
SAFELOGIC CUSTOMER SUCCESS STORY

By utilizing formal verifi cation for tracking bugs in an RTL design, semiconductor company Tran-
Switch in France minimized its respin costs and improved the design quality. The formal verifi -
cation tool Safelogic Verifi er® not only identifi ed critical bugs, but also verifi ed that the changes
made complied with the design’s established functional requirements.

Verifi cation challenge
TranSwitch, a leader in semiconductor design, produces an Ether-
Map suite that is well adapted for effective development of servic-
es on SONET/SDH infrastructures. The EtherMap suite consists
of three mappers, EtherMap-3, EtherMap-12 and EtherMap-48,
which together with the in-house developed framer PHAST, pro-
vide a platform for TDM and EoS applications.

EtherMap-3 is a mapper developed in VHDL, which contains more
than 7 million gates and consists of a large number of blocks.
TranSwitch began verifi cation of the EtherMap-3 mapper over a
year ago and the total simulation time corresponded to over 1,000
hours on a 2.5 GHz processor. During the year, several thousands
of man-hours were put in to prepare test-benches and code for
simulation with ModelSim and Specman. Altogether, 12 parallel
licenses were used by each tool during the simulation. The simula-
tion was limited to a number of block tests and only a few stress
tests, which entailed that large portions of the block relations were
not tested at all. The substantial time spent on preparing test-
benches and simulating, and the already tight schedule for the
project, meant that verifi cation tasks had to be concentrated to
critical functionalities. The problems revealed during verifi cation
were corrected and EtherMap-3 was sent on to synthesis and
implementation on silicon.

Introduction of formal verifi cation –
Safelogic Verifi er
When the completed silicon prototype was subsequently system-
tested in the lab, four critical bugs were discovered. These bugs
were never encountered during the traditional simulation process
and thus went undetected to silicon. According to TranSwitch, it
would have taken the efforts of four persons for one month to
localize and correct the problems discovered on the silicon pro-
totype in a traditional verifi cation environment. It would also have
required considerable resources in the form of processor power
and license utilization. It is not uncommon that design engineers
must rewrite large portions of the simulation environment to be
able to recreate (if possible) the bug and the corresponding re-
gression environment.

In conjunction with the discovery of the remaining bugs, Safelogic
Verifi er® was introduced – a formal static property checker – into
the verifi cation process. Safelogic Verifi er is a tool that focuses on
verifying design blocks expressed in VHDL or Verilog, and proper-
ties written in the standardized property language PSL. Safelogic
Verifi er ensures that the RTL design complies with the expressed
properties, alternatively provides concrete counterexamples when
the design confl icts with these properties. A counterexample con-
sists of the shortest path from the verifi cation’s start state to the
state where the bug appears. As Safelogic Verifi er can generate
a test-bench for triggering the bug at a later time, the user can
simulate and use other debugging tools to more easily understand
the bug in the design.

Case highlights - TranSwitch

 • VHDL design of an Ethernet Mapper, 7 million gates
 • Uncovered 4 critical bugs in silicon prototype
 • Wrote properties in PSL and introduced formal property
 checking
 • Identified and fixed bugs in 1 day, saved several man-
 months of work

Graphical user interface of formal property checker Safelogic
Verifi er. For batch mode regressions, a TCL command interface
is available.

artale
Highlight

artale
Highlight

artale
Highlight

artale
Highlight

artale
Highlight

artale
Highlight

artale
Highlight

Verifi cation results
The verifi cation team at TranSwitch was able to quickly set up
formal properties in PSL for the design functionality that were re-
lated to the areas from which the bugs were believed to originate.
An initial running of the RTL design together with the properties in
Safelogic Verifi er later showed that several of the properties were
fulfi lled and proofs for those properties were provided immediate-
ly. Safelogic Verifi er was able to formally verify that the properties
were fulfi lled in all applicable design states. With this knowledge,
continued verifi cation could be focused on other properties and
no additional costly verifi cation time needed to be invested in veri-
fying what was already proven.

For the four known bugs, Verifi er could provide counterexamples
that demonstrated how the design confl icted with the established
properties. The counterexamples consisted of waveform fi les,
similar to those generated in simulation, and showed the short-
est path for recreating the bug from the start state. The wave-
form fi les also contained detailed information on relevant signal
values, and with their help, it was easy for the engineers to localize
critical blocks and recreate the bugs. In less than a day, the team
was able to isolate and resolve the problems, and in less than a
minute, verify that the bugs were corrected. TranSwitch assesses
that formal verifi cation saved several man-months compared with
localizing and correcting the bugs in a traditional simulation envi-
ronment. Seen from a broader verifi cation perspective – during a
larger project, for example – this means dramatic savings in veri-
fi cation time.

Gains in time and quality
The experiences from the EtherMap-3 project demonstrated how
simple a traditional development and verifi cation environment can
be strengthened with the help of PSL properties and formal verifi -
cation. It also demonstrated the substantial gains in time and ex-
pense that could be attained from formalizing design properties.
TranSwitch could easily adapt the new technology, and time and
quality gains were apparent even for the type of selective measure
that in this case was conducted after completion of the simulation
process. If the property writing is initiated earlier in the process,
preferably before VHDL development has started, there are obvi-
ously additional time and quality gains to be made. In the case
of TranSwitch, one silicon prototype might have been possible to
avoid, and thereby it would have been possible to keep down the
NRE costs. Verifying properties early at the block level not only
saves major resources in the form of simulation time and costly
physical implementation, but also permits interaction between
those who implement and specify the design at an early stage.

TranSwitch has now introduced property-based, formal verifi -
cation throughout the main process, from system properties at
a high level to properties on the block level, and is applying the
technology in bug detection and bug correction. New versions of
EtherMap-3, EtherMap-12 and EtherMap-48 are now fully based
on formal verifi cation, resulting not only in improved quality of
shipped products but also in quicker response time to market de-
mands.

Safelogic is an EDA company developing ground-breaking tools
for improved simulation, analysis and verifi cation of RTL designs.
Products include Safelogic Monitor® - plug-in for property simula-
tion, Safelogic Verifi er® - formal property checker, and Safelogic
ASG® – automatic stimuli generator. For more information visit
www.safelogic.se.

vunit RAM_RESET_FULLFLUSH(ETRC(rtl)) {
 default clock is SYSCLK = ´1´ and SYSCLK’event;
 restrict {not RST_SYSCLK; RST_SYSCLK[*]};

 -- Property to assure that RAM reset is respected
 property RAMRESETMGT is
 always {SHTC_RAM_RST(0) = ´1´; SHTC_RAM_RST(0) = ´0´}
 |=> {[*1]; ETRC_PkDTWrPt(0) = 0 and ETRC_L2TWrPt(0) = 0};

 assume always cTRSTRAM = ´1´;
 assert RAMRESETMGT;
}

A PSL verifi cation unit written by TranSwitch for the EtherMap-3 design. The unit contains a verifi cation environment restriction, a signal as-
sumption, and a property that defi nes a RAM reset sequence that needs to be respected by the design.

artale
Highlight

artale
Highlight

artale
Highlight

artale
Highlight

artale
Highlight

