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Equivalence Relations 
SECTION 8.3 
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The Relation Induced by a 
Partition 
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The Relation Induced by a Partition 
A partition of a set A is a finite or infinite collection of 
nonempty, mutually disjoint subsets whose union is A. The 
diagram of Figure 8.3.1 illustrates a partition of a set A by 
subsets A1, A2, . . . , A6. 

Figure  8.3.1 

A Partition of a Set 
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The Relation Induced by a Partition 
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Example 1 – Relation Induced by a Partition 

Let A = {0, 1, 2, 3, 4} and consider the following partition of 
A: 
 

   {0, 3, 4}, {1}, {2}. 
 

Find the relation R induced by this partition. 
 
Solution: 
Since {0, 3, 4} is a subset of the partition, 

  

 0 R 3 because both 0 and 3 are in {0, 3, 4}, 
 

 3 R 0 because both 3 and 0 are in {0, 3, 4}, 
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Example 1 – Solution 
 0 R 4 because both 0 and 4 are in {0, 3, 4}, 

 

 4 R 0 because both 4 and 0 are in {0, 3, 4}, 
 

 3 R 4 because both 3 and 4 are in {0, 3, 4},    and 
 

 4 R 3 because both 4 and 3 are in {0, 3, 4}. 
 
Also,  0 R 0 because both 0 and 0 are in {0, 3, 4} 
 

 3 R 3 because both 3 and 3 are in {0, 3, 4},    and 
 

 4 R 4 because both 4 and 4 are in {0, 3, 4}. 

cont’d 
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Example 1 – Solution 
Since {1} is a subset of the partition, 
 

 1 R 1 because both 1 and 1 are in {1}, 
 

and since {2} is a subset of the partition, 
 

 2 R 2 because both 2 and 2 are in {2}. 
 
Hence 
 

R = {(0, 0), (0, 3), (0, 4), (1, 1), (2, 2), (3, 0), (3, 3), (3, 4),     
       (4, 0), (4, 3), (4, 4)}. 

cont’d 



9 

The Relation Induced by a Partition 
The fact is that a relation induced by a partition of a set 
satisfies all three properties: reflexivity, symmetry, and 
transitivity. 
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Definition of an Equivalence 
Relation 
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Definition of an Equivalence Relation 

A relation on a set that satisfies the three properties of 
reflexivity, symmetry, and transitivity is called an 
equivalence relation. 
 
 
 
 
 

 
Thus, according to Theorem 8.3.1, the relation induced by 
a partition is an equivalence relation. 
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Example 2 – An Equivalence Relation on a Set of Subsets 

Let X be the set of all nonempty subsets of {1, 2, 3}. Then 
 

 X = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} 
 
Define a relation R on X as follows: For all A and B in X, 
 

 A R B ⇔ the least element of A equals the least 
 element of B. 

 
Prove that R is an equivalence relation on X. 
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Example 2 – Solution 
R is reflexive: Suppose A is a nonempty subset of {1, 2, 3}. 
[We must show that A R A.]  
 
It is true to say that the least element of A equals the least 
element of A. Thus, by definition of R, A R A. 
 
R is symmetric: Suppose A and B are nonempty subsets 
of {1, 2, 3} and A R B. [We must show that B R A.]  
 
Since A R B, the least element of A equals the least 
element of B.  
 
But this implies that the least element of B equals the least 
element of A, and so, by definition of R, B R A. 
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Example 2 – Solution 
R is transitive: Suppose A, B, and C are nonempty 
subsets of {1, 2, 3}, A R B, and B R C. [We must show that 
A R C.]  
 
Since A R B, the least element of A equals the least 
element of B and since B R C, the least element of B 
equals the least element of C.  
 
Thus the least element of A equals the least element of C, 
and so, by definition of R, A R C. 

cont’d 
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Equivalence Classes of an 
Equivalence Relation 
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Equivalence Classes of an Equivalence Relation 

Suppose there is an equivalence relation, R, on a certain 
set. If a is any particular element of the set, then one can 
ask, “What is the set of elements that are R-related to a?” 
This set is called the equivalence class of a. 
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Equivalence Classes of an Equivalence Relation 

When several equivalence relations on a set are under 
discussion, the notation [a]R is often used to denote the 
equivalence class of a under R.  
 
The procedural version of this definition is 
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Example 5 – Equivalence Classes of a Relation Given as a set of Ordered Pairs 

Let A = {0, 1, 2, 3, 4} and define a relation R on A as 
follows: 
 

 R = {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), 
        (4, 0), (4, 4)}. 

 

The directed graph for R is as shown below. As can be 
seen by inspection, R is an equivalence relation on A. Find 
the distinct equivalence classes of R. 
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Example 5 – Solution 
First find the equivalence class of every element of A. 
 

 
 
 
 
 
 
 
 
Note that [0] = [4] and [1] = [3]. Thus the distinct 
equivalence classes of the relation are 

         

        {0, 4}, {1, 3}, and {2}. 
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Equivalence Classes of an Equivalence Relation 

The following lemma says that if two elements of A are 
related by an equivalence relation R, then their equivalence 
classes are the same. 
 
 
 
 
 
Proof. This lemma says that if a certain condition is 
satisfied, then [a] = [b]. Now [a] and [b] are sets, and two 
sets are equal if, and only if, each is a subset of the other. 
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Equivalence Classes of an Equivalence Relation 

Hence the proof of the lemma consists of two parts: first, a 
proof that [a] ⊆ [b] and second, a proof that [b] ⊆ [a].  
 
 

The second lemma says that any two equivalence classes 
are either mutually disjoint or identical. 
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Equivalence Classes of an Equivalence Relation 

The statement of Lemma 8.3.3 has the form 
 

   if p then (q or r), 
 

where p is the statement “A is a set, R is an equivalence 
relation on A, and a and b are elements of A,” q is the 
statement “[a] ∩ [b] = Ø,” and r is the statement “[a] = [b].” 
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Congruence Modulo n 
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Example 10 – Equivalence Classes of Congruence Modulo 3 

Let R be the relation of congruence modulo 3 on the set Z 
of all integers. That is, for all integers m and n, 
 
 
 
 
Describe the distinct equivalence classes of R. 
 
Solution: 
For each integer a, 
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Example 10 – Solution 
   

 

Therefore, 
 

   
 

In particular,   
 

   
 

   
 

   
 

   
 

cont’d 
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Example 10 – Solution 
    

 

  
 

 
Now since 3 R 0, then by Lemma 8.3.2, 
 

     
 

More generally, by the same reasoning, 
 

   
 

Similarly, 
 

   

cont’d 
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Example 10 – Solution 
And 
 

  
 

Notice that every integer is in class [0], [1], or [2]. Hence 
the distinct equivalence classes are 
 

  
  

 

cont’d 
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Example 10 – Solution 
In words, the three classes of congruence modulo 3 are (1) 
the set of all integers that are divisible by 3, (2) the set of all 
integers that leave a remainder of 1 when divided by 3, and 
(3) the set of all integers that leave a remainder of 2 when 
divided by 3. 
 

cont’d 
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Congruence Modulo n 
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Example 11 – Evaluating Congruences 

Determine which of the following congruences are true and 
which are false. 
 

a.                            b.                               c.  
 
Solution: 
a. True. 12 – 7 = 5 = 5 � 1. Hence 5 | (12 – 7), and so 
12 ≡ 7 (mod 5). 

b. False. 6 – (–8) = 14, and          because 14 ≠ 4 � k for 
any integer k. Consequently, 

c. True. 3 – 3 = 0 = 7 � 0. Hence 7 | (3 – 3), and so 3 ≡ 3 
(mod 7).  
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Partial Order Relations 

SECTION 8.5 
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Antisymmetry 
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Antisymmetry 
We have defined three properties of relations: reflexivity, 
symmetry, and transitivity. A fourth property of relations is 
called antisymmetry. 

In terms of the arrow diagram of a relation, saying that a 
relation is antisymmetric is the same as saying that 
whenever there is an arrow going from one element to 
another distinct element, there is not an arrow going back 
from the second to the first. 
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Antisymmetry 

By taking the negation of the definition, you can see that a 
relation R is not antisymmetric if, and only if, 

there are elements a and b in A such that a R b, b R a and 
a ≠ b. 
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Example 2 – Testing for Antisymmetry of “Divides” Relations 

Let R1 be the “divides” relation on the set of all positive 
integers, and let R2 be the “divides” relation on the set of 
all integers. 

a. Is R1 antisymmetric? Prove or give a counterexample. 

b. Is R2 antisymmetric? Prove or give a counterexample. 
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Example 2 – Solution 
a. R1 is antisymmetric. 

Proof: 
Suppose a and b are positive integers such that a R1 b and 
b R1 a. [We must show that a = b.] By definition of R1, a | b 
and b | a.  

Thus, by definition of divides, there are integers k1 and k2 
with b = k1a and a = k2b. It follows that 

Dividing both sides by b gives 
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Example 2 – Solution 
Now since a and b are both positive integers k1 and k2 are 
both positive integers, too.  

But the only product of two positive integers that equals 1 is 
1 � 1.  

Thus 

and so 

[This is what was to be shown.] 

cont’d 
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Example 2 – Solution 
b. R2 is not antisymmetric. 

Counterexample: 
Let a = 2 and b = –2. Then a | b [since –2 = (–1) � 2] and 
b | a [since 2 = (–1)(–2)].  

Hence a R2 b and b R2 a but a ≠ b. 

cont’d 
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Partial Order Relations 
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Partial Order Relations 
A relation that is reflexive, antisymmetric, and transitive is 
called a partial order. 

Two fundamental partial order relations are the “less than 
or equal” relation on a set of real numbers and the 
“subset” relation on a set of sets.  

These can be thought of as models, or paradigms, for 
general partial order relations. 



41 

Partial Order Relations 
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Hasse Diagrams 
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Hasse Diagrams 
It is possible to associate a graph, called a Hasse diagram 
(after Helmut Hasse, a twentieth-century German number 
theorist), with a partial order relation defined on a finite set. 

To obtain a Hasse diagram, proceed as follows: 
Start with a directed graph of the relation, placing vertices 
on the page so that all arrows point upward. Then eliminate 

1.  the loops at all the vertices, 
2.  all arrows whose existence is implied by the transitive  

     property, 
3.  the direction indicators on the arrows. 
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Example 7 – Constructing a Hasse Diagram 

Consider the “subset” relation, ⊆, on the set     ({a, b, c}). 
That is, for all sets U and V in     ({a, b, c}), 

Construct the Hasse diagram for this relation. 
 
Solution: 
Draw the directed graph of  
the relation in such a way  
that all arrows except loops 
point upward. 



45 

Example 7 – Solution 
Then strip away all loops, unnecessary arrows, and 
direction indicators to obtain the Hasse diagram. 

cont’d 
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Partially and Totally Ordered Sets 
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Partially and Totally Ordered Sets 
Given any two real numbers x and y, either x ≤ y or y ≤ x.  
In a situation like this, the elements x and y are said to be 
comparable. 

On the other hand, given two subsets A and B of {a, b, c}, it 
may be the case that neither A ⊆ B nor B ⊆ A. 

For instance, let A = {a, b} and B = {b, c}. Then           and 

In such a case, A and B are said to be non-comparable. 
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Partially and Totally Ordered Sets 

When all the elements of a partial order relation are 
comparable, the relation is called a total order. 
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Partially and Totally Ordered Sets 
The “less than or equal to” relation on real numbers is a 
total order relation. 

Many important partial order relations have elements that 
are not comparable and are, therefore, not total order 
relations. 

For instance, the subset relation on    ({a, b, c}) is not a 
total order relation because, as shown previously, the 
subsets {a, b} and {a, c} of {a, b, c} are not comparable. 
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Partially and Totally Ordered Sets 
A set A is called a partially ordered set (or poset) with 
respect to a relation    if, and only if,    is a partial order 
relation on A. 

For instance, the set of real numbers is a partially ordered 
set with respect to the “less than or equal to” relation ≤, 
and a set of sets is partially ordered with respect to the 
“subset” relation ⊆. 

A set A is called a totally ordered set with respect to a 
relation        if, and only if, A is partially ordered with respect 
to    and    is a total order. 
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Partially and Totally Ordered Sets 
A set that is partially ordered but not totally ordered may 
have totally ordered subsets. Such subsets are called 
chains. 

Observe that if B is a chain in A, then B is a totally ordered 
set with respect to the “restriction” of     to B. 
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Example 9 – A Chain of Subsets 
The set                   is partially ordered with respect to the 
subset relation. Find a chain of length 3 in 

Solution: 
Since                                            the set 

is a chain of length 3 in 
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Partially and Totally Ordered Sets 
A maximal element in a partially ordered set is an element 
that is greater than or equal to every element to which it is 
comparable. (There may be many elements to which it is 
not comparable.) 

A greatest element in a partially ordered set is an element 
that is greater than or equal to every element in the set (so 
it is comparable to every element in the set).  
 
Minimal and least elements are defined similarly. 
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Partially and Totally Ordered Sets 
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Partially and Totally Ordered Sets 
A greatest element is maximal, but a maximal element 
need not be a greatest element.  
 
Similarly, a least element is minimal, but a minimal element 
need not be a least element.  

Every finite subset of a totally ordered set has both a least 
element and a greatest element. 

A partially ordered set can have at most one greatest 
element and one least element, but it may have more than 
one maximal or minimal element. 
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Example 10 – Maximal, Minimal, Greatest, and Least Elements 

Let A = {a, b, c, d, e, f, g, h, i } have the partial ordering  
defined by the following Hasse diagram. Find all maximal, 
minimal, greatest, and least elements of A. 

Solution: 
There is just one maximal element, g, which is also the 
greatest element. The minimal elements are c, d, and i, and 
there is no least element. 
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Topological Sorting 
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Topological Sorting 
Is it possible to input the sets of                   into a computer 
in a way that is compatible with the subset relation ⊆ in the 
sense that if set U is a subset of set V, then U is input 
before V?  

The answer, as it turns out, is yes. For instance, the  
following input order satisfies the given condition: 

Another input order that satisfies the condition is 
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Topological Sorting 

 

Given an arbitrary partial order relation    on a set A, is 
there a total order     on A that is compatible with    ?  
If the set on which the partial order is defined is finite, then 
the answer is yes. A total order that is compatible with a 
given order is called a topological sorting. 
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Topological Sorting 
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Example 11 – A Topological Sorting 

Consider the set A = {2, 3, 4, 6, 18, 24} ordered by the 
“divides” relation |.  

The Hasse diagram of this relation is the following: 

The ordinary “less than or equal to” relation ≤ on this set is 
a topological sorting for it since for positive integers a and 
b, if a | b then a ≤ b. Find another topological sorting for this 
set. 
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Example 11 – Solution 
The set has two minimal elements: 2 and 3. Either one may 
be chosen; say you pick 3. The beginning of the total order 
is 
                                total order: 3. 

Set                      You can indicate this by removing 3 from 
the Hasse diagram as shown below. 
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Example 11 – Solution 
Next choose minimal element from             . Only 2 is  
minimal, so you must pick it. The total order thus far is 

                          total order: 3    2. 

Set                                                   . 

You can indicate this by removing 2 from the Hasse 
diagram, as is shown below. 

Choose a minimal element from 

cont’d 
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Example 11 – Solution 
Again you have two choices: 4 and 6. Say you pick 6. The 
total order for the elements chosen thus far is 

                          total order: 3    2    6. 

You continue in this way until every element of A has been 
picked. One possible sequence of choices gives 

                          total order: 3    2    6    18    4    24. 

cont’d 
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Example 11 – Solution 
You can verify that this order is compatible with the 
“divides” partial order by checking that for each pair of 
elements a and b in A such that a | b, then a    b. 
  
Note that it is not the case that if a    b then a | b. 

cont’d 
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An Application 
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An Application 
Consider the set of university courses. The following 
defines a partial order relation on the set of courses 
required for a university degree:  

For all required courses x and y, 

The Hasse diagram for the relation can be used to answer 
some interesting questions. 
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An Application 
For instance, consider the Hasse diagram for the pre-
requisite courses at a particular university. 

Figure 8.5.1 
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An Application 
The minimum number of school terms needed to complete 
the requirements is the size of a longest chain, which is 7 
(150, 155, 225, 300, 340, 360, 390, for example). 

The maximum number of courses that could be taken in the 
same term (assuming the university allows it) is the 
maximum number of non-comparable courses, which is 6 
(350, 360, 345, 301, 230, 200, for example). 
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An Application 
A student could take the courses in a sequence determined 
by constructing a topological sorting for the set.  

One such sorting is: 
140, 150, 141, 155, 200, 225, 230, 300, 250, 301, 340, 345, 
350, 360, 390.  
There are many others. 
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PERT and CPM 
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PERT and CPM 
Two important and widely used applications of partial order 
relations are PERT (Program Evaluation and Review 
Technique) and CPM (Critical Path Method). 

These techniques came into being in the 1950s as planners 
came to grips with the complexities of scheduling the 
individual activities needed to complete very large projects, 
and although they are very similar, their developments 
were independent.  
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PERT and CPM 
PERT was developed by the U.S. 

PERT was developed by the U.S. Navy to help organize 
the construction of the Polaris submarine. 
 
CPM was developed by the E. I. Du Pont de Nemours 
company for scheduling chemical plant maintenance.  

Here is a somewhat simplified example of the way the 
techniques work. 
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Example 12 – A Job Scheduling Problem 

At an automobile assembly plant, the job of assembling an 
automobile can be broken down into these tasks: 

1. Build frame. 

2. Install engine, power train components, gas tank. 

3. Install brakes, wheels, tires. 

4. Install dashboard, floor, seats. 
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Example 12 – A Job Scheduling Problem 

5. Install electrical lines. 

6. Install gas lines. 

7. Install brake lines. 

8. Attach body panels to frame. 

9. Paint body. 
 
Certain of these tasks can be carried out at the same time, 
whereas some cannot be started until other tasks are 
finished. 

cont’d 
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Example 12 – A Job Scheduling Problem 

Table 8.5.1 summarizes the order in which tasks can be 
performed and the time required to perform each task. 

cont’d 

Table 8.5.1 
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Example 12 – A Job Scheduling Problem 

Let T be the set of all tasks, and consider the partial order 
relation    defined on T as follows: For all tasks x and y in  
T, 

If the Hasse diagram of this relation is turned sideways (as 
is customary in PERT and CPM analysis), it has the 
appearance shown below. 

cont’d 
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Example 12 – A Job Scheduling Problem 

What is the minimum time required to assemble a car?  
You can determine this by working from left to right across 
the diagram, noting for each task (say, just above the box 
representing that task) the minimum time needed to 
complete that task starting from the beginning of the 
assembly process. 

For instance, you can put a 7 above the box for task 1 
because task 1 requires 7 hours. 

Task 2 requires completion of task 1 (7 hours) plus 6 hours 
for itself, so the minimum time required to complete task 2, 
starting at the beginning of the assembly process, is  
7 + 6 = 13 hours. 

cont’d 
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Example 12 – A Job Scheduling Problem 

You can put a 13 above the box for task 2. 

Similarly, you can put a 10 above the box for task 3 
because 7 + 3 = 10. 

Now consider what number you should write above the box 
for task 5. 

The minimum times to complete tasks 2 and 3, starting 
from the beginning of the assembly process, are 13 and 10 
hours respectively. 

cont’d 
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Example 12 – A Job Scheduling Problem 

Since both tasks must be completed before task 5 can be 
started, the minimum time to complete task 5, starting from 
the beginning, is the time needed for task 5 itself (3 hours) 
plus the maximum of the times to complete tasks 2 and 3 
(13 hours), and this equals 3 + 13 = 16 hours. 

Thus you should place the number 16 above the box for 
task 5. The same reasoning leads you to place a 14 above 
the box for task 7. 

cont’d 
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Example 12 – A Job Scheduling Problem 

Similarly, you can place a 19 above the box for task 4, a 20 
above the box for task 6, a 21 above the box for task 8, and 
a 26 above the box for task 9, as shown below. 

cont’d 
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Example 12 – A Job Scheduling Problem 

This analysis shows that at least 26 hours are required to 
complete task 9 starting from the beginning of the assembly 
process. When task 9 is finished, the assembly is complete, 
so 26 hours is the minimum time needed to accomplish the 
whole process. 

Note that the minimum time required to complete tasks     
1, 2, 4, 8, and 9 in sequence is exactly 26 hours. 

This means that a delay in performing any one of these 
tasks causes a delay in the total time required for assembly 
of the car.  

For this reason, the path through tasks 1, 2, 4, 8, and 9 is 
called a critical path. 

cont’d 


