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Defining Sequences Recursively 
A way to define a sequence is to give an explicit formula for 
its nth term. 
For example, a sequence a0, a1, a2 . . . can be specified by 
writing 
 
 
 
The advantage of defining a sequence by such an explicit 
formula is that each term of the sequence is uniquely 
determined and can be computed in a fixed, finite number 
of steps, by substitution. 
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Defining Sequences Recursively 
Another way to define a sequence is to use recursion. 
It is similar to use the Induction Principle. 
 
This requires giving both an equation, called a recurrence 
relation, that defines each later term in the sequence by 
reference to earlier terms (induction step) and also one or 
more initial values for the sequence (basis step). 
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Example 1 – Computing Terms of a Recursively Defined Sequence 

Define a sequence c0, c1, c2, . . . recursively as follows: For 
all integers k ≥ 2, 
 
 
 
Find c2, c3, and c4. 
 
Solution: 
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Example 1 – Solution cont’d 
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Examples of Recursively Defined 
Sequences 
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Examples of Recursively Defined Sequences 

Recursion is one of the central ideas of computer science. 
 
To solve a problem recursively means to find a way to 
break it down into smaller subproblems each having the 
same form as the original problem, and  
•  the subproblems are small and easy to solve, and 
•  the solutions of the subproblems can be woven together 

to form a solution to the original problem. 
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Example 2 – The Tower of Hanoi 
In 1883 a French mathematician, Édouard Lucas, invented 
a puzzle that he called The Tower of Hanoi (La Tour 
D’Hanoï).  
 
The puzzle consisted of eight disks of wood with holes in 
their centers, which were piled in order of decreasing size 
on one pole in a row of three. Those who played the game 
were supposed to move all the disks one by one from one 
pole to another, never placing a larger disk on top of a 
smaller one. 
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Example 2 – The Tower of Hanoi 
The puzzle offered a prize of ten thousand francs (about 
$34,000 US today) to anyone who could move a tower of 
64 disks by hand while following the rules of the game. 
(See Figure 5.6.2) Assuming that you transferred the disks 
as efficiently as possible, how many moves would be 
required to win the prize? 

Figure  5.6.2 

cont’d 
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Example 2 – Solution 
An elegant and efficient way to solve this problem is to 
think recursively.  
 
Suppose that you have found the most efficient way 
possible to transfer a tower of k – 1 disks one by one from 
one pole to another, obeying the restriction that you never 
place a larger disk on top of a smaller one. 
 
What is the most efficient way to transfer a tower of k disks 
from one pole to another? 
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Example 2 – Solution 
The answer is sketched in Figure 5.6.3, where pole A is the 
initial pole and pole C is the target pole, and is described as 
follows: 

cont’d 

Figure  5.6.3 
Moves for the Tower of Hanoi 

Initial Position 
         (a) 

Position after Transferring k – 1 Disks from A to B 
                                     (b) 
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Example 2 – Solution 
 
 
 
 
 
 
 

Step 1: Transfer the top k – 1 disks from pole A to pole B.    
              If k > 2, execution of this step will require a 
              number of moves of individual disks among the 
              three poles (the point of thinking recursively is 
              not to detail of how those moves will occur). 

cont’d 

Figure  5.6.3 
Moves for the Tower of Hanoi 

Position after Moving the Bottom Disk from A to C 
                                      (c) 

Position after Transferring k – 1 Disks from B to C 
                                      (d) 
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Example 2 – Solution 
Step 2: Move the bottom disk from pole A to pole C. 
 
Step 3: Transfer the top k – 1 disks from pole B to pole C.   
              (Again, if k > 2, execution of this step will require   
              more than one move.) 
 
To see that this sequence of moves is most efficient, 
observe that to move the bottom disk of a stack of k disks  
from one pole to another, you must first transfer the top  
k – 1 disks to a third pole to get them out of the way. 
 

cont’d 
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Example 2 – Solution 
Thus transferring the stack of k disks from pole A to pole C 
requires at least two transfers of the top k – 1 disks: 
 

•  one to transfer them off the bottom disk to free the 
bottom disk so that it can be moved, and  

•  another to transfer them back on top of the bottom disk 
after the bottom disk has been moved to pole C. 
 

cont’d 
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Example 2 – Solution 
If the bottom disk were not moved directly from pole A to 
pole C but were moved to pole B first, at least two 
additional transfers of the top k – 1 disks would be 
necessary:  
 

•  one to move them from pole A to pole C so that the 
bottom disk could be moved from pole A to pole B, and 

•  another to move them off pole C so that the bottom disk 
could be moved onto pole C. 

 
This would increase the total number of moves and result in 
a less efficient transfer. 

cont’d 
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Example 2 – Solution 
Thus the minimum sequence of moves must include going 
from the initial position (a) to position (b) to position (c) to 
position (d). 
  

It follows that 
 
 
 
 
 

For each integer n ≥ 1, let 

cont’d 
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Example 2 – Solution 
Note that the numbers mn are independent of the labeling 
of the poles; it takes the same minimum number of moves 
to transfer n disks from pole A to pole C as to transfer  
n disks from pole A to pole B, for example. 
 
Also the values of mn are independent of the number of 
larger disks that may lie below the top n, provided these 
remain stationary while the top n are moved: 

 Because the disks on the bottom are all larger than the 
 ones on the top, the top disks can be moved from pole 
 to pole as though the bottom disks were not present. 

cont’d 
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Example 2 – Solution 
Going from position (a) to position (b) requires mk – 1 moves, 
going from position (b) to position (c) requires just one 
move, and going from position (c) to position (d) requires 
mk – 1 moves. 
 
By substitution into equation (5.6.1), therefore, 
 
 
 
 
The initial condition, or base, of this recursion is found by 
using the definition of the sequence. 

cont’d 
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Example 2 – Solution 
Because just one move is needed to move one disk from 
one pole to another, 
 
 
 
 
Hence the complete recursive specification of the sequence 
m1, m2, m3, . . . is as follows:  
For all integers k ≥ 2, 

cont’d 
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Example 2 – Solution 
Here is a computation of the next five terms of the 
sequence: 
 
 
 
 
 
 
Going back to the legend, suppose the priests work rapidly 
and move one disk every second. 
 

Then the time from the beginning of creation to the end of 
the world would be m64 seconds. 

cont’d 
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Example 2 – Solution 
We can compute m64 on a calculator.  
The approximate result is  
 

 
 
which is obtained by the estimate of  
 
 
 
 

seconds in a year (figuring 365.25 days in a year to take 
leap years into account). Surprisingly, this figure is close to 
some scientific estimates of the life of the universe! 

cont’d 
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Solving Recurrence Relations by 
Iteration 

 
The Method of Iteration 

 
 

SECTION 5.7 
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Solving Recurrence Relations by Iteration 

Suppose you have a sequence that satisfies a certain 
recurrence relation and initial conditions.  
 
It is often helpful to know an explicit formula for the 
sequence, especially if you need to compute terms with 
very large subscripts.  
 
Such an explicit formula is also called a solution to the 
recurrence relation. 
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The Method of Iteration 
The most basic method for finding an explicit formula for a 
recursively defined sequence is by using the method of 
iteration.  
 
Iteration works as follows: Given a sequence a0, a1, a2, . . . 
defined by a recurrence relation and initial conditions, you 
start from the initial conditions and calculate successive 
terms of the sequence until you see a pattern developing. 
 
At that point you guess an explicit formula. 
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Example 5 – An Explicit Formula for the Tower of Hanoi Sequence 

The Tower of Hanoi sequence m1, m2, m3, . . . satisfies the 
recurrence relation 
 
 
and has the initial condition 
 
 
Use iteration to guess an explicit formula for this sequence, 
to simplify the answer. 
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Example 5 – Solution 

By iteration 



28 

Example 5 – Solution 
These calculations show that each term up to m5 is a sum 
of successive powers of 2, starting with 20 = 1 and going up 
to 2k, where k is 1 less than the subscript of the term. 
 
 

For instance, for n = 6, 

cont’d 
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Example 5 – Solution 
Thus it seems that, in general, 
 
 
By the formula for the sum of a geometric sequence 
(Theorem 5.2.3), 

cont’d 
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Example 5 – Solution 
Hence the explicit formula seems to be 

cont’d 
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Checking the Correctness of a 
Formula by Mathematical Induction 
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Checking the Correctness of a Formula by Mathematical Induction 

It is all too easy to make a mistake and come up with the 
wrong formula.  
 
That is why it is important to confirm your calculations by 
checking the correctness of your formula.  
 
The most common way to do this is to use mathematical 
induction. 
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Let mk be the minimum number of moves needed to 
transfer a tower of k disks from one pole to another. Then, 
 
 
 
 
 
 
Use mathematical induction to show that this formula is 
correct. 

cont’d 

Example 7 – Using Mathematical Induction to Verify the Correctness of a  
Solution to a Recurrence Relation 
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Example 7 – Solution 
Proof of Correctness: 
Let m1, m2, m3, . . . be the sequence defined by specifying 
that m1 = 1 and mk = 2mk+1 + 1 for all integers k ≥ 2, and let 
the property P(n) be the equation 
 
 
We will use mathematical induction to prove that for all 
integers n ≥ 1, P(n) is true. 
 
Show that P(1) is true: 
To establish P(1), we must show that 

cont’d 
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Example 7 – Solution 
But the left-hand side of P(1) is 
 
 
and the right-hand side of P(1) is 
 
 
Thus the two sides of P(1) equal the same quantity, and 
hence P(1) is true. 

cont’d 
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Example 7 – Solution 
Show that for all integers k ≥ 1, if P(k) is true then         
P(k + 1) is also true: 
[Suppose that P(k) is true for a particular but arbitrarily 
chosen integer k ≥ 1. That is:]  
 
Suppose that k is any integer with k ≥ 1 such that 
 
 
[We must show that P(k + 1) is true. That is:]  
We must show that 

cont’d 
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Example 7 – Solution 
But the left-hand side of P(k + 1) is 
 
 
 
 
 
 
 
which equals the right-hand side of P(k + 1). [Since the 
basis and inductive steps have been proved, it follows by 
mathematical induction that the given formula holds for all 
integers n ≥ 1.] 

cont’d 


