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Trees

In mathematics, a tree is a connected graph that does not
contain any circuits.

A graph is said to be circuit-free if, and only if, it has no circuits. A graph is called
a tree if, and only if, it is circuit-free and connected. A trivial tree is a graph that
consists of a single vertex. A graph is called a forest if, and only if, it is circuit-free
and not connected.
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Example of Trees



/

Example of Trees

T A

The following are not trees (the last is a forest):

oo VY
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Example 3 — A Parse Tree

In the last 30 years, Noam Chomsky and others have
developed grammars to describe the syntax of natural
languages such as English.

This work has proved useful in constructing compilers for
high level computer languages.

In the study of grammars, trees are often used to show the
derivation of grammatically correct sentences from certain
basic rules. Such trees are called derivation trees or
parse trees.
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Example 3 — A Parse Tree _

The rules of a grammar are called productions. It is
customary to express them using the shorthand notation
illustrated below.

sentence) — (noun phrase) (verb phrase)

(

(noun phrase) — (article) (noun) | (article) (adjective) (noun)
(verb phrase) — (verb)(noun phrase)

(article) — the

(adjective) — young

(noun) — man | ball

(verb) — caught
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Example 3 — A Parse Tree _

In the notation, the symbol | represents the word or, and
angle brackets () are used to enclose terms to be defined

(such as a sentence or noun phrase).

The derivation of the sentence “The young man caught the
ball” from the mentioned rules is described by the tree

shown below.

(sentence)
/ \
(noun phrase) (verb phrase)
(article) (adjective) (noun) (Verb>/ (nou\n phrase)
t}|16 y01|1ng m|an cau|ght (article) (noun)

the ball
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Characterizing Trees

There is a somewhat surprising relation between the
number of vertices and the number of edges of a tree. It
turns out that if n is a positive integer, then any tree with
n vertices (no matter what its shape) has n — 1 edges.

Perhaps even more surprisingly, a partial converse to this
fact is also true—namely, any connected graph with
n vertices and n— 1 edges is a tree.

It follows from these facts that if even one new edge (but no

new vertex) is added to a tree, the resulting graph must
contain a circuit.
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Characterizing Trees

Also, from the fact that removing an edge from a circuit
does not disconnect a graph, it can be shown that every
connected graph has a subgraph that is a tree.

It follows that (if n is a positive integer) any graph with
n vertices and fewer than n — 1 edges is not connected.
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Characterizing Trees

An important fact necessary to derive the first main
theorem about trees is that any nontrivial tree must have at
least one vertex of degree 1.

Lemma 10.5.1

Any tree that has more than one vertex has at least one vertex of degree 1.

A constructive way to understand this lemma is to imagine
being given a tree T with more than one vertex. You pick a
vertex v at random and then search outward along a path
from v looking for a vertex of degree 1.
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Characterizing Trees

As you reach each new vertex, you check whether it has
degree 1. If it does, you are finished. If it does not, you exit
from the vertex along a different edge from the one you
entered on.

Because T is circuit-free, the vertices included in the path
never repeat. And since the number of vertices of T is finite,
the process of building a path must eventually terminate.

When that happens, the final vertex v’ of the path must
have degree 1. This process is illustrated below.

Start here Search outward from v to
l find vertex v’ of degree 1.
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Characterizing Trees

Using Lemma 10.5.1 it is not difficult to show that, in fact,
any tree that has more than one vertex has at least two

vertices of degree 1.

Let T be a tree. If T has only one or two vertices, then each is called a terminal
vertex. If 7' has at least three vertices, then a vertex of degree 1 in 7 is called a
terminal vertex (or a leaf), and a vertex of degree greater than 1 in 7 is called an
internal vertex (or a branch vertex).
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Example 5 — Terminal and Internal Vertices

Find all terminal vertices and all internal vertices in the
following tree:

Vg

Solution:
The terminal vertices are v, v,, v,, Vs, V7, and v;.

The internal vertices are v, v4, and vs.
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Characterizing Trees

The following is the first of the two main theorems about
trees:

Theorem 10.5.2

For any positive integer n, any tree with n vertices has n — 1 edges.

Proof by Induction.

Basis case: For n=1 the property holds since there are no
loops.

Inductive Step: Let T be an arbitrarily chosen tree with k + 1
vertices, for k 2 1. Since k+1>1, by Lemma 10.5.1, T has a
vertex v of degree 1. Since T is connected, v is attached to
the rest of T by a single edge e as sketched in the following
figure. 16
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Theorem 10.5.2

Restof T

Now if e and v are removed from T, what remains is atree T’
with (k + 1) — 1 = k vertices and, by inductive hypothesis, T’
has k — 1 edges. But the original tree T has one more vertex
and one more edge than T'. Hence T must have (k- 1)+ 1 =
k edges, as was to be shown.
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Example 7 — Finding Trees Satisfying Given Conditions

Find all non-isomorphic trees with four vertices.

Solution:

By Theorem 10.5.2, any tree with 4 vertices has 3 edges;

Thus, by the Handshake Theorem (10.1.1), the total
degree of a tree with four vertices must be 6;

Also, every tree with more than one vertex has at least
two vertices of degree 1.

18
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Example 7 — Solution o

Thus the following combinations of degrees for the vertices
are the only ones possible:

1,1,1,3and 1, 1, 2, 2.

There are two non-isomorphic trees corresponding to both
of these possibilities, as shown below.

A and
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Characterizing Trees

Before proving the second Theorem on Trees let's consider
the following lemma.

Lemma 10.5.3

If G is any connected graph, C is any circuit in G, and any one of the edges of C is
removed from G, then the graph that remains is connected.

Essentially, the reason why Lemma 10.5.3 is true is that
any two vertices in a circuit are connected by two distinct
paths.

It is possible to draw the graph so that one of these goes
“clockwise” and the other goes “counterclockwise” around
the circuit.
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Characterizing Trees

For example, in the circuit shown below, the clockwise path
from v, to v, is

V2€30V3
and the counterclockwise path from v, to v; is

V2€20V1€1V)€rV5€50V4€40V3.
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Characterizing Trees

The second major theorem about trees is a modified
converse to Theorem 10.5.2.

Theorem 10.5.2

For any positive integer n, any tree with n vertices has n — 1 edges.

Theorem 10.5.4

For any positive integer n, if G is a connected graph with n vertices and n — 1 edges,
then G 1is a tree.

Proof by Contradiction. Since G is connected, it is enough

to show that G is circuit-free. If, by absurd, it is not, then

we can remove edges from each circuit obtaining a new
graph G’ which, by Lemma 10.5.3, is still connected. At the
end of this process, we obtain a new connected and circuit-
free graph, G”, with n vertices but no more that n-2 edges. 22




Example 8 — A Graph with n Vertices and n— 1 Edges That Is Not a Tree

Theorem 10.5.4 is not a full converse of Theorem 10.5.2.
Although it is true that every connected graph with

n vertices and n — 1 edges (n>0) is a tree, it is not true that
every graph with n vertices and n— 1 edges is a tree.

The following is an example of a graph with five vertices
and four edges that is not a tree. By Theorem 10.5.4, such
a graph cannot be connected.

A /
Uy €3 U3 Vs

23
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SECTION 10.6

Rooted Trees
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Rooted Trees

An outdoor tree is rooted and so is the kind of family tree
that shows all the descendants of one particular person.
The terminology and notation of rooted trees blends the
language of botanical trees and that of family trees.

In mathematics, a rooted tree is a tree in which one vertex
has been distinguished from the others and is designated
the root.

Given any other vertex v in the tree, there is a unique path
from the root to v. (After all, if there were two distinct paths,
a circuit could be constructed.)
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Rooted Trees

The number of edges in such a path is called the /evel of v,
and the height of the tree is the length of the longest such
path. It is traditional in drawing rooted trees to place the
root at the top and show the branches descending from it.

A rooted tree is a tree in which there is one vertex that is distinguished from the
others and is called the root. The level of a vertex is the number of edges along the
unique path between it and the root. The height of a rooted tree is the maximum
level of any vertex of the tree. Given the root or any internal vertex v of a rooted
tree, the children of v are all those vertices that are adjacent to v and are one level
farther away from the root than v. If w 1s a child of v, then v is called the parent
of w, and two distinct vertices that are both children of the same parent are called
siblings. Given two distinct vertices v and w, if v lies on the unique path between w
and the root, then v is an ancestor of w and w is a descendant of v.
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Rooted Trees

These terms are illustrated in Figure 10.6.1.

————————————— Level 0
v is a child of u. ———Level 1
u is the parent of v.
v and w are siblings. o _Level 2
—————————— Level 3
,/
/
e et e Level 4

Vertices in the enclosed region
are descendants of u, which
is an ancestor of each.

A Rooted Tree
Figure 10.6.1 27
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Example 1 — Rooted Trees

Consider the tree with root v, shown on the right.

a. What is the level of v5?
b. What is the level of v,,?

c. What is the height of this rooted tree? "'7 > 3

d. What are the children of v,;? 7\ s Ve

e. What is the parent of v,,? SN AN V1o

f. What are the siblings of v4?

g. What are the descendants of v;?

28
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Example 1 — Solution

a.?2
b.0
c.3
d. v; and v;
e. v,

f. v, and v,

g- Vs, Vg, Vio

29



.
Rooted Trees

Note that in the tree with root v, shown below, v, has level
1 and is the child of v,, and both v, and v, are terminal
vertices.

30
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Binary Trees
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Binary Trees

When every vertex in a rooted tree has at most two children
and each child is designated either the (unique) left child or
the (unique) right child, the result is a binary tree.

A binary tree is a rooted tree in which every parent has at most two children. Each
child in a binary tree is designated either a left child or a right child (but not both),
and every parent has at most one left child and one right child. A full binary tree is
a binary tree in which each parent has exactly two children.

Given any parent v in a binary tree 7', if v has a left child, then the left subtree
of v 1s the binary tree whose root is the left child of v, whose vertices consist of the
left child of v and all its descendants, and whose edges consist of all those edges
of T that connect the vertices of the left subtree. The right subtree of v is defined
analogously.
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Binary Trees

These terms are illustrated in Figure 10.6.2.

Root

v 1s the left

child of u. \

v

x is the right

/ child of w.

— 7

Right subtree of w

Left subtree of w

A Binary Tree
Figure 10.6.2
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Example 2 — Representation of Algebraic Expressions

Binary trees are used in many ways in computer science.
One use is to represent algebraic expressions with arbitrary
nesting of balanced parentheses. For instance, the
following (labeled) binary tree represents the expression a/
b: The operator is at the root and acts on the left and right
children of the root in left-right order.
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Example 2 — Representation of Algebraic Expressions

cont’ d

More generally, the binary tree shown below represents the
expression a/(c + d). In such a representation, the internal
vertices are arithmetic operators, the terminal vertices are
variables, and the operator at each vertex acts on its left

and right subtrees in left-right order.

Draw a binary tree to represent the expression

((a—b) - c) + (dle).
35
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Example 2 — Solution

The binary tree to represent the expression
((@a—b)-c)+ (de), is as follows:
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Characterizing Binary Trees

An interesting theorem about full binary trees says that if
you know the number of internal vertices of a full binary
tree, then you can calculate both the total number of
vertices and the number of terminal vertices, and
conversely. More specifically, a full binary tree with k
internal vertices has a total of 2k + 1 vertices of which k + 1
are terminal vertices.

Theorem 10.6.1

If k 1s a positive integer and 7 is a full binary tree with k internal vertices, then T
has a total of 2k + 1 vertices and has k + 1 terminal vertices.

Proof. See the book, pg.697.
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Example 3 — Determining Whether a Certain Full Binary Tree Exists

Is there a full binary tree that has 10 internal vertices and
13 terminal vertices?

Solution:

No. By Theorem 10.6.1, a full binary tree with 10 internal
vertices has 10 + 1 = 11 terminal vertices, not 13.

38



Characterizing Binary Trees

Another interesting theorem about binary trees specifies
the maximum number of terminal vertices of a binary tree of
a given height.

The maximum number of terminal vertices of a binary tree
of height h is 2". Another way to say this is that a binary
tree with t terminal vertices has height of at least log,t.

Theorem 10.6.2

For all integers 7 > 0, if T' 1s any binary tree with of height /7 and ¢ terminal vertices,
then

r < 2"

Equivalently, log, t < h.

Proof by Induction (see the book, pg.698)
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Example 4 — Determining Whether a Certain Binary Tree EXxists

Is there a binary tree that has height 5 and 38 terminal
vertices?

Solution:

No. By Theorem 10.6.2, any binary tree T with height 5 has
at most 2° = 32 terminal vertices, so such a tree cannot
have 38 terminal vertices.
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