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� AUTOMATA-THEORETIC LTL MODEL CHECKING 60

CDLS in Informatica



3. Introduction to Formal Methods for SW and HW development, A.A. 2003-2004 c� Roberto Sebastiani, 2003

The problem

� Given a Kripke structure M and an LTL specification ψ, does M
satisfy ψ?:

M ��� ψ

� Equivalent to the CTL � M.C. problem:

M � � Aψ

� Dual CTL � M.C. problem:

M � � E� ψ

CDLS in Informatica



4. Introduction to Formal Methods for SW and HW development, A.A. 2003-2004 c� Roberto Sebastiani, 2003

Automata-Theoretic LTL Model Checking

� M � � Aψ (CTL � )

� � M � � ψ (LTL)

� � L � M ��� L � ψ �

� � L � M ��� L � ψ � � ��

� � L � AM ��� L � A 	 ψ � � ��

� � L � AM
 A 	 ψ � � ��

� AM is a Büchi Automaton equivalent to M (which represents all

and only the executions of M)

� A 	 ψ is a Büchi Automaton which represents all and only the

paths that satisfy� ψ (do not satisfy ψ)

� � AM
 A 	 ψ represents all and only the paths appearing in M
and not in ψ.
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Automata-Theoretic LTL M.C. (dual version)

� M � � Eϕ

� � M �� � A� ϕ

� � ...

� � L � AM
 Aϕ � �
� � �

� AM is a Büchi Automaton equivalent to M (which represents all

and only the executions of M)

� Aϕ is a Büchi Automaton which represents all and only the

paths that satisfy ϕ

� � AM
 Aϕ represents all and only the paths appearing in both

AM and Aϕ.
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Automata-Theoretic LTL Model Checking

Four steps:

1. Compute AM

2. Compute Aϕ

3. Compute the product AM
 Aϕ

4. Check the emptiness of L � AM
 Aϕ �
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Finite Word Languages

� An Alphabet Σ is a collection of symbols (letters).

E.g. Σ � � a
�

b� .

� A finite word is a finite sequence of letters. (E.g. aabb.)

The set of all finite words is denoted by Σ � .

� A language U is a set of words, i.e. U � Σ � .

Example: Words over Σ � � a
�

b� with equal number of a’s and

b’s. (E.g. aabb or abba.)

Language recognition problem:

determine whether a word belongs to a language.

Automata are computational devices able to solve language

recognition problems.
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Finite State Automata

Basic model of computational systems with finite memory.

Widely applicable

� Embedded System Controllers.

Languages: Ester-el, Lustre, Verilog.

� Synchronous Circuits.

� Regular Expression Pattern Matching

Grep, Lex, Emacs.

� Protocols

Network Protocols

Architecture: Bus, Cache Coherence, Telephony,...
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Notation

a

�

b � Σ finite alphabet.

u

�

v

�

w � Σ � finite words.

λ empty word.

u� v catenation.

ui � u� u� � u repeated i-times.

U

�

V� Σ � Finite word languages.
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FSA Definition

Nondeterministic Finite State Automaton (NFA):

NFA is � Q �

Σ
�

δ
�

I
�

F �
Q Finite set of states.

I� Q set of initial states.

F� Q set of final states.

� � Q
 Σ
 Q transition relation (edges).

We use q
a� � q� to denote � q �

a

�

q� � � δ.

Deterministic Finite State Automaton (DFA):

DFA has δ : Q
 Σ � Q, a total function.

Single initial state I � � q0� .
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Regular Languages

� A run of NFA A on u � a0 �

a1 �

� � �
�

an� 1 is a finite sequence of

states q0 �

q1 �

� � �
�

qn s.t. q0 � I and qi
ai� � qi � 1 for 0 � i � n.

� An accepting run is one where the last state qn � F .

� The language accepted by A
L � A � � � u � Σ � � A has an accepting run on u�

� The languages accepted by a NFA are called regular

languages.
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Finite State Automata

Example: DFA A1 over Σ � � a

�

b� .

Recognizes words which do not end in b.

s1 s2

a b b

a

NFA A2. Recognizes words which end in b.

s1 s2

ba,b

b
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Determinisation

Theorem (determinisation) Given a NFA A we can construct a

DFA A� s.t. L � A � � L � A� � . Size �A� � � 2O

� �

A

�� .
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Determinisation [cont.]

NFA A2: Words which end in b.

s1 s2

ba,b

b

A2 can be determinised into the automaton DA2 below.

States = 2Q.

s1

a b b

a

s1,s2

Study Topic There are NFA’s of size n for which the size of the

minimum sized DFA must have size O � 2n � .
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Closure Properties

Theorem (boolean closure) Given NFA A1 �

A2 over Σ we can

construct NFA A over Σ s.t.

� L � A � � L � A1 � (Complement). � A � � 2O

� �

A1 �� .

� L � A � � L � A1 � � L � A2 � (union). � A � � � A1 ��� � A2 � .

� L � A � � L � A1 � � L � A2 � (intersection). � A � � � A1 ��� � A2 � .
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Complementation of a NFA

A NFA A � � Q �

Σ

�

δ

�

I

�

F � is complemented by:

� determinizing it into a DFA A� � � Q�
�

Σ�
�

δ�
�

I�
�

F� �

� complementing it: A� � � Q�
�

Σ�
�

δ�
�

I�
�

F� �

� � A� � � � A� � � 2O

� �

A1 ��
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Union of two NFA’s

Two NFA’s A1 � � Q1 �

Σ1 �

δ1 �

I1 �

F1 � , A2 � � Q2 �

Σ2 �

δ2 �

I2 �

F2 � ,
A � A1 � A2 � � Q �

Σ

�

δ

�

I

�

F � is defined as follows

� Q : � Q1 � Q2, I : � I1 � I2, F : � F1 � F2

� R � s �

s� � : �

R1 � s �

s� � i f s � Q1

R2 � s �

s� � i f s � Q2

� � A is an automaton which just runs nondeterministically either

A1 or A2

� L � A � � L � A1 � � L � A2 �

� � A � � � A1 �� � A2 �
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Synchronous Product Construction

Let A1 � � Q1 �

Σ

�

δ1 �

I1 �

F1 � and A2 � � Q2 �

Σ

�

δ2 �

I2 �

F2 � . Then,

A1
 A2 � � Q �

Σ
�

δ
�

I

�

F � where

� Q � Q1
 Q2. I � I1
 I2.

F � F1
 F2.

� � p

�

q �

a� � � p�
�

q� � iff p
a� � p� and q

a� � q� .

Theorem L � A1
 A2 � � L � A1 � � L � A2 � .
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Example

a

a

b b b
b

a
a a

b

s0

t12t

t0

s1

� A1 recognizes words with an even number of b.

� A2 recognizes words with a number of a mod 3 � 0.

� The Product Automaton A1
 A2 with F � � s0 �

t0� .

2t
t1

t0

t12t
s0s0

s1

s1s1

t0s0

a
a a

a
a a

b

b

b

b b

b
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Synchronized Product Construction

Let A1 � � Q1 �

Σ1 �

δ1 �

I1 �

F1 � and A2 � � Q2 �

Σ2 �

δ2 �

I2 �

F2 � .
Then,

A1 �

A2 � � Q �

Σ

�

δ
�

I
�

F � , where

� Q � Q1
 Q2. Σ � Σ1 � Σ2.

I � I1
 I2. F � F1
 F2.

� � p

�

q �

a� � � p�
�

q� � if a � Σ1� Σ2 and p
a� � p� and q

a� � q� .

� � p

�

q �

a� � � p�
�

q � if a � Σ1, a �� Σ2 and p
a� � p� .

� � p

�

q �

a� � � p

�

q� � if a �� Σ1, a � Σ2 and q
a� � q� .
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Asynchronous Product Construction

Let A1 � � Q1 �

Σ1 �

δ1 �

I1 �

F1 � and A2 � � Q2 �

Σ2 �

δ2 �

I2 �

F2 � .
Then,

A1 � A A2 � � Q �

Σ
�

δ
�

I
�

F � , where

� Q � Q1
 Q2. Σ � Σ1 � Σ2.

I � I1
 I2. F � F1
 F2.

� � p

�

q �

a� � � p�
�

q � if a � Σ1 and p
a� � p� .

� � p

�

q �

a� � � p

�

q� � if a � Σ2 and q
a� � q� .
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Decision Problems

Theorem (Emptiness) Given a NFA A we can decide whether

L � A � � /0.

Method Forward/Backward Reachability of acceptance states in

Automaton graph. Complexity is O � � Q �� � δ � � .

Theorem (Language Containment) Given NFA A1 and A2 we

can decide whether L � A1 ��� L � A2 � .

Method: L � A1 � � L � A2 � iff L � A1 � � L � A2 � � /0. Complexity is

O � � A1 ��� 2 �

A2 � � .
N.B. Model Checking:

Typically, L � A1
 A2
 � � � 
 An � � L � Aprop � .
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Regular Expressions

Syntax: /0 � ε � a � reg1� reg2 � reg1� reg2 � reg � .

Every regular expression reg denotes a language L � reg � .
Example: � a �� � b� bb �� a � . The words with either 1 b or 2

consecutive b’s.

Theorem: For every regular expression reg we can construct a

language equivalent NFA of size O � � reg � � .

Theorem: For every DFA A we can construct a language

equivalent regular expression reg � A � .
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Infinite Word Languages

Modeling infinite computations of reactive systems.

� An ω-word α over Σ is infinite sequence

a0 �

a1 �

a2� � � .

Formally, α : � � Σ.

The set of all infinite words is denoted by Σω.

� A ω-language L is collection of ω-words, i.e. L� Σω.

Example All words over � a

�

b� with infinitely many a’s.

Notation

omega words α

�

β

�

γ � Σω.

omega-languages L

�

L1� Σω

For u � Σ � , let uω � u� u� u� � �
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Omega-Automata

We consider automaton runs over infinite words.

s1 s2

ba,b

b

Let α � aabbbb� � � . There are several possible runs.

Run ρ1 � s1 �

s1 �

s1 �

s1 �

s2 �

s2� � �

Run ρ2 � s1 �

s1 �

s1 �

s1 �

s1 �

s1� � �

Acceptance Conditions Büchi, (Muller, Rabin, Street).

Acceptance is based on states occurring infinitely often

Notation Let ρ � Qω. Then,

In f � ρ � � � s � Q ��� ∞i � � � ρ � i � � s� .
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Büchi Automata

Nondeterministic Büchi Automaton

A � � Q �

Σ

�

δ
�

I
�

F � , where F� Q is the set of accepting states.

� A run ρ of A on omega word α is an infinite sequence

ρ � qo �

q1 �

q2 �

� � � s.t. q0 � I and qi
ai� � qi � 1 for 0 � i.

� The run ρ is accepting if

In f � ρ � � F �
� /0.

� The language accepted by A
L � A � � � α � Σω � A has an accepting run on α�
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Büchi Automaton: Example

Let Σ � � a
�

b� .

Let a Deterministic Büchi Automaton (DBA) A1 be

s1 s2

a b b

a

� With F � � s1� the automaton recognizes words with infinitely

many a’s.

� With F � � s2� the automaton recognizes words with infinitely

many b’s.
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Büchi Automaton: Example (2)

Let a Nondeterministic Büchi Automaton (NBA) A2 be

s1 s2

ba,b

b

With F � � s2� , automaton A2 recognizes words with finitely

many a.Thus, L � A2 � � L � A1 � .
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Deterministic vs. Nondeterministic Büchi Automata

Theorem DBA’s are strictly less powerful than NBA’s.
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Closure Properties

Theorem (union, intersection)

For the NBA’s A1 �

A2 we can construct

– the NBA A s.t. L � A � � L � A1 � � L � A2 � . � A � � � A1 �� � A2 �

– the NBA A s.t. L � A � � L � A1 � � L � A2 � . � A � � � A1 ��� � A2 ��� 2.
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Union of two NBA’s

Two NBA’s A1 � � Q1 �

Σ1 �

δ1 �

I1 �

F1 � , A2 � � Q2 �

Σ2 �

δ2 �

I2 �

F2 � ,
A � A1 � A2 � � Q �

Σ

�

δ

�

I

�

F � is defined as follows

� Q : � Q1 � Q2, I : � I1 � I2, F : � F1 � F2

� R � s �

s� � : �

R1 � s �

s� � i f s � Q1

R2 � s �

s� � i f s � Q2

� � A is an automaton which just runs nondeterministically either

A1 or A2

� L � A � � L � A1 � � L � A2 �

� � A � � � A1 �� � A2 �

� (same construction as with ordinary automata)
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Synchronous Product of NBA’s

Let A1 � � Q1 �

Σ

�

δ1 �

I1 �

F1 � and A2 � � Q2 �

Σ

�

δ2 �

I2 �

F2 � .
Then, A1
 A2 � � Q �

Σ

�

δ

�

I

�

F � , where

Q � Q1
 Q2
 � 1

�

2� .

I � I1
 I2
 � 1� .

F � F1
 Q2
 � 1� .

� p

�

q

�

1 �

a� � � p�
�

q�
�

1 � iff p
a� � p� and q

a� � q� and p �� F1.

� p

�

q

�

1 �

a� � � p�
�

q�
�

2 � iff p
a� � p� and q

a� � q� and p � F1.

� p

�

q

�

2 �

a� � � p�
�

q�
�

2 � iff p
a� � p� and q

a� � q� and q �� F2.

� p

�

q

�

2 �

a� � � p�
�

q�
�

1 � iff p
a� � p� and q

a� � q� and q � F2.

Theorem L � A1
 A2 � � L � A1 � � L � A2 � .
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Product of NBA’s: Intuition

� The automaton remembers two tracks, one for each source

NBA, and it points to one of the two tracks

� As soon as it goes through an accepting state of the current

track, it switches to the other track

� � to visit infinitely often a state in F (i.e., F1), it must visit

infinitely often some state also in F2

� Important subcase: If F2 � Q2, then

Q � Q1
 Q2.

I � I1
 I2.

F � F1
 Q2.
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Product of NBA’s: Example

a

a

b b b
b

a
a a

b

s0

t12t

t0

s1

2t
t1

t0

t12t
s0s0

s1

s1s1

t0s0

2t
t1

t0

t12t
s0s0

s1

s1s1

t0s0

a
a a

b

b

a
a

a
a

b

b b

b

b

b

a

a

b

a

a
a

b TRACK 1

TRACK 2

1 to 2
2 to 1

1

1 1

1

1 1

2

2 2 2

2

2

b

b
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Closure Properties (2)

Theorem (complementation)

For the NBA A1 we can construct an NBA A2 such that

L � A2 � � L � A1 � .

� A2 � � O � 2 �

A1 ��
� log

� �

A1 �� � .

Method: (hint)

(1) convert a Büchi automaton into a Non-Deterministic Rabin

automaton.

(2) Determinize and Complement the Rabin automaton

(3) convert the Rabin automaton into a Büchi automaton
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Generalized Büchi Automaton

A Generalized Büchi Automaton is A : � � Q �

Σ

�

δ

�

I

�

FT � where

FT � � F1 �

F2 �

� � �
�

Fk � with Fi� Q.

A run ρ of A is accepting if In f � ρ ��� Fi �
� /0 for each 1 � i � k.

Theorem For every Generalized Büchi Automaton � A �

FT � we

can construct a language equivalent Büchi Automaton � A�
�

G� � .

Construction (Hint) Let Q� � Q
 � 1
�

� � �
�

k� .

Automaton remains in i phase till it visits a state in Fi. Then, it

moves to i� 1 mode. After phase k it moves to phase 1.

Size: � A� � � � A ��� k.
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Omega Regular Expressions

A language is called ω-regular if it has the form � n
i � 1 Ui� � Vi � ω

where Ui �

Vi are regular languages.

Theorem A language L is ω-regular iff it is NBA-recognizable.
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Decision Problem

Emptiness For a NBA A, it is decidable whether L � A � � /0.

Method

� Find the maximal strongly connected components (MSCC) in

the graph of A (disregarding the edge labels).

� A MSCC C is called non-trivial if C� F �
� /0 and C has at least

one edge.

� Find all nodes from which there is a path to a non-trivial SCC.

Call the set of these nodes as N.

� L � A � � /0 iff N� I � /0.

Time Complexity: O � � Q �� � δ � � .
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� AUTOMATA-THEORETIC LTL MODEL CHECKING 60

CDLS in Informatica



42. Introduction to Formal Methods for SW and HW development, A.A. 2003-2004 c� Roberto Sebastiani, 2003

Computing a NBA AM from a Kripke Structure M

� Transforming a K.S. M �
�

S

�

S0 �

R

�

L

�

AP

�

into an NBA

AM �
�

Q

�

Σ
�

δ
�

I
�

F

�

s.t.:

� States: Q : � S � � init� , init being a new initial state

� Alphabet: Σ : � 2AP

� Initial State: I : � � init�

� Accepting States: F : � Q � S � � init�

� Transitions:

δ : q
a� � q� iff � q �

q� � � R and L � q� � � a

init
a� � q iff q � S0 and L � q� � � a

� L � AM � � L � M �

� � AM � � � M �� 1
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Computing a NBA AM from a Kripke Structure M: Example

� � Substantially, add one initial state, move labels from states

to incoming edges, set all states as accepting states
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Computing a NBA AM from a Fair Kripke Structure M

� Transforming a fair K.S. M �
�

S

�

S0 �

R

�

L

�

AP

�

FT

�

,

FT � � F1 �

� � �
�

Fn� , into an NBA AM �
�

Q

�

Σ

�

δ

�

I

�

F

�

s.t.:

� States: Q : � S � � init� , init being a new initial state

� Alphabet: Σ : � 2AP

� Initial State: I : � � init�

� Accepting States: F : � FT

� Transitions:

δ : q
a� � q� iff � a �

a� � � R and L � q� � � a

init
a� � q iff q � S0 and L � q� � � a

� L � AM � � L � M �

� � AM � � � M �� 1

CDLS in Informatica



45. Introduction to Formal Methods for SW and HW development, A.A. 2003-2004 c� Roberto Sebastiani, 2003

Content
� THE PROBLEM . . . . . . . . . . . . . . . . . 2

� AUTOMATA ON FINITE WORDS . . . . . . . . 7

� AUTOMATA ON INFINITE WORDS . . . . . . . 25

� FROM KRIPKE STRUCTURES TO BÜCHI AUT. 41
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Paths as ω-words

Let ϕ be an LTL formula.

� Var � ϕ � denotes the set of free variables of ϕ.

E.g. Var � p � �� q U q � � � � p

�

q� .

� Let Σ : � 2Var

�

ϕ

� .

� � a model for ϕ is an ω-word α � a0 �

a1 �

� � � in Σω.

� We can define α

�

i � � ϕ. Also, α ��� ϕ iff α

�

0 � � ϕ.

Example A model of p � �� q U q � is the ω-word

� p� � �� � � q� � � p

�

q� ω.

� N.B.: correspondence between ω-words and paths in Kripke

structures:

α

�

i ��� ϕ � � π

�

si � � ϕ, α

�

0 � � ϕ � � π

�

s0 � � ϕ
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Automata for LTL model checking

Let Mod � ϕ � denote the set of models of ϕ.

Theorem For any LTL formula ϕ, the set Mod � ϕ � is

omega-regular.

� � Technique: Construct a (Generalized) NBA Aϕ such that

Mod � ϕ � � L � Aϕ � .
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Closures

Closure Given ϕ � LT L, let CL� � ϕ � be the smallest set s.t.

� ϕ � CL� � ϕ � .

� If� ϕ1 � CL� � ϕ � then ϕ1 � CL� � ϕ � .

� If ϕ1� ϕ2 � CL� � ϕ � then ϕ1 �

ϕ2 � CL� � ϕ � .

� If Xϕ1 � CL� � ϕ � then ϕ1 � CL� � ϕ � .

� If � ϕ1Uϕ2 � � CL� � ϕ � then ϕ1 �

ϕ2 � CL� � ϕ � and

X � ϕ1Uϕ2 � � CL� � ϕ �

CL � ϕ � : � � ϕ1 �

� ϕ1 � ϕ1 � CL� � ϕ �� (we identify� � ϕ1 with ϕ1.)

N.B.: �CL � ϕ � � � O � � ϕ � � .
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Atoms

An Atom is a maximal consistent subset of CL � ϕ � .

� Definition A set A� CL � ϕ � is called an atom if

� For all ϕ1 � CL � ϕ � , we have ϕ1 � A iff� ϕ1 �
� A.

� For all ϕ1� ϕ2 � CL � ϕ � , we have ϕ1� ϕ2 � A iff ϕ1 � A or

ϕ2 � A (or both).

� For all � ϕ1Uϕ2 � � CL � ϕ � , we have � ϕ1Uϕ2 � � A iff ϕ2 � A or

(ϕ1 � A and X � ϕ1Uϕ2 � � A).

� In practice, an atom is a consistent truth assignment to the

elementary subformulas of ϕ� , ϕ� being the result of applying

the tableau expansion rules to ϕ

� We call Atoms � ϕ � the set of all atoms of ϕ.
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Definition of Aϕ

For an LTL formula ϕ, we construct a Generalized NBA

Aϕ � � Q �

Σ
�

δ
�

Q0 �

FT � as follows:

� Σ � 2vars

�

ϕ

�

� Q � Atoms � ϕ � , the set of atoms.

� δ is s.t., for q

�

q� � Atoms � ϕ � and a � Σ, q
a� � q� holds in δ iff

� q� � Var � ϕ � � a,

� for all Xϕ1 � CL � ϕ � , we have Xϕ1 � q iff ϕ1 � q� .

� Q0 � � q � Atoms � ϕ � � ϕ � q� .

� FT � � F1 �

F2 �

� � �
�

Fk � where, for all � ψiUϕi � occurring

positively in ϕ,

Fi � � q � Atoms � ϕ � � � ψiUϕi � �
� q or ϕi � q� .
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Definition of Aϕ [cont.]

Theorem Let α � a0 �

a1 �

� � � � Σω. Then,

α � � ϕ iff α � L � Aϕ � .
Size: � Aϕ � � O � 2 �

ϕ
� � .
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LTL Negative Normal Form (NNF)

� Every LTL formula ϕ can be written as equivalent formula ϕ�

using only the operators� ,� X and U.

� We can further push negations down to literal level:

� � ϕ1� ϕ2 � � � �� ϕ1 � � ϕ2 �

� � ϕ1 � ϕ2 � � � �� ϕ1� � ϕ2 �

� Xϕ1 � � X� ϕ1

� � ϕ1Uϕ2 � � � �� ϕ1R� ϕ2 �

� � the resulting formula is expressed in terms of� , � , X , U, R
and literals (Negative Normal Form, NNF).

� In the construction of Aϕ we now assume that ϕ is in NNF.
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Construction of Aϕ (Schema)

Apply recursively the following steps:

Step 1: Apply the tableau expansion rules to ϕ
ψ1Uψ2 � � ψ2� � ψ1 � X � ψ1Uψ2 � �

ψ1Rψ2 � � ψ2 � � ψ1� X � ψ1Rψ2 � �

until we get a boolean combination of elementary subformulas

of ϕ
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Construction of Aϕ (Schema) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form:

i

�
j

li j �

k

Xψik �

� Each disjunct �

labels

�� � �

j

li j �

next part

� � � �

k

Xψik � represents a state:

� the conjunction of literals j li j represents a set of labels in Σ
(e.g., if Vars � ϕ � � � p

�

q

�

r� , p � � q represents the two labels

� p

�

� q

�

r� and � p

�

� q

�

� r� )

� k Xψik represents the next part of the state (obbligations

for the successors)

� N.B., if no next part occurs, X � is implicitly assumed
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Construction of Aϕ (Schema) [cont.]

Step 3: For every state represented by � j li j � k Xψik �

� draw an edge to all states which satisfy k ψik

� label the incoming edges with j li j

N.B., if no next part occurs, X � is implicitly assumed, so that an

edge to a “true” node is drawn
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Construction of Aϕ (Schema) [cont.]

Step 4: For every ψiUϕi, for every state q j, mark q j with Fi iff

� ψiUϕi � �
� q j or ϕi � q j

CDLS in Informatica



57. Introduction to Formal Methods for SW and HW development, A.A. 2003-2004 c� Roberto Sebastiani, 2003

Example: pUq

ϕ � pUq

� q� � p � X � pUq � �

� � q � X � �� � p � X � pUq � �
q

p

[ X(pUq) ]

p
q

[ XT ] [ XT ]

N.B.: e.g.,

“� � �

p� � � � � ” here equivalent to� � � � �

p

�

q

� � �

p

�
	 q

� �� � � � � ,

“� � � � � � � � ” here equivalent to� � � � �

p

�

q

� � �

p

�
	 q

� � �

	 p

�

q

� � �

	 p
�
	 q

� �� � � � �
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Example: FGp

ϕ � FGp

� � U � � Rp �

� � Rp� Xϕ

� � p � X � � Rp � �� � � �

� Rp

� Xϕ

p

p

p

[ XGp ] [ XFGp ]
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Example: GF p

ϕ � GFp

� � R � � Up �

� � Up � Xϕ

� � p� X � Fp � � � Xϕ

� � p � Xϕ �� � Xϕ � XFp �

� � p � Xϕ �� X � ϕ � Fp �

� � p � Xϕ �� Xϕ N.B.: � ϕ � Fp � � ϕ

[ XGFp ] [ XGFp ]

p
p

p

CDLS in Informatica



60. Introduction to Formal Methods for SW and HW development, A.A. 2003-2004 c� Roberto Sebastiani, 2003

Content
� THE PROBLEM . . . . . . . . . . . . . . . . . 2

� AUTOMATA ON FINITE WORDS . . . . . . . . 7

� AUTOMATA ON INFINITE WORDS . . . . . . . 25

� FROM KRIPKE STRUCTURES TO BÜCHI AUT. 41
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Automata-Theoretic LTL Model Checking

Four steps:

1. Compute AM

2. Compute Aϕ

3. Compute the product AM
 Aϕ

4. Check the emptiness of L � AM
 Aϕ �
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Automata-Theoretic LTL Model Checking: complexity

Four steps:

1. Compute AM: � AM � � O � � M � �

2. Compute Aϕ

3. Compute the product AM
 Aϕ

4. Check the emptiness of L � AM
 Aϕ �
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Automata-Theoretic LTL Model Checking: complexity [cont.]

Four steps:

1. Compute AM: � AM � � O � � M � �

2. Compute Aϕ: � Aϕ � � O � 2 �

ϕ

� �
3. Compute the product AM
 Aϕ

4. Check the emptiness of L � AM
 Aϕ �
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Automata-Theoretic LTL Model Checking: complexity [cont.]

Four steps:

1. Compute AM: � AM � � O � � M � �

2. Compute Aϕ: � Aϕ � � O � 2 �

ϕ

� �
3. Compute the product AM
 Aϕ:

� AM
 Aϕ � � � AM ��� � Aϕ � � O � � M ��� 2 �

ϕ

� �

4. Check the emptiness of L � AM
 Aϕ �
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Automata-Theoretic LTL Model Checking: complexity [cont.]

Four steps:

1. Compute AM: � AM � � O � � M � �

2. Compute Aϕ: � Aϕ � � O � 2 �

ϕ

� �
3. Compute the product AM
 Aϕ:

� AM
 Aϕ � � � AM ��� � Aϕ � � O � � M ��� 2 �

ϕ

� �

4. Check the emptiness of L � AM
 Aϕ � :
O � � AM
 Aϕ � � � O � �M ��� 2 �

ϕ

� �

� � the complexity of LTL M.C. grows linearly wrt. the size of

the model M and exponentially wrt. the size of the property ϕ
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Final Remarks

� Büchi automata are in general more expressive than LTL!

� � Some tools (e.g., Spin, ObjectGEODE) allow specifications to

be expressed directly as NBA’s

� � complementation of NBA important!

� for every LTL formula, there are many possible equivalent NBA’s

� � lots of research for finding “the best” conversion algorithm

� performing the product and checking emptiness very relevant

� � lots of techniques developed (e.g., partial order reduction)

� � lots on ongoing research
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