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Mathematical Induction I 
Mathematical induction is one of the more recently 
developed techniques of proof in the history of 
mathematics. 
 
It is used to check conjectures about the outcomes of 
processes that occur repeatedly and according to definite 
patterns. 
 
In general, mathematical induction is a method for proving 
that a property defined for integers n is true for all values of 
n that are greater than or equal to some initial integer. 
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Mathematical Induction I 
 
 
 
 
 
 
 
The validity of proof by mathematical induction is generally 
taken as an axiom. That is why it is referred to as the 
principle of mathematical induction rather than as a 
theorem. 
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Mathematical Induction I 
Proving a statement by mathematical induction is a        
two-step process. The first step is called the basis step, 
and the second step is called the inductive step. 
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Mathematical Induction I 
The following example shows how to use mathematical 
induction to prove a formula for the sum of the first n 
integers. 
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Example 1 – Sum of the First n Integers 

Use mathematical induction to prove that 
 
 
 
Solution: 
To construct a proof by induction, you must first identify the 
property P(n). In this case, P(n) is the equation 
 
 
 
[To see that P(n) is a sentence, note that its subject is “the 
sum of the integers from 1 to n” and its verb is “equals.”] 
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Example 1 – Solution 
In the basis step of the proof, you must show that the 
property is true for n = 1, or, in other words that P(1) is true.  
 
Now P(1) is obtained by substituting 1 in place of n in P(n). 
The left-hand side of P(1) is the sum of all the successive 
integers starting at 1 and ending at 1. This is just 1. Thus 
P(1) is 

cont’d 
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Example 1 – Solution 
Of course, this equation is true because the right-hand side 
is 
 
 
 
which equals the left-hand side. 
 
In the inductive step, you assume that P(k) is true, for a 
particular but arbitrarily chosen integer k with k ≥ 1. [This 
assumption is the inductive hypothesis.] 

cont’d 
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Example 1 – Solution 
You must then show that P(k + 1) is true. What are P(k) 
and P(k + 1)? P(k) is obtained by substituting k for every n 
in P(n).  
 
Thus P(k) is 
 
 
 
 
 
Similarly, P(k + 1) is obtained by substituting the quantity  
(k + 1) for every n that appears in P(n). 

cont’d 
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Example 1 – Solution 
Thus P(k + 1) is 
 
 
 
or, equivalently, 

cont’d 
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Example 1 – Solution 
Now the inductive hypothesis is the supposition that P(k) is 
true. How can this supposition be used to show that 
P(k + 1) is true? P(k + 1) is an equation, and the truth of an 
equation can be shown in a variety of ways. 
 
One of the most straightforward is to use the inductive 
hypothesis along with algebra and other known facts to 
transform separately the left-hand and right-hand sides until 
you see that they are the same.  

cont’d 
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Example 1 – Solution 
In this case, the left-hand side of P(k + 1) is 

 

  1 + 2 +· · ·+ (k + 1), 
which equals 
                       (1 + 2 +· · ·+ k) + (k + 1) 
 

But by substitution from the inductive hypothesis, 
   

 

cont’d 
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Example 1 – Solution 
   

 

cont’d 
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Example 1 – Solution 
So the left-hand side of P(k + 1) is                .  
 
Now the right-hand side of P(k + 1) is 
by multiplying out the numerator.         

  
Thus the two sides of P(k + 1) are equal to each other, and 
so the equation P(k + 1) is true. 

cont’d 
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In a geometric sequence, each term is obtained from the 
preceding one by multiplying by a constant factor.  
 
If the first term is 1 and the constant factor is r, then the 
sequence is 1, r, r 

2, r 
3, . . . , r 

n, . . . . 
 
The sum of the first n terms of this sequence is given by the 
formula 
 
 
for all integers n ≥ 0 and real numbers r not equal to 1. 

Mathematical Induction I 



17 

The expanded form of the formula is 
 
 
 
and because r 

0 = 1 and r 
1 = r, the formula for n ≥ 1 can be 

rewritten as 

Mathematical Induction I 
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Prove that                   , for all integers n ≥ 0 and all real  
 

numbers r except 1. 
 
Solution: 
In this example the property P(n) is again an equation, 
although in this case it contains a real variable r : 

Example 3 – Sum of a Geometric Sequence 
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Because r can be any real number other than 1, the proof 
begins by supposing that r is a particular but arbitrarily 
chosen real number not equal to 1. 
 
Then the proof continues by mathematical induction on n, 
starting with n = 0. 
 
In the basis step, you must show that P(0) is true; that is, 
you show the property is true for n = 0.  

Example 3 – Solution cont’d 
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So you substitute 0 for each n in P(n): 
 
 
 
 
In the inductive step, you suppose k is any integer with       
k ≥ 0 for which P(k) is true; that is, you suppose the 
property is true for n = k. 

Example 3 – Solution cont’d 
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So you substitute k for each n in P(n): 
 
 
 
 

Then you show that P(k + 1) is true; that is, you show the 
property is true for n = k + 1.  
 
So you substitute k + 1 for each n in P(n): 

Example 3 – Solution cont’d 
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Or, equivalently, 
 
 
 
 
In the inductive step for this proof we use another common 
technique for showing that an equation is true:  

 We start with the left-hand side and transform it 
 step-by-step into the right-hand side using the 
 inductive hypothesis together with algebra and other 
 known facts. 

Example 3 – Solution cont’d 
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Proof (by mathematical induction): 
Suppose r is a particular but arbitrarily chosen real number 
that is not equal to 1, and let the property P(n) be the 
equation 
 
 
We must show that P(n) is true for all integers n ≥ 0. We do 
this by mathematical induction on n. 

Example 3 – Solution cont’d 
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Show that P(0) is true: 
 
To establish P(0), we must show that 
 
 
The left-hand side of this equation is r 

0 = 1 and the      
right-hand side is 
 
 
also because r 

1 = r and r ≠ 1. Hence P(0) is true. 

Example 3 – Solution cont’d 
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Show that for all integers k ≥ 0, if P(k) is true then      
P(k + 1) is also true: 
[Suppose that P(k) is true for a particular but arbitrarily 
chosen integer k ≥ 0. That is:]  
Let k be any integer with k ≥ 0, and suppose that 
 
 
 
[We must show that P(k + 1) is true. That is:] We must 
show that 

Example 3 – Solution cont’d 
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Or, equivalently, that 
 
 
 

[We will show that the left-hand side of P(k + 1) equals the 
right-hand side.] The left-hand side of P(k + 1) is 

Example 3 – Solution cont’d 
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which is the right-hand side of P(k + 1) [as was to be 
shown.] 
[Since we have proved the basis step and the inductive 
step, we conclude that the theorem is true.] 

Example 3 – Solution cont’d 


