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Graphs: Definitions and 
Basic Properties 

SECTION 10.1 
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Graphs: Definitions and Basic Properties 

Imagine an organization that wants to set up teams of three 
to work on some projects.  
 
In order to maximize the number of people on each team 
who had previous experience working together 
successfully, the director asked the members to provide 
names of their past partners. 
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This information is displayed below both in a table and in a 
diagram. 

Graphs: Definitions and Basic Properties 
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From the diagram, it is easy to see that Bev, Cai, and Flo 
are a group of three past partners, and so they should form 
one of these teams.  
 
The following figure shows the result when these three 
names are removed from the diagram. 

Graphs: Definitions and Basic Properties 
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This drawing shows that placing Hal on the same team as 
Ed would leave Gia and Ira on a team containing no past 
partners. 
 
However, if Hal is placed on a team with Gia and Ira, then 
the remaining team would consist of Ana, Dan, and Ed, and 
both teams would contain at least one pair of past partners. 
 
Such drawings are illustrations of a structure known as a 
graph. The dots are called vertices and the line segments 
joining vertices are called edges. 

Graphs: Definitions and Basic Properties 
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The edges may be straight or curved and should either 
connect one vertex to another or a vertex to itself, as 
shown below. 

Graphs: Definitions and Basic Properties 
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In this drawing, the vertices have been labeled with v ’s and 
the edges with e’s. 
 
When an edge connects a vertex to itself (as e5 does), it is 
called a loop. When two edges connect the same pair of 
vertices (as e2 and e3 do), they are said to be parallel.  
 
It is quite possible for a vertex to be unconnected by an 
edge to any other vertex in the graph (as v5 is), and in that 
case the vertex is said to be isolated.  

Graphs: Definitions and Basic Properties 
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The formal definition of a graph follows. 

Graphs: Definitions and Basic Properties 
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Example 1 – Terminology 
Consider the following graph: 
 
 
 
 
 
 
 

a. Write the vertex set and the edge set, and give a table 
    showing the edge-endpoint  function. 

b. Find all edges that are incident on v1, all vertices that  
    are adjacent to v1, all edges that are adjacent to e1, all  
    loops, all parallel edges, all vertices that are adjacent to 
    themselves, and all isolated vertices. 
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Example 1(a) – Solution 
vertex set = {v1, v2, v3, v4, v5, v6} 
edge set = {e1, e2, e3, e4, e5, e6, e7} 
 
edge-endpoint function: 
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Example 1(a) – Solution 
Note that the isolated vertex v4 does not appear in this 
table.  
 
Although each edge must have either one or two endpoints, 
a vertex need not be an endpoint of an edge. 

cont’d 
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Example 1(b) – Solution 
e1, e2, and e3 are incident on v1.  
 

v2 and v3 are adjacent to v1. 
 

e2, e3, and e4 are adjacent to e1. 
 

e6 and e7 are loops. 
 

e2 and e3 are parallel. 
 

v5 and v6 are adjacent to themselves. 
 

v4 is an isolated vertex. 

cont’d 



14 

We have discussed the directed graph of a binary relation 
on a set. 
 
The general definition of directed graph is similar to the 
definition of graph, except that one associates an ordered 
pair of vertices with each edge instead of a set of vertices.  
 
Thus each edge of a directed graph can be drawn as an 
arrow going from the first vertex to the second vertex of the 
ordered pair. 

Graphs: Definitions and Basic Properties 
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Note that each directed graph has an associated ordinary 
(undirected) graph, which is obtained by ignoring the 
directions of the edges. 

Graphs: Definitions and Basic Properties 
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Examples of Graphs 
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Example 4 – Using a Graph to Represent a Network 

Telephone, electric power, gas pipeline, and air transport 
systems can all be represented by graphs, as can 
computer networks—from small local area networks to the 
global Internet system that connects millions of computers 
worldwide.  
 
Questions that arise in the design of such systems involve 
choosing connecting edges to minimize cost, optimize a 
certain type of service, and so forth. 
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Example 4 – Using a Graph to Represent a Network 

A typical network, called a hub and spoke model, is shown 
below. 

cont’d 
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Special Graphs 
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One important class of graphs consists of those that do not 
have any loops or parallel edges.  
 
Such graphs are called simple. In a simple graph, no two 
edges share the same set of endpoints, so specifying two 
endpoints is sufficient to determine an edge. 

Special Graphs 
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Example 8 – A Simple Graph 
Draw all simple graphs with the four vertices {u, v, w, x} and 
two edges, one of which is {u, v}. 
 
Solution: 
Each possible edge of a simple graph corresponds to a 
subset of two vertices.  
 

Given four vertices, there are      = 6 such subsets in all:  
{u, v}, {u, w}, {u, x}, {v, w}, {v, x}, and {w, x}.  
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Example 8 – Solution 
Now one edge of the graph is specified to be {u, v}, so any 
of the remaining five from this list can be chosen to be the 
second edge.  
 
The possibilities are shown below. 

cont’d 
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Another important class of graphs consists of those that are 
“complete” in the sense that all pairs of vertices are 
connected by edges. 

Special Graphs 
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Example 9 – Complete Graphs on n Vertices: K1, K2, K3, K4, K5 

The complete graphs K1, K2, K3, K4, and K5 can be drawn 
as follows: 
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In yet another class of graphs, the vertex set can be 
separated into two subsets: Each vertex in one of the 
subsets is connected by exactly one edge to each vertex in 
the other subset, but not to any vertex in its own subset. 
Such a graph is called complete bipartite. 

Special Graphs 
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Special Graphs 
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The Concept of Degree 
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The degree of a vertex is the number of end segments of 
edges that “stick out of” the vertex. 
 
 
 
 
 
 

The Concept of Degree 
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Since an edge that is a loop is counted twice, the degree of 
a vertex can be obtained from the drawing of a graph by 
counting how many end segments of edges are incident on 
the vertex. 
 
This is illustrated below. 

The Concept of Degree 
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Example 12 – Degree of a Vertex and Total Degree of a Graph 

Find the degree of each vertex of the graph G shown 
below. Then find the total degree of G. 
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Example 12 – Solution 

deg(v1) = 0 since no edge is incident on v1 (v1 is isolated). 
 
deg(v2) = 2 since both e1 and e2 are incident on v2. 
 
 

deg(v3) = 4 since e1 and e2 are incident on v3 and the loop 
e3 is also incident on v3 (and contributes 2 to the degree of 
v3). 
 
 

total degree of G = deg(v1) + deg(v2) + deg(v3)  
 

        = 0 + 2 + 4  
                      
                               = 6. 
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Note that the total degree of the graph G of Example 12, 
which is 6, equals twice the number of edges of G, which is 
3.  
 
Roughly speaking, this is true because each edge has two 
end segments, and each end segment is counted once 
toward the degree of some vertex. This result generalizes 
to any graph. 
 
We will show that the sum of the degrees of all the vertices 
in a graph is twice the number of edges of the graph. 
 

The Concept of Degree 
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For any graph without loops, the general result can be 
explained as follows: Imagine a group of people at a party 
where each person shakes hands with other people. 
 
Each person participates in a certain number of 
handshakes—perhaps many, perhaps none—but because 
each handshake is experienced by two different people, if 
the numbers experienced by each person are added 
together, the sum will equal twice the total number of 
handshakes. 
 
This is such an attractive way of understanding the 
situation that the following theorem is often called the 
handshake lemma or the handshake theorem. 

The Concept of Degree 
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The Concept of Degree 
As the proof demonstrates, the conclusion is true even if 
the graph contains loops. 
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The Concept of Degree 
The following proposition is easily deduced from Corollary 
10.1.2 using properties of even and odd integers. 
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Trails, Paths, and Circuits 
SECTION 10.2 



37 

Trails, Paths, and Circuits 
The subject of graph theory began in the year 1736 when 
the great mathematician Leonhard Euler published a paper 
giving the solution to the following puzzle: 
 
The town of Königsberg in Prussia (now Kaliningrad in 
Russia) was built at a point where two branches of the 
Pregel River came together. 
 
It consisted of an island and some land along the river 
banks. 
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Trails, Paths, and Circuits 
These were connected by seven bridges as shown in 
Figure 10.2.1. 
 

The Seven Bridges of Königsberg 

Figure 10.2.1 
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Trails, Paths, and Circuits 
The question is this: Is it possible for a person to take a 
walk around town, starting and ending at the same location 
and crossing each of the seven bridges exactly once? 
 
To solve this puzzle, Euler translated it into a graph theory 
problem. He noticed that all points of a given land mass 
can be identified with each other since a person can travel 
from any one point to any other point of the same land 
mass without crossing a bridge. 



40 

Trails, Paths, and Circuits 
Thus for the purpose of solving the puzzle, the map of 
Königsberg can be identified with the graph shown in 
Figure 10.2.2, in which the vertices A, B, C, and D 
represent land masses and the seven edges represent the 
seven bridges. 

Figure 10.2.2 

Graph Version of Königsberg Map 
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Trails, Paths, and Circuits 
In terms of this graph, the question becomes the following: 
 
    Is it possible to find a route through the graph that starts 
    and ends at some vertex, one of A, B, C, or D, and 
    traverses each edge exactly once? 
 
Equivalently: 
 
    Is it possible to trace this graph, starting and ending at 
    the same point, without ever lifting your pencil from the 
    paper? 
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Trails, Paths, and Circuits 
If you start at vertex A, for example, each time you pass 
through vertex B and C (or D) you use up two edges 
because you arrive on one edge and depart on a different 
one. 
 

So, if it is possible to find a route that uses all the edges of 
the graph and starts and ends at A, then the total number 
of arrivals and departures from each vertex B, C, and D 
must be a multiple of 2: the degrees of the vertices B, C, 
and D must be even. 
 

But they are not: deg(B) = 5, deg(C) = 3, and deg(D) = 3. 
Hence there is no route that solves the puzzle by starting 
and ending at A.  
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Trails, Paths, and Circuits 
Similar reasoning can be used to show that there are no 
routes that solve the puzzle by starting and ending at B, C, 
or D.  
 
Therefore, it is impossible to travel all around the city 
crossing each bridge exactly once. 
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Definitions 
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Definitions 
Travel in a graph is accomplished by moving from one 
vertex to another along a sequence of adjacent edges.  
 
In the graph below, for instance, you can go from u1 to u4 
by taking f1 to u2 and then f7 to u4. This is represented by 
writing u1f1u2f7u4. 
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Definitions 
Or you could take the roundabout route 
 
 

 
Certain types of sequences of adjacent vertices and edges 
are of special importance in graph theory: those that do not  
have a repeated edge, those that do not have a repeated  
vertex, and those that start and end at the same vertex. 
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Definitions 
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Definitions 
For ease of reference, these definitions are summarized in 
the following table: 
 
 
 
 
 
 
 
 

Often a walk can be specified unambiguously by giving 
either a sequence of edges or a sequence of vertices. 
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Example 2 – Walks, Trails Paths, and Circuits 

In the graph below, determine which of the following walks 
are trails, paths, circuits, or simple circuits. 
a.     b.       c. 
 

d.     e.        f. 
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Example 2 – Solution 
a. This walk has a repeated vertex but does not have a  

  repeated edge, so it is a trail from v1 to v4 but not a path. 

b. This is just a walk from v1 to v5. It is not a trail because it  
  has a repeated edge. 

 

c. This walk starts and ends at v2, contains at least one   
 edge, and does not have a repeated edge, so it is a  
 circuit. Since the vertex v3 is repeated in the middle, it is  
 not a simple circuit. 

 

d. This walk starts and ends at v2, contains at least one  
 edge, does not have a repeated edge, and does not  
 have a repeated vertex. Thus it is a simple circuit. 
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Example 2 – Solution 
e. This is just a closed walk starting and ending at v1. It is 

not a circuit because edge e1 is repeated. 
 
f. The first vertex of this walk is the same as its last vertex, 

but it does not contain an edge, and so it is not a circuit. 
It is a closed walk from v1 to v1. (It is also a trail from v1 
to v1.) 

cont’d 
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Connectedness 
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Connectedness 
It is easy to understand the concept of connectedness on 
an intuitive level. 
 
Roughly speaking, a graph is connected if it is possible to 
travel from any vertex to any other vertex along a sequence 
of adjacent edges of the graph. 



54 

Connectedness 
The formal definition of connectedness is stated in terms of 
walks.  
 
 
 
 
 
If you take the negation of this definition, you will see that a 
graph G is not connected if, and only if, there are two 
vertices of G that are not connected by any walk. 
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Example 3 – Connected and Disconnected Graphs 

Which of the following graphs are connected? 
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Example 3 – Solution 
The graph represented in (a) is connected, whereas those 
of (b) and (c) are not. To understand why (c) is not 
connected, we know that in a drawing of a graph, two 
edges may cross at a point that is not a vertex. 
 
Thus the graph in (c) can be redrawn as follows: 
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Connectedness 
Some useful facts relating circuits and connectedness are 
collected in the following lemma. 
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Connectedness 
The graphs in (b) and (c) are both made up of three pieces, 
each of which is itself a connected graph.  
 
A connected component of a graph is a connected 
subgraph of largest possible size. 
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Connectedness 
 
 
 
 
 
 
 

The fact is that any graph is a kind of union of its connected 
components. 
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Example 4 – Connected Components 

Find all connected components of the following graph G. 
 
 
 
 
Solution: 
G has three connected components: H1, H2, and H3 with 
vertex sets V1, V2, and V3 and edge sets E1, E2, and E3, 
where 
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Euler Circuits 
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Euler Circuits 
Now we return to consider general problems similar to the 
puzzle of the Königsberg bridges. 
 
The following definition is made in honor of Euler. 
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Euler Circuits 
The analysis used earlier to solve the puzzle of the 
Königsberg bridges generalizes to prove the following 
theorem: 
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Euler Circuits 
We know that the contrapositive of a statement is logically 
equivalent to the statement.  
 
The contrapositive of Theorem 10.2.2 is as follows: 
 
 
 
 
This version of Theorem 10.2.2 is useful for showing that a 
given graph does not have an Euler circuit. 
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Example 5 – Showing That a Graph Does Not Have an Euler Circuit 

Show that the graph below does not have an Euler circuit. 
 
 
 
 
 
Solution: 
Vertices v1 and v3 both have degree 3, which is odd. Hence 
by (the contrapositive form of) Theorem 10.2.2, this graph 
does not have an Euler circuit. 
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Euler Circuits 
Now consider the converse of Theorem 10.2.2: If every 
vertex of a graph has even degree, then the graph has an 
Euler circuit. Is this true?  
 
The answer is no. There is a graph G such that every 
vertex of G has even degree but G does not have an Euler 
circuit. In fact, there are many such graphs. The illustration 
below shows one example. 



67 

Euler Circuits 
Note that the graph in the preceding drawing is not 
connected.  
 
It turns out that although the converse of Theorem 10.2.2 is 
false, a modified converse is true:  
If every vertex of a graph has positive even degree and the 
graph is connected, then, the graph has an Euler circuit.  
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Euler Circuits 
 
 
 
The proof of this fact is constructive: It contains an 
algorithm to find an Euler circuit for any connected graph in 
which every vertex has even degree. 
 
The following theorem gives a complete characterization of 
Euler circuits. 
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Euler Circuits 
A corollary to Theorem 10.2.4 gives a criterion for  
determining when it is possible to find a walk from one 
vertex of a graph to another, passing through every vertex 
of the graph at least once and every edge of the graph 
exactly once. 
 

10.2 Trails, Paths, and Circuits 653

Corollary 10.2.5

Let G be a graph, and let v and w be two distinct vertices of G. There is an Euler
path from v to w if, and only if, G is connected, v and w have odd degree, and all
other vertices of G have positive even degree.

The proof of this corollary is left as an exercise.

Example 10.2.7 Finding an Euler Trail

The floor plan shown below is for a house that is open for public viewing. Is it possible
to find a trail that starts in room A, ends in room B, and passes through every interior
doorway of the house exactly once? If so, find such a trail.

A

B

C D
J K

I

E

HG

F

Solution Let the floor plan of the house be represented by the graph below.

A

B

C

G

H

F

D

E
J

I

K

Each vertex of this graph has even degree except for A and B, each of which has degree 1.
Hence by Corollary 10.2.5, there is an Euler path from A to B. One such trail is

AG H F E I H E K J DC B. ■

Hamiltonian Circuits
Theorem 10.2.4 completely answers the following question: Given a graph G, is it pos-
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Sir Wm. Hamilton
(1805–1865)

sible to find a circuit for G in which all the edges of G appear exactly once? A related
question is this: Given a graph G, is it possible to find a circuit for G in which all the
vertices of G (except the first and the last) appear exactly once?

In 1859 the Irish mathematician Sir William Rowan Hamilton introduced a puzzle in
the shape of a dodecahedron (DOH-dek-a-HEE-dron). (Figure 10.2.6 contains a drawing
of a dodecahedron, which is a solid figure with 12 identical pentagonal faces.)

Figure 10.2.6 Dodecahedron
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Example 7 – Finding an Euler Trail 
The floor plan shown below is for a house that is open for 
public viewing. Is it possible to find a trail that starts in room 
A, ends in room B, and passes through every interior 
doorway of the house exactly once? If so, find such a trail. 
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Example 7 – Solution 
Let the floor plan of the house be represented by the graph 
below. 
 
 
 
 
Each vertex of this graph has even degree except for A and 
B, each of which has degree 1. 
 
Hence by Corollary 10.2.5, there is an Euler trail from A to 
B. One such trail is 
                       AGHFEIHEKJDCB. 
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Hamiltonian Circuits 
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Hamiltonian Circuits 
Theorem 10.2.4 completely answers the following question:  
Given a graph G, is it possible to find a circuit for G in 
which all the edges of G appear exactly once?  
 
 
 
 
 
A related question is this: Given a graph G, is it possible to 
find a circuit for G in which all the vertices of G (except the 
first and the last) appear exactly once?  
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Hamiltonian Circuits 
In 1859 the Irish mathematician Sir William Rowan Hamilton 
introduced a puzzle in the shape of a dodecahedron (a solid 
figure with 12 identical pentagonal faces.) 

Figure 10.2.6 

Dodecahedron 
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Hamiltonian Circuits 
Each vertex was labeled with the name of a city—London, 
Paris, Hong Kong, New York, and so on. 
 

The problem Hamilton posed was to start at one city and 
tour the world by visiting each other city exactly once and 
returning to the starting city. 
 

One way to solve the puzzle is to imagine the surface of the 
dodecahedron stretched  out and laid flat in the plane, as 
follows: 
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Hamiltonian Circuits 
The circuit denoted with black lines is one solution. Note 
that although every city is visited, many edges are omitted 
from the circuit. (More difficult versions of the puzzle 
required that certain cities be visited in a certain order.) 
 
The following definition is made in honor of Hamilton. 
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Hamiltonian Circuits 
Note that although an Euler circuit for a graph G must 
include every vertex of G, it may visit some vertices more 
than once and hence may not be a Hamiltonian circuit.  
 
On the other hand, a Hamiltonian circuit for G does not 
need to include all the edges of G and hence may not be 
an Euler circuit. 
 
Despite the analogous-sounding definitions of Euler and 
Hamiltonian circuits, the mathematics of the two are very 
different. 
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Hamiltonian Circuits 
Theorem 10.2.4 gives a simple criterion for determining 
whether a given graph has an Euler circuit.  
 
 
 
 
Unfortunately, there is no analogous criterion for determining 
whether a given graph has a Hamiltonian circuit, nor is there 
even an efficient algorithm for finding such a circuit.  
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Hamiltonian Circuits 
There is, however, a simple technique that can be used in 
many cases to show that a graph does not have a 
Hamiltonian circuit.  
 

This follows from the following considerations: 
 

Suppose a graph G with at least two vertices has a 
Hamiltonian circuit C given concretely as 
 
 

Since C is a simple circuit, all the ei are distinct and all the 
vj are distinct except that v0 = vn. Let H be the subgraph of 
G that is formed using the vertices and edges of C. 
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Hamiltonian Circuits 
An example of such an H is shown below. 
 
 
 
 
 
Note that H has the same number of edges as it has 
vertices since all its n edges are distinct and so are its n 
vertices v1, v2, . . . , vn. 
 
Also, by definition of Hamiltonian circuit, every vertex of G 
is a vertex of H, and H is connected since any two of its 
vertices lie on a circuit. In addition, every vertex of H has 
degree 2. 
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Hamiltonian Circuits 
The reason for this is that there are exactly two edges 
incident on any vertex. These are ei and ei+1 for any vertex 
vi except v0 = vn, and they are e1 and en for v0 (= vn).  
 

These observations have established the truth of the 
following proposition in all cases where G has at least two 
vertices. 
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Hamiltonian Circuits 
Note that if G contains only one vertex and G has a 
Hamiltonian circuit, then the circuit has the form v e v, 
where v is the vertex of G and e is an edge incident on v. 
 
In this case, the subgraph H consisting of v and e satisfies 
conditions (1)–(4) of Proposition 10.2.6. 
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Hamiltonian Circuits 
We know that the contrapositive of a statement is logically  
equivalent to the statement.  
 
The contrapositive of Proposition 10.2.6 says that if a graph 
G does not have a subgraph H with properties (1)–(4), then 
G does not have a Hamiltonian circuit. 
 
The next example illustrates a type of problem known as a 
traveling salesman problem. It is a variation of the 
problem of finding a Hamiltonian circuit for a graph. 
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Example 9 – A Traveling Salesman Problem 

Imagine that the drawing below is a map showing four cities 
and the distances in kilometers between them. 
 
Suppose that a salesman must travel to each city exactly 
once, starting and ending in city A. Which route from city to 
city will minimize the total distance that must be traveled? 
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Example 9 – Solution 
This problem can be solved by writing all possible 
Hamiltonian circuits starting and ending at A and calculating 
the total distance traveled for each. 
 
 
 
 
 
 
 
Thus either route ABCDA or ADCBA gives a minimum total 
distance of 125 kilometers. 
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Hamiltonian Circuits 
The general traveling salesman problem involves finding a 
Hamiltonian circuit to minimize the total distance traveled 
for an arbitrary graph with n vertices in which each edge is 
marked with a distance.  
 
One way to solve the general problem is to write down all 
Hamiltonian circuits starting and ending at a particular 
vertex, compute the total distance for each, and pick one 
for which this total is minimal. 
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Hamiltonian Circuits 
However, even for medium-sized values of n this method is 
impractical! 
 
For a complete graph with 30 vertices, there would be      
                             Hamiltonian circuits starting and ending 
at a particular vertex to check.  
 
Even if each circuit could be found and its total distance 
computed in just one nanosecond, it would require 
approximately 1.4 × 1014 years to finish the computation. 
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Hamiltonian Circuits 
At present, there is no known algorithm for solving the 
general traveling salesman problem that is more efficient. 
 
However, there are efficient algorithms that find “pretty 
good” solutions—that is, circuits that, while not necessarily 
having the least possible total distances, have smaller total 
distances than most other Hamiltonian circuits. 


