
CHAPTER 10 

GRAPHS AND TREES 

Alessandro Artale – UniBZ - http://www.inf.unibz.it/∼artale/ 



Copyright © Cengage Learning. All rights reserved.  

Trees 

SECTION 10.5 
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Trees 
In mathematics, a tree is a connected graph that does not 
contain any circuits. 
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Example of Trees 
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Example of Trees 
 
 
 
 
 
The following are not trees (the last is a forest): 
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Prove that each of the properties in 21–29 is an invariant for
graph isomorphism. Assume that n, m, and k are all nonnega-
tive integers.

21. Has n vertices 22. Has m edges

23. Has a circuit of length k

24. Has a simple circuit of length k

25.H Has m vertices of degree k

26. Has m simple circuits of length k

27.H Is connected 28. Has an Euler circuit

29. Has a Hamiltonian circuit

30. Show that the following two graphs are not isomorphic by
supposing they are isomorphic and deriving a contradiction.

v1 v2 v3 v4 v5 v6

e1 e2
e3

e4

e5 e6

w1 w2 w3 w4 w5 w6

f1 f2 f3
f4

f5

f6

G

G'

Answers for Test Yourself
1. g(v) is an endpoint of h(e) 2. G

′
has property P 3. has n vertices; has m edges; has a vertex of degree k; has m vertices of

degree k; has a circuit of length k; has a simple circuit of length k; has m simple circuits of length k; is connected; has an Euler circuit;
has a Hamiltonian circuit

10.5 Trees
We are not very pleased when we are forced to accept a mathematical truth
by virtue of a complicated chain of formal conclusions and computations, which we
traverse blindly, link by link, feeling our way by touch. We want first an overview of the
aim and of the road; we want to understand the idea of the proof, the deeper context.
— Hermann Weyl, 1885–1955

If a friend asks what you are studying and you answer “trees,” your friend is likely to infer
you are taking a course in botany. But trees are also a subject for mathematical investi-
gation. In mathematics, a tree is a connected graph that does not contain any circuits.
Mathematical trees are similar in certain ways to their botanical namesakes.

• Definition

A graph is said to be circuit-free if, and only if, it has no circuits. A graph is called
a tree if, and only if, it is circuit-free and connected. A trivial tree is a graph that
consists of a single vertex. A graph is called a forest if, and only if, it is circuit-free
and not connected.

Example 10.5.1 Trees and Non-Trees

All the graphs shown in Figure 10.5.1 are trees, whereas those in Figure 10.5.2 are not.

(a) (b) (c) (d)

Figure 10.5.1 Trees. All the graphs in (a)–(d) are connected and circuit-free.
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(a) (b) (c) (d)

Figure 10.5.2 Non-Trees. The graphs in (a), (b), and (c) all have circuits, and the graph in (d) is not connected. ■

Examples of Trees
The following examples illustrate just a few of the many and varied situations in which
mathematical trees arise.

Example 10.5.2 A Decision Tree

During orientation week, a college administers an exam to all entering students to deter-
mine placement in the mathematics curriculum. The exam consists of two parts, and
placement recommendations are made as indicated by the tree shown in Figure 10.5.3.
Read the tree from left to right to decide what course should be recommended for a stu-
dent who scored 9 on part I and 7 on part II.

Score on
part I

Score on
part II

Math 100

Math 100

Math 110

Math 110

Math 120
Score on
part II

>10

<8

= 8, 9, 10

>10

≤

≤

10

>6

6

Figure 10.5.3

Solution Since the student scored 9 on part I, the score on part II is checked. Since it is
greater than 6, the student should be advised to take Math 110. ■

Example 10.5.3 A Parse Tree

In the last 30 years, Noam Chomsky and others have developed new ways to describe the
syntax (or grammatical structure) of natural languages such as English. As is discussed
briefly in Chapter 12, this work has proved useful in constructing compilers for high-
level computer languages. In the study of grammars, trees are often used to show the
derivation of grammatically correct sentences from certain basic rules. Such trees are
called syntactic derivation trees or parse trees.
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Example 3 – A Parse Tree 
In the last 30 years, Noam Chomsky and others have 
developed grammars to describe the syntax of natural 
languages such as English. 
 
This work has proved useful in constructing compilers for 
high level computer languages. 
 
In the study of grammars, trees are often used to show the 
derivation of grammatically correct sentences from certain 
basic rules. Such trees are called derivation trees or 
parse trees. 
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Example 3 – A Parse Tree 
The rules of a grammar are called productions. It is 
customary to express them using the shorthand notation 
illustrated below. 
 
 
 
  
 
 
 

cont’d 
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Example 3 – A Parse Tree 
In the notation, the symbol | represents the word or, and 
angle brackets     are used to enclose terms to be defined 
(such as a sentence or noun phrase). 
 

The derivation of the sentence “The young man caught the 
ball” from the mentioned rules is described by the tree 
shown below. 
 

cont’d 
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Characterizing Trees 
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Characterizing Trees 
There is a somewhat surprising relation between the 
number of vertices and the number of edges of a tree. It 
turns out that if n is a positive integer, then any tree with     
n vertices (no matter what its shape) has n – 1 edges. 
 
Perhaps even more surprisingly, a partial converse to this 
fact is also true—namely, any connected graph with           
n vertices and n – 1 edges is a tree. 
 
It follows from these facts that if even one new edge (but no 
new vertex) is added to a tree, the resulting graph must 
contain a circuit. 
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Characterizing Trees 
Also, from the fact that removing an edge from a circuit 
does not disconnect a graph, it can be shown that every 
connected graph has a subgraph that is a tree. 
 

It follows that (if n is a positive integer) any graph with 
n vertices and fewer than n – 1 edges is not connected. 
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Characterizing Trees 
An important fact necessary to derive the first main 
theorem about trees is that any nontrivial tree must have at 
least one vertex of degree 1. 
 
 
 
 
A constructive way to understand this lemma is to imagine 
being given a tree T with more than one vertex. You pick a 
vertex v at random and then search outward along a path 
from v looking for a vertex of degree 1. 
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Characterizing Trees 
As you reach each new vertex, you check whether it has 
degree 1. If it does, you are finished. If it does not, you exit 
from the vertex along a different edge from the one you 
entered on. 
Because T is circuit-free, the vertices included in the path 
never repeat. And since the number of vertices of T is finite, 
the process of building a path must eventually terminate. 
When that happens, the final vertex v ʹ of the path must 
have degree 1. This process is illustrated below. 



14 

Characterizing Trees 
Using Lemma 10.5.1 it is not difficult to show that, in fact, 
any tree that has more than one vertex has at least two 
vertices of degree 1. 
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Example 5 – Terminal and Internal Vertices 

Find all terminal vertices and all internal vertices in the 
following tree: 
 
 
 
 
 
Solution: 
The terminal vertices are v0, v2, v4, v5, v7, and v8. 
 
The internal vertices are v6, v1, and v3. 
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Characterizing Trees 
The following is the first of the two main theorems about 
trees: 
 
 
 
Proof by Induction. 
Basis case: For n=1 the property holds since there are no 
loops. 
Inductive Step: Let T be an arbitrarily chosen tree with k + 1 
vertices, for k ≥ 1. Since k+1>1, by Lemma 10.5.1, T has a 
vertex v of degree 1. Since T is connected, v is attached to 
the rest of T by a single edge e as sketched in the following 
figure. 
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Theorem 10.5.2 

Now if e and v are removed from T, what remains is a tree T’ 
with (k + 1) − 1 = k vertices and, by inductive hypothesis, T’ 
has k − 1 edges. But the original tree T has one more vertex 
and one more edge than T’. Hence T must have (k − 1) + 1 = 
k edges, as was to be shown. 
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Example 7 – Finding Trees Satisfying Given Conditions 

Find all non-isomorphic trees with four vertices. 
 
Solution: 
•  By Theorem 10.5.2, any tree with 4 vertices has 3 edges; 
•  Thus, by the Handshake Theorem (10.1.1), the total 

degree of a tree with four vertices must be 6; 
•  Also, every tree with more than one vertex has at least 

two vertices of degree 1. 
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Example 7 – Solution 
Thus the following combinations of degrees for the vertices 
are the only ones possible: 
 
                         1, 1, 1, 3 and 1, 1, 2, 2. 
 
There are two non-isomorphic trees corresponding to both 
of these possibilities, as shown below. 

cont’d 



20 

Characterizing Trees 
Before proving the second Theorem on Trees let’s consider 
the following lemma. 
 
 
 
Essentially, the reason why Lemma 10.5.3 is true is that 
any two vertices in a circuit are connected by two distinct 
paths. 
 
It is possible to draw the graph so that one of these goes 
“clockwise” and the other goes “counterclockwise” around 
the circuit. 
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Characterizing Trees 
For example, in the circuit shown below, the clockwise path 
from v2 to v3 is 
 
 
and the counterclockwise path from v2 to v3 is 
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Characterizing Trees 
The second major theorem about trees is a modified 
converse to Theorem 10.5.2. 
 
 
 
 
 
Proof by Contradiction. Since G is connected, it is enough 
to show that G is circuit-free. If, by absurd, it is not, then 
we can remove edges from each circuit obtaining a new 
graph G’ which, by Lemma 10.5.3, is still connected. At the 
end of this process, we obtain a new connected and circuit-
free graph, G”, with n vertices but no more that n-2 edges. 
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Example 8 – A Graph with n Vertices and n – 1 Edges That Is Not a Tree 

Theorem 10.5.4 is not a full converse of Theorem 10.5.2. 
Although it is true that every connected graph with              
n vertices and n – 1 edges (n>0) is a tree, it is not true that 
every graph with n vertices and n – 1 edges is a tree. 
 
The following is an example of a graph with five vertices 
and four edges that is not a tree. By Theorem 10.5.4, such 
a graph cannot be connected.  
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Rooted Trees 

SECTION 10.6 
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Rooted Trees 
An outdoor tree is rooted and so is the kind of family tree 
that shows all the descendants of one particular person. 
The terminology and notation of rooted trees blends the 
language of botanical trees and that of family trees.  
 
In mathematics, a rooted tree is a tree in which one vertex 
has been distinguished from the others and is designated 
the root.  
 
Given any other vertex v in the tree, there is a unique path 
from the root to v. (After all, if there were two distinct paths, 
a circuit could be constructed.) 
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Rooted Trees 
The number of edges in such a path is called the level of v, 
and the height of the tree is the length of the longest such 
path. It is traditional in drawing rooted trees to place the 
root at the top and show the branches descending from it. 
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Rooted Trees 
These terms are illustrated in Figure 10.6.1. 

Figure 10.6.1 

A Rooted Tree 
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Example 1 – Rooted Trees 
Consider the tree with root v0 shown on the right. 
 
a. What is the level of v5? 
b. What is the level of v0? 

c. What is the height of this rooted tree? 

d. What are the children of v3? 

e. What is the parent of v2? 

f. What are the siblings of v8? 

g. What are the descendants of v3? 
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Example 1 – Solution 
a. 2           
 

b. 0 
 

c. 3 
 

d. v5 and v6 
 

e. v0 
 

f. v7 and v9               
 

g. v5, v6, v10 
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Rooted Trees 
Note that in the tree with root v0 shown below, v1 has level 
1 and is the child of v0, and both v0 and v1 are terminal 
vertices. 
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Binary Trees 
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Binary Trees 
When every vertex in a rooted tree has at most two children 
and each child is designated either the (unique) left child or 
the (unique) right child, the result is a binary tree. 
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Binary Trees 
These terms are illustrated in Figure 10.6.2. 

Figure 10.6.2 

A Binary Tree 
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Example 2 – Representation of Algebraic Expressions 

Binary trees are used in many ways in computer science. 
One use is to represent algebraic expressions with arbitrary 
nesting of balanced parentheses. For instance, the 
following (labeled) binary tree represents the expression a/
b: The operator is at the root and acts on the left and right 
children of the root in left-right order.  
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Example 2 – Representation of Algebraic Expressions 

More generally, the binary tree shown below represents the 
expression a/(c + d). In such a representation, the internal 
vertices are arithmetic operators, the terminal vertices are 
variables, and the operator at each vertex acts on its left 
and right subtrees in left-right order.  
 
 
 
 
 
Draw a binary tree to represent the expression  
((a – b) � c) + (d/e).   

cont’d 
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Example 2 – Solution 
The binary tree to represent the expression  
((a – b) � c) + (d/e), is as follows: 
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Characterizing Binary Trees 
An interesting theorem about full binary trees says that if 
you know the number of internal vertices of a full binary 
tree, then you can calculate both the total number of 
vertices and the number of terminal vertices, and 
conversely. More specifically, a full binary tree with k 
internal vertices has a total of 2k + 1 vertices of which k + 1 
are terminal vertices. 
 
 
 
 
Proof. See the book, pg.697. 
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Example 3 – Determining Whether a Certain Full Binary Tree Exists 

Is there a full binary tree that has 10 internal vertices and 
13 terminal vertices? 
 
Solution: 
No. By Theorem 10.6.1, a full binary tree with 10 internal 
vertices has 10 + 1 = 11 terminal vertices, not 13. 
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Characterizing Binary Trees 
Another interesting theorem about binary trees specifies 
the maximum number of terminal vertices of a binary tree of 
a given height.  
The maximum number of terminal vertices of a binary tree 
of height h is 2h. Another way to say this is that a binary 
tree with t terminal vertices has height of at least log2t.  
 
 
 
 
 
Proof by Induction (see the book, pg.698) 
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Example 4 – Determining Whether a Certain Binary Tree Exists 

Is there a binary tree that has height 5 and 38 terminal 
vertices? 
 
Solution: 
No. By Theorem 10.6.2, any binary tree T with height 5 has 
at most 25 = 32 terminal vertices, so such a tree cannot 
have 38 terminal vertices. 


