▷ Property: $\mathbf{AF}(!x[0] \land !x[1] \land !x[2])$

▷ BMC Problem: $M \models_k \mathbf{EG}((x[0] \lor x[1] \lor x[2]))$
Example: a bugged 3-bit shift register (cont.)

$k = 2$

\[
[[M]]_2 : \left((x_1[0] \leftrightarrow x_0[1]) \land (x_1[1] \leftrightarrow x_0[2]) \land (x_1[2] \leftrightarrow 1) \land \\
(x_2[0] \leftrightarrow x_1[1]) \land (x_2[1] \leftrightarrow x_1[2]) \land (x_2[2] \leftrightarrow 1) \right) \land \\
\big((x_0[0] \leftrightarrow x_2[1]) \land (x_0[1] \leftrightarrow x_2[2]) \land (x_0[2] \leftrightarrow 1)\big) \lor \\
\big((x_1[0] \leftrightarrow x_2[1]) \land (x_1[1] \leftrightarrow x_2[2]) \land (x_1[2] \leftrightarrow 1)\big) \lor \\
\big((x_2[0] \leftrightarrow x_2[1]) \land (x_2[1] \leftrightarrow x_2[2]) \land (x_2[2] \leftrightarrow 1)\big)
\]

\[\bigwedge_{i=0}^2 (x \neq 0) : \left((x_0[0] \lor x_0[1] \lor x_0[2]) \land \\
(x_1[0] \lor x_1[1] \lor x_1[2]) \land \\
(x_2[0] \lor x_2[1] \lor x_2[2]) \right) \land \\
\bigwedge_{i=0}^2 (x \neq 0)
\]

\[\implies \text{SAT: } x_i[j] := 1 \ \forall i, j\]
Bounded Model Checking: summary

- **incomplete technique:**
 - if you find all formulas unsatisfiable, it tells you nothing
 - computing the maximum k (diameter) possible but extremely hard
- **very efficient** for some problems (typically debugging)
- lots of enhancements
- current symbolic model checkers embed a SAT based BMC tool
Efficiency Issues in Bounded Model Checking

- Caching different problems:
 - can we exploit the similarities between problems at k and $k+1$?

- Simplification of encodings
 - Reduced Boolean Circuits (RBC)
 - Boolean Expression Diagrams (BED)
 - Simplification based on Binary-Clauses Reasoning

- Extend usage to CTL formulae

- When can we stop increasing the bound k if we don’t find violations?
Content

✓ • MOTIVATIONS .. 2
✓ • BACKGROUND ON SAT 5
✓ • A SIMPLE EXAMPLE 21
✓ • BOUNDED MODEL CHECKING 26
⇒ • COMPUTING THE BOUNDS 38
• INDUCTIVE REASONING ON INVARIANTS 44
Basic Bound

Theorem. If $k = |M|$, then $M \models Ef \iff M \models_k Ef$.

- $|M|$ is always a bound of k. ($2^{|s|}$ is a bound as well.)
 - $|M|$ huge!
 - not so easy to compute in a symbolic setting.

\implies need to find better bounds!
Diameter: Given M, the diameter of M is the minimum integer d s.t. for every path $s_0, ..., s_{d+1}$ there exist a path $t_0, ..., t_l$ s.t. $l \leq d$, $t_0 = s_0$ and $t_l = s_{d+1}$.

Intuition: if u is reachable from v, then there is a path from v to u of length d or less.

\implies it is the maximum distance between two states in M.
The diameter: computation

- **d** is the minimum integer \(d\) which makes the following formula true:

\[
\forall s_0, \ldots, s_{d+1}. \exists t_0, \ldots, t_d. \bigwedge_{i=0}^{d} T(s_i, s_{i+1}) \rightarrow \left(t_0 = s_0 \land \bigwedge_{i=0}^{d-1} T(t_i, t_{i+1}) \land \bigvee_{i=0}^{d} t_i = s_{d+1} \right)
\]

- Quantified boolean formula (QBF): much harder than NP-complete!
The recurrence diameter

Recurrence diameter: Given M, the recurrence diameter of M is the minimum integer d s.t. for every path s_0, \ldots, s_{d+1} there exist $j \leq d$ s.t. $s_{d+1} = s_j$

Intuition: the maximum length of a non-loop path
The recurrence diameter: computation

▷ d is the minimum integer d which makes the following formula true:

$$\forall s_0, \ldots, s_{d+1}. \bigwedge_{i=0}^{d} T(s_i, s_{i+1}) \rightarrow \bigvee_{i=0}^{d} s_i = s_{d+1}$$

▷ Validity problem: coNP-complete (solvable by SAT).

▷ Possibly much longer than the diameter!

Diameter = 1

Recurrence Diameter = 3
Content

- MOTIVATIONS .. 2
- BACKGROUND ON SAT 5
- A SIMPLE EXAMPLE 21
- BOUNDED MODEL CHECKING 26
- COMPUTING THE BOUNDS 38
- INDUCTIVE REASONING ON INVARIANTS 44
Inductive Reasoning on Invariants

1. If all the initial states are good,

2. and if from any good state we only go to good states

⇒ then we can conclude that the system is correct for all reachable states.
SAT-based Inductive Reasoning on Invariants

1. If all the initial states are good
 - $I(s^0) \rightarrow Good(s^0)$ is valid (its negation is unsatisfiable)

2. If from any good state we only go to good states
 - $\neg \left(\neg \left((I(s^0) \rightarrow Good(s^0)) \right) \right)$
 - $\neg \left(\neg \left(\left(Good(s^k) \land R(s^k, s^{k+1}) \right) \rightarrow Good(s^{k+1}) \right) \right)$
 then we can conclude that the system is correct for all reachable states.

⇒ Check for the unsatisfiability of the boolean formulas:
SAT-based Inductive Reasoning on Invariants [cont.]
Problem: Induction may fail because of unreachable states:

- if $(\text{Good}(s^k) \land R(s^k, s^{k+1})) \rightarrow \text{Good}(s^{k+1})$ is not valid, this does not mean that the property does not hold
- both s^k and s^{k+1} might be unreachable
Solution: increase the depth of induction
\[(Good(s^k) \land R(s^k, s^{k+1}) \land Good(s^{k+1}) \land R(s^{k+1}, s^{k+2})) \rightarrow Good(s^{k+2})\]
force loop freedom with \(- (s^i = s^j)\)

⇒ Check for the unsatisfiability of the boolean formulas:

\[-(I(s^0) \rightarrow Good(s^0))\]
\[-((Good(s^k) \land R(s^k, s^{k+1})) \rightarrow Good(s^{k+1}))\]
\[-((Good(s^k) \land R(s^k, s^{k+1}) \land Good(s^{k+1}) \land R(s^{k+1}, s^{k+2})) \rightarrow Good(s^{k+2})\]

▷ repeat for increasing values of the gap 1, 2, 3, 4,....

▷ dual to bounded model checking
Guess (or, better, infer) ϕ such that $Good \land \phi$ is an invariant

- All the above checks are implementable with SAT technologies
Mixed BMC & Inductive reasoning [Sheeran et al. 2000]

1. function \texttt{CHECKPROPERTY} \((I, R, \varphi)\)
2. \hspace{1em} for \(n := 0, 1, 2, 3, \ldots\) do
3. \hspace{2em} if \((\text{DPLL}(Base_n) == \text{SAT})\)
4. \hspace{3em} then return \texttt{PROPERTY_VIOLATED};
5. \hspace{2em} else if \((\text{DPLL}(Step_n \land Unique_n) == \text{UNSAT})\)
6. \hspace{3em} then return \texttt{PROPERTY_VERIFIED};
7. \hspace{1em} end for;

\[
Base_n := I(s_0) \land \bigwedge_{i=0}^{n-1} (R(s_i, s_{i+1}) \land \varphi(s_i)) \land \neg \varphi(s_n)
\]

\[
Step_n := \bigwedge_{i=0}^{n} (R(s_i, s_{i+1}) \land \varphi(s_i)) \land \neg \varphi(s_{n+1})
\]

\[
Unique_n := \bigwedge_{0 \leq i \leq j \leq n} \neg (s_i = s_{j+1})
\]