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Cardinality of Sets 

We say that two finite sets whose elements can be paired 
by a one-to-one correspondence have the same size. This 
is illustrated by the following diagram. 
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Cardinality of Sets 

Now a finite set is one that has no elements at all or that 
can be put into one-to-one correspondence with a set of the 
form {1, 2, . . . , n} for some positive integer n. 
 
By contrast, an infinite set is a nonempty set that cannot 
be put into one-to-one correspondence with {1, 2, . . . , n} 
for any positive integer n. 
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Properties of Cardinality 

The following theorem gives some basic properties of 
cardinality, most of which follow from statements proved 
earlier about one-to-one and onto functions. 
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Cardinality of Infinite Sets 

The following example illustrates a very important property 
of infinite sets—namely, that an infinite set can have the 
same cardinality as a proper subset of itself.  
 
This property is sometimes taken as the definition of infinite 
sets.  
 
The example shows that even though it may seem 
reasonable to say that there are twice as many integers as 
there are even integers, the elements of the two sets can 
be matched up exactly, and so, according to the definition, 
the two sets have the same cardinality. 
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Example 1 – An Infinite Set and a Proper Subset Can Have the Same Cardinality 

Let 2Z be the set of all even integers. Prove that 2Z and Z 
have the same cardinality. 
 
Solution: 
Consider the function H from Z to 2Z defined as follows: 
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Example 1 – Solution 
A (partial) arrow diagram for H is shown below.  

cont’d 
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Example 1 – Solution 
To show that H is one-to-one, suppose H(n1) = H(n2) for 
some integers n1 and n2. 
 

Then, by definition of H, 2n1 = 2n2 and dividing both sides 
by 2 gives n1 = n2. Hence H is one-to-one.   
 

To show that H is onto, suppose m is any element of 2Z. 
Then m is an even integer, and so m = 2k for some integer 
k.  
 

It follows that H(k) = 2k = m. Thus there exists k in Z with 
H(k) = m, and hence H is onto. 
 

Therefore, by definition of cardinality, Z and 2Z have the 
same cardinality. 

cont’d 
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Countable Sets 
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Countable Sets 

The set Z+ of counting numbers {1, 2, 3, 4, . . .} is, in a 
sense, the most basic of all infinite sets. 
 
A set A having the same cardinality as this set is called 
countably infinite.  
 
The reason is that the one-to-one correspondence between 
the two sets can be used to “count” the elements of A: If F 
is a one-to-one and onto function from Z+ to A, then F(1) 
can be designated as the first element of A, F(2) as the 
second element of A, F(3) as the third element of A, and so 
forth. 
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This is illustrated graphically in Figure 7.4.1. 
 
 
 
 
 
 
 
 
Because F is one-to-one, no element is ever counted twice, 
and because it is onto, every element of A is counted 
eventually. 

Countable Sets 

Figure 7.4.1 

“Counting” a Countably Infinite 
Set 
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Countable Sets 
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Example 2 – Countability of Z, the Set of All Integers 

Show that the set Z of all integers is countable. 
 
Solution: 
The set Z of all integers is certainly not finite, so if it is 
countable, it must be because it is countably infinite.  
 
To show that Z is countably infinite, find a function from the 
positive integers Z+ to Z that is one-to-one and onto.  
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Example 2 – Solution 
Looked at in one light, this contradicts common sense; 
judging from the diagram below, there appear to be more 
than twice as many integers as there are positive integers. 
 
 
 
 
 
But you were alerted that results in this section might be 
surprising. Try to think of a way to “count” the set of all 
integers anyway.   

cont’d 
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Example 2 – Solution 
The trick is to start in the middle and work outward 
systematically. Let the first integer be 0, the second 1, the 
third –1, the fourth 2, the fifth –2, and so forth as shown in 
Figure 7.4.2, starting at 0 and swinging outward in  
back-and-forth arcs from positive to negative integers and 
back again, picking up one additional integer at each swing. 

  

Figure 7.4.2 

“Counting” the Set of All Integers 

cont’d 
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Example 2 – Solution 
It is clear from the diagram that no integer is counted twice 
(so the function is one-to-one) and every integer is counted 
eventually (so the function is onto).  
 
Consequently, this diagram defines a function from Z+ to Z 
that is one-to-one and onto.  
Even though in one sense there seem to be more integers 
than positive integers, the elements of the two sets can be 
paired up one for one. 
 
It follows by definition of cardinality that Z+ has the same 
cardinality as Z. Thus Z is countably infinite and hence 
countable.   

cont’d 
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Example 2 – Solution 
The diagrammatic description of the previous function is 
acceptable as given. You can check, however, that the 
function can also be described by the explicit formula   

cont’d 
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The Search for Larger Infinities: 
The Cantor Diagonalization Process 
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Example 4 – The Set of All Positive Rational Numbers Is Countable 

Show that the set Q+ of all positive rational numbers is 
countable. 
 
Solution: 
Display the elements of the set Q+  
of positive rational numbers in a  
grid as shown in Figure 7.4.3 

Figure 7.4.3 
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Example 4 – Solution 
Define a function F from Z+ to Q+ by starting to count at  
and following the arrows as indicated, skipping over any 
number that has already been counted.   
 
To be specific: Set 
 
Then skip    since             which was counted first. 
 
After that, set 
and  

cont’d 
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Example 4 – Solution 
Then skip 
 
 
Continue in this way, defining F(n) for each positive  
integer n.  
 

cont’d 
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Example 4 – Solution 
The function F is onto.  
Every positive rational number appears somewhere in the 
grid, and the counting procedure is set up so that every 
point in the grid is reached eventually.  
 
The function F is one-to-one.  
Skipping numbers that have already been counted ensures 
that no number is counted twice.  
 
Consequently, F is a function from  Z+ to Q+ that is one-to-
one and onto, and so Q+ is countably infinite and hence 
countable. 

cont’d 
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The Search for Larger Infinities: The Cantor Diagonalization Process 

In 1874 the German mathematician Georg Cantor achieved 
success in the search for a larger infinity by showing that 
the set of all real numbers is uncountable. His method of 
proof was somewhat complicated, however.  
 
The uncountability of the set of all real numbers between   
0 and 1 using a simpler technique introduced by Cantor in 
1891 is called as the Cantor diagonalization process.  
 
Over the intervening years, this technique and variations on 
it have been used to establish a number of important 
results in logic and the theory of computation. 
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The Search for Larger Infinities: The Cantor Diagonalization Process 

 
 
(Check the proof in the book) 
 
Along with demonstrating the existence of an uncountable 
set, Cantor developed a whole arithmetic theory of infinite 
sets of various sizes. One of the most basic theorems of 
the theory states that any subset of a countable set is 
countable. 
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The Search for Larger Infinities: The Cantor Diagonalization Process 

An immediate consequence of Theorem 7.4.3 is the 
following corollary. 
 
 
 
 
Corollary 7.4.4 implies that the set of all real numbers is 
uncountable because the subset of numbers between        
0 and 1 is uncountable.  
In fact, the set of all real numbers has the same cardinality 
as the set of all real numbers between 0 and 1! 
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Example 5 – The Cardinality of the Set of All Real Numbers  

Show that the set of all real numbers has the same 
cardinality as the set of real numbers between 0 and 1. 
 
Solution: 
Let S be the open interval of real numbers between            
0 and 1: 
 
 
 

Imagine picking up S and bending it into a 
circle as shown in the right side. Since S  
does not include either endpoint 0 or 1, 
the top-most point of the circle is omitted  
from the drawing. 
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Example 5 – Solution 
Define a function F: S → R as follows: 
 
Draw a number line and place the interval, S, somewhat 
enlarged and bent into a circle, tangent to the line above 
the point 0. This is shown below.   

cont’d 
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Example 5 – Solution 
For each point x on the circle representing S, draw a 
straight line L through the topmost point of the circle and x. 
 
 
Let F(x) be the point of intersection of L and the number 
line. (F(x) is called the projection of x onto the number line.) 
 
 

cont’d 
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Example 5 – Solution 
The function F is one-to-one.  
It is clear from the geometry of the situation that distinct 
points on the circle go to distinct points on the number line, 
so F is one-to-one. 
 
The function F is onto. 
Given any point y on the number line, a line can be drawn 
through y and the top-most point of the circle. This line 
must intersect the circle at some point x, and, by definition, 
y = F(x). Thus F is onto.  
 
Hence F is a one-to-one correspondence from S to R, and 
so S and R have the same cardinality.   

cont’d 
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The infinity of the set of Real number is “greater” than the 
infinity of the set of positive Integers. 

Can we have bigger infinities? 
1.  There is a one-to-one function between a set and its 

power set (map each element a to the singleton set {a});  
2.  They have a different cardinality. 
 
The cardinality of any set is “less” than the cardinality of its 
power set. 
 

 We can create a larger and larger infinities! For example, 
you could begin with Z, the set of all integers, and take 
Z, P(Z), P(P(Z)), P(P(P(Z))), and so forth. 

Greater Infinities 



32 

Application: Cardinality and 
Computability 
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Application: Cardinality and Computability 

Knowledge of the countability and uncountability of certain 
sets can be used to answer a question of computability. We 
begin by showing that a certain set is countable. 
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Example 6 – Countability of the Set of Computer Programs in a Computer Language 

Show that the set of all computer programs in a given 
computer language is countable. 
 
Solution: 
This result is a consequence of the fact that any computer 
program in any language can be regarded as a finite string 
of symbols in the (finite) alphabet of the language. 
 
Given any computer language, let P be the set of all 
computer programs in the language. Either P is finite or P is 
infinite. If P is finite, then P is countable and we are done. 



35 

Example 6 – Solution 
If P is infinite, set up a binary code to translate the symbols 
of the alphabet of the language into strings of 0’s and 1’s. 
(For instance, either the seven-bit American Standard Code 
for Information Interchange, known as ASCII, or the eight-
bit Extended Binary-Coded Decimal Interchange Code, 
known as EBCDIC, might be used.) 
 
For each program in P, use the code to translate all the 
symbols in the program into 0’s and 1’s. Order these 
strings by length, putting shorter before longer, and order 
all strings of a given length by regarding each string as a 
binary number and writing the numbers in ascending order.

  

cont’d 



36 

Example 6 – Solution 
Define a function 
 
 
By construction, F is one-to-one and onto, and so P is 
countably infinite and hence countable.  
As a simple example, suppose the following are all the 
programs in P that translate into bit strings of length less 
than or equal to 5: 
                         

cont’d 
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Example 6 – Solution 
Ordering these by length gives 
 
 
 
 
 
And ordering those of each given length by the size of the 
binary number they represent gives                         

cont’d 
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Example 6 – Solution 
 
 
 
 
 
 
 
Note that when viewed purely as numbers, ignoring leading 
zeros, 0010 = 00010. 
 
This shows the necessity of first ordering the strings by 
length before arranging them in ascending numeric order. 

cont’d 


