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Reasoning Problems: Reduction to Satisfiability

Just like propositional logic:

A formula ϕ is satisfiable iff there is some interpretation I
that satisfies ϕ (i.e., ϕ is true under I): I |= ϕ.
Validity, equivalence, and entailment can be reduced to
satisfiability:

ϕ is a valid (i.e., a tautology) iff ¬ϕ is not satisfiable.
ϕ is equivalent to ψ (ϕ ≡ ψ) iff ϕ ↔ ψ is valid.
ϕ entails ψ (ϕ |= ψ) iff ϕ → ψ is valid (deduction theorem).

ϕ |= ψ iff ϕ ∧ ¬ψ is not satisfiable .

We need a sound and complete procedure deciding
satisfiability: the tableaux calculus is a decision procedure
which checks the existence of a model.
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Tableaux Calculus

Just like in propositional logic:

The Tableaux Calculus is a decision procedure solving the
problem of satisfiability.
If a formula is satisfiable, the procedure will constructively
exhibit a model of the formula.
The basic idea is to incrementally build the model by
looking at the formula, by decomposing it in a top/down
fashion. The procedure exhaustively looks at all the
possibilities, so that it can eventually prove that no model
could be found for unsatisfiable formulas.

Remark: With respect to propositional logic, the notion of model
is different.
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Tableaux Calculus: General Ideas

Finds a model for a given collection of sentences KB in negation
normal form.

1 Consider the knowledge base KB as the root node of a tree.
2 Starting from the root, add new formulas to the tableaux,

applying the completion rules.
3 Completion rules are either deterministic – they yield a

uniquely determined successor node – or nondeterministic –
yielding several possible alternative successor nodes
(branches).

4 Apply the completion rules until either
(a) an explicit contradiction due to the presence of two
complementary ground literals in a node (a clash) is
generated in each branch, or
(b) there is a completed branch where no more rule is
applicable (but. . .).
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The Calculus

The completion rules for the propositional formulas:

ϕ ∧ ψ
ϕ
ψ

If a model satisfies a conjunction, then it also satisfies each of
the conjuncts

ϕ ∨ ψ
ϕ ψ

If a model satisfies a disjunction, then it also satisfies one of the
disjuncts. It is a non-deterministic rule, and it generates two
alternative branches of the tableaux.
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The Calculus
The completion rules for quantified formulas:

∀x . ϕ
ϕ[X /t ]
∀x . ϕ

If a model satisfies a universal quantified formula, then it also
satisfies the formula where the quantified variable has been sub-
stituted with all terms present in the Tableaux. Furthermore, the
universal formula is not removed and appears also in the child
node.

∃x . ϕ
ϕ[X /a]

If a model satisfies an existential quantified formula, then it also
satisfies the formula where the quantified variable has been sub-
stituted with a fresh new skolem constant.
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Models

The completed (open) branch of the Tableaux gives a model
of KB: the KB is satisfiable.
Since all formulas have been reduced to ground literals (i.e.,
either positive or negative atomic formulas which do not
contain variables), it is possible to find an interpretation to
predicates using the constants, which make all the
sentences in the branch true.
If there is no completed branch (i.e., every branch has a
clash), then it is not possible to find an interpretation for the
predicates making the original KB true: the KB is
unsatisfiable.
In fact, the original formulas from which the tree is
constructed can not be true simultaneously.
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Negation Normal Form

The above set of completion rules work only if the formula has
been translated into Negation Normal Form, i.e.,

1 Eliminate → and ↔, and
2 push down negations using the De Morgan rules:

¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ
¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ

¬∀x .ϕ ≡ ∃x . ¬ϕ
¬∃x .ϕ ≡ ∀x . ¬ϕ

Example::
¬(∃x . [ ∀y . [ P(x ) → Q(y ) ] ])
becomes
∀x . [ ∃y . [ P(x ) ∧ ¬Q(y ) ] ]
(Why?)
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Example

ϕ ∧ ψ
ϕ
ψ

ϕ ∨ ψ
ϕ ψ

∀x . ϕ
ϕ[X /t ]
∀x . ϕ

∃x . ϕ
ϕ[X /a]

∃y . (p(y ) ∧ ¬q(y )) ∧ ∀z . (p(z ) ∨ q(z ))

∃y . (p(y ) ∧ ¬q(y ))
∀z . (p(z ) ∨ q(z ))

p(a) ∧ ¬q(a)
p(a)

¬q(a)
p(a) ∨ q(a)

p(a) q(a)
< COMPLETED > < CLASH >

The formula is satisfiable. The devised model is D = {a}, pI = {a}, qI = ∅.

Alessandro Artale Reasoning in First Order Logic



Example

ϕ ∧ ψ
ϕ
ψ

ϕ ∨ ψ
ϕ ψ

∀x . ϕ
ϕ[X /t ]
∀x . ϕ

∃x . ϕ
ϕ[X /a]

∃y . (p(y ) ∧ ¬q(y )) ∧ ∀z . (p(z ) ∨ q(z ))
∃y . (p(y ) ∧ ¬q(y ))
∀z . (p(z ) ∨ q(z ))

p(a) ∧ ¬q(a)
p(a)

¬q(a)
p(a) ∨ q(a)

p(a) q(a)
< COMPLETED > < CLASH >

The formula is satisfiable. The devised model is D = {a}, pI = {a}, qI = ∅.

Alessandro Artale Reasoning in First Order Logic



Example

ϕ ∧ ψ
ϕ
ψ

ϕ ∨ ψ
ϕ ψ

∀x . ϕ
ϕ[X /t ]
∀x . ϕ

∃x . ϕ
ϕ[X /a]

∃y . (p(y ) ∧ ¬q(y )) ∧ ∀z . (p(z ) ∨ q(z ))
∃y . (p(y ) ∧ ¬q(y ))
∀z . (p(z ) ∨ q(z ))

p(a) ∧ ¬q(a)

p(a)
¬q(a)

p(a) ∨ q(a)

p(a) q(a)
< COMPLETED > < CLASH >

The formula is satisfiable. The devised model is D = {a}, pI = {a}, qI = ∅.

Alessandro Artale Reasoning in First Order Logic



Example

ϕ ∧ ψ
ϕ
ψ

ϕ ∨ ψ
ϕ ψ

∀x . ϕ
ϕ[X /t ]
∀x . ϕ

∃x . ϕ
ϕ[X /a]

∃y . (p(y ) ∧ ¬q(y )) ∧ ∀z . (p(z ) ∨ q(z ))
∃y . (p(y ) ∧ ¬q(y ))
∀z . (p(z ) ∨ q(z ))

p(a) ∧ ¬q(a)
p(a)

¬q(a)

p(a) ∨ q(a)

p(a) q(a)
< COMPLETED > < CLASH >

The formula is satisfiable. The devised model is D = {a}, pI = {a}, qI = ∅.

Alessandro Artale Reasoning in First Order Logic



Example

ϕ ∧ ψ
ϕ
ψ

ϕ ∨ ψ
ϕ ψ

∀x . ϕ
ϕ[X /t ]
∀x . ϕ

∃x . ϕ
ϕ[X /a]

∃y . (p(y ) ∧ ¬q(y )) ∧ ∀z . (p(z ) ∨ q(z ))
∃y . (p(y ) ∧ ¬q(y ))
∀z . (p(z ) ∨ q(z ))

p(a) ∧ ¬q(a)
p(a)

¬q(a)
p(a) ∨ q(a)

p(a) q(a)
< COMPLETED > < CLASH >

The formula is satisfiable. The devised model is D = {a}, pI = {a}, qI = ∅.

Alessandro Artale Reasoning in First Order Logic



Example

ϕ ∧ ψ
ϕ
ψ

ϕ ∨ ψ
ϕ ψ

∀x . ϕ
ϕ[X /t ]
∀x . ϕ

∃x . ϕ
ϕ[X /a]

∃y . (p(y ) ∧ ¬q(y )) ∧ ∀z . (p(z ) ∨ q(z ))
∃y . (p(y ) ∧ ¬q(y ))
∀z . (p(z ) ∨ q(z ))

p(a) ∧ ¬q(a)
p(a)

¬q(a)
p(a) ∨ q(a)

p(a)

q(a)

< COMPLETED >

< CLASH >

The formula is satisfiable. The devised model is D = {a}, pI = {a}, qI = ∅.

Alessandro Artale Reasoning in First Order Logic



Example

ϕ ∧ ψ
ϕ
ψ

ϕ ∨ ψ
ϕ ψ

∀x . ϕ
ϕ[X /t ]
∀x . ϕ

∃x . ϕ
ϕ[X /a]

∃y . (p(y ) ∧ ¬q(y )) ∧ ∀z . (p(z ) ∨ q(z ))
∃y . (p(y ) ∧ ¬q(y ))
∀z . (p(z ) ∨ q(z ))

p(a) ∧ ¬q(a)
p(a)

¬q(a)
p(a) ∨ q(a)

p(a) q(a)
< COMPLETED > < CLASH >

The formula is satisfiable. The devised model is D = {a}, pI = {a}, qI = ∅.

Alessandro Artale Reasoning in First Order Logic



Example

ϕ ∧ ψ
ϕ
ψ

ϕ ∨ ψ
ϕ ψ

∀x . ϕ
ϕ[X /t ]
∀x . ϕ

∃x . ϕ
ϕ[X /a]

∃y . (p(y ) ∧ ¬q(y )) ∧ ∀z . (p(z ) ∨ q(z ))
∃y . (p(y ) ∧ ¬q(y ))
∀z . (p(z ) ∨ q(z ))

p(a) ∧ ¬q(a)
p(a)

¬q(a)
p(a) ∨ q(a)

p(a) q(a)
< COMPLETED > < CLASH >

The formula is satisfiable. The devised model is D = {a}, pI = {a}, qI = ∅.

Alessandro Artale Reasoning in First Order Logic



Example

ϕ ∧ ψ
ϕ
ψ

ϕ ∨ ψ
ϕ ψ

∀x . ϕ
ϕ[X /t ]
∀x . ϕ

∃x . ϕ
ϕ[X /a]

∃y . (p(y ) ∧ ¬q(y )) ∧ ∀z . (¬p(z ) ∨ q(z ))

∃y . (p(y ) ∧ ¬q(y ))
∀z . (¬p(z ) ∨ q(z ))

p(a) ∧ ¬q(a)
p(a)

¬q(a)
¬p(a) ∨ q(a)

¬p(a) q(a)
< CLASH > < CLASH >

The formula is unsatisfiable.

Alessandro Artale Reasoning in First Order Logic



Example

ϕ ∧ ψ
ϕ
ψ

ϕ ∨ ψ
ϕ ψ

∀x . ϕ
ϕ[X /t ]
∀x . ϕ

∃x . ϕ
ϕ[X /a]

∃y . (p(y ) ∧ ¬q(y )) ∧ ∀z . (¬p(z ) ∨ q(z ))
∃y . (p(y ) ∧ ¬q(y ))
∀z . (¬p(z ) ∨ q(z ))

p(a) ∧ ¬q(a)
p(a)

¬q(a)
¬p(a) ∨ q(a)

¬p(a) q(a)
< CLASH > < CLASH >

The formula is unsatisfiable.

Alessandro Artale Reasoning in First Order Logic



Example

ϕ ∧ ψ
ϕ
ψ

ϕ ∨ ψ
ϕ ψ

∀x . ϕ
ϕ[X /t ]
∀x . ϕ

∃x . ϕ
ϕ[X /a]

∃y . (p(y ) ∧ ¬q(y )) ∧ ∀z . (¬p(z ) ∨ q(z ))
∃y . (p(y ) ∧ ¬q(y ))
∀z . (¬p(z ) ∨ q(z ))

p(a) ∧ ¬q(a)

p(a)
¬q(a)

¬p(a) ∨ q(a)

¬p(a) q(a)
< CLASH > < CLASH >

The formula is unsatisfiable.

Alessandro Artale Reasoning in First Order Logic



Example

ϕ ∧ ψ
ϕ
ψ

ϕ ∨ ψ
ϕ ψ

∀x . ϕ
ϕ[X /t ]
∀x . ϕ

∃x . ϕ
ϕ[X /a]

∃y . (p(y ) ∧ ¬q(y )) ∧ ∀z . (¬p(z ) ∨ q(z ))
∃y . (p(y ) ∧ ¬q(y ))
∀z . (¬p(z ) ∨ q(z ))

p(a) ∧ ¬q(a)
p(a)

¬q(a)

¬p(a) ∨ q(a)

¬p(a) q(a)
< CLASH > < CLASH >

The formula is unsatisfiable.

Alessandro Artale Reasoning in First Order Logic



Example

ϕ ∧ ψ
ϕ
ψ

ϕ ∨ ψ
ϕ ψ

∀x . ϕ
ϕ[X /t ]
∀x . ϕ

∃x . ϕ
ϕ[X /a]

∃y . (p(y ) ∧ ¬q(y )) ∧ ∀z . (¬p(z ) ∨ q(z ))
∃y . (p(y ) ∧ ¬q(y ))
∀z . (¬p(z ) ∨ q(z ))

p(a) ∧ ¬q(a)
p(a)

¬q(a)
¬p(a) ∨ q(a)

¬p(a) q(a)
< CLASH > < CLASH >

The formula is unsatisfiable.

Alessandro Artale Reasoning in First Order Logic



Example

ϕ ∧ ψ
ϕ
ψ

ϕ ∨ ψ
ϕ ψ

∀x . ϕ
ϕ[X /t ]
∀x . ϕ

∃x . ϕ
ϕ[X /a]

∃y . (p(y ) ∧ ¬q(y )) ∧ ∀z . (¬p(z ) ∨ q(z ))
∃y . (p(y ) ∧ ¬q(y ))
∀z . (¬p(z ) ∨ q(z ))

p(a) ∧ ¬q(a)
p(a)

¬q(a)
¬p(a) ∨ q(a)

¬p(a)

q(a)

< CLASH >

< CLASH >

The formula is unsatisfiable.

Alessandro Artale Reasoning in First Order Logic



Example

ϕ ∧ ψ
ϕ
ψ

ϕ ∨ ψ
ϕ ψ

∀x . ϕ
ϕ[X /t ]
∀x . ϕ

∃x . ϕ
ϕ[X /a]

∃y . (p(y ) ∧ ¬q(y )) ∧ ∀z . (¬p(z ) ∨ q(z ))
∃y . (p(y ) ∧ ¬q(y ))
∀z . (¬p(z ) ∨ q(z ))

p(a) ∧ ¬q(a)
p(a)

¬q(a)
¬p(a) ∨ q(a)

¬p(a) q(a)
< CLASH > < CLASH >

The formula is unsatisfiable.

Alessandro Artale Reasoning in First Order Logic



Example

ϕ ∧ ψ
ϕ
ψ

ϕ ∨ ψ
ϕ ψ

∀x . ϕ
ϕ[X /t ]
∀x . ϕ

∃x . ϕ
ϕ[X /a]

∃y . (p(y ) ∧ ¬q(y )) ∧ ∀z . (¬p(z ) ∨ q(z ))
∃y . (p(y ) ∧ ¬q(y ))
∀z . (¬p(z ) ∨ q(z ))

p(a) ∧ ¬q(a)
p(a)

¬q(a)
¬p(a) ∨ q(a)

¬p(a) q(a)
< CLASH > < CLASH >

The formula is unsatisfiable.

Alessandro Artale Reasoning in First Order Logic



Critical Points in a Tableaux Construction

Do not Use the Same Constant Twice to Instantiate
Existential Formulas.
E.g., Try with the following Satisfiable formula:

∀x (p(x ) ∨ q(x )) ∧ ∃x . ¬p(x ) ∧ ∃x . ¬q(x )

Instantiate Universal Formulas with all Constants.
Universal formulas cannot be disregarded once applied since
they must be possibly ri-applied in case a new constant is
introduced (e.g., see the Tableaux for the previous formula).
Infinite Branches.
E.g., Consider the following formula

∀x∃y . p(x , y )

Note. The method of semantic tableaux is not a decision
procedure for satisfiability in first-order logic. Indeed, such
a procedure does not exist in FOL, i.e., FOL is undecidable.

Alessandro Artale Reasoning in First Order Logic



Infinite Models – Finite Model Property

There are FOL formulas that are satisfiable only in
interpretations with an infinite Domain. In general, FOL is said
not to have the Finite Model Property.

The formula ∀x∃y . p(x , y ) can be satisfied both in infinite
models, e.g., Iinf = (Z+, {<}), and in finite models, e.g.,
Ifin = ({a}, {p(a, a)}).
The following formula is satisfiable only over infinite
models:

∀x∃y . p(x , y )∧∀x . ¬p(x , x )∧∀x∀y∀z (p(x , y )∧p(y , z ) → p(x , z ))
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Tableaux Construction

The Tableaux Construction Must be Systematic.
Consider the formula: ∀x∃y . p(x , y ) ∧ ∀x (q(x ) ∧ ¬q(x ))
The formula is unsatisfiable but the Tableaux can decide to
expand indefinitely the branch for the sub-formula
∀x∃y . p(x , y ).
A systematic construction is needed to make sure that rules
are eventually applied to all formulas labeling a node.
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Tableaux Construction (cont.)

Initially, the Tableaux, T , consists of the root node labeled
with the formula, ϕ. If ϕ does not use constants we
introduce an arbitrary constant, a0.
T is built inductively by repeatedly choosing an unmarked
leaf, ℓ , and applying a Completion rule respecting the
following order:

1 If ℓ contains a complementary pair of literals (or ⊥), mark the
leaf closed (or clash);

2 Apply an AND-rule if applicable;
3 Apply an OR-rule if applicable;
4 Apply an ∃-rule if applicable;
5 Apply simultaneously all applicable ∀-rules with the proviso

that only new formulas are added;
6 If no rule applies mark the leaf open (or complete).
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Tableaux Construction (cont.)

Definition. A branch in a Tableau is closed if it terminates in a
leaf marked closed (clash); otherwise, if it is infinite or it
terminates in a leaf marked open (complete), the branch is open.
A Tableaux is closed if all of its branches are closed; otherwise
(it has a finite or infinite open branch), the Tableaux is open.
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Termination and Decidability

Given a logic L, a reasoning problem is said to be decidable if
there exists a computational process (e.g., an algorithm, a
computer program, etc.) that solves the problem in a finite
number of steps, i.e., the process always terminates.

The problem of deciding whether a formula ϕ is logically
implied by a theory Γ is undecidable in FOL.
Logical implication becomes decidable if we restrict to
propositional calculus.
Logical implication becomes decidable if we restrict to FOL
using only at most two variable names; such language is
called L2.

The property of (un)decidability is a general property of the
problem and not of a particular algorithm solving it.
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L3

An example of L3 formula:
“The only baseball player in town is married to one of Jeremy’s
daughters.”
∃x. [ B(x) ∧

(∀y. [ B(y) → x = y ] ) ∧
∃z. [ M(x, z) ∧ D(z, jeremy) ∧

(∃k. [ D(k, jeremy) ∧ z ̸= k ] ) ∧
∀v. [ M(x, v) → v = z ] ] ]

∃x. [ B(x) ∧
(∀y. [ B(y) → x = y ] ) ∧
∃y. [ M(x, y) ∧ D(y, jeremy) ∧

(∃x. [ D(x, jeremy) ∧ y ̸= x ] ) ∧
∀v. [ M(x, v) → v = y ] ] ]
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Expressive Power

Some logics can be made decidable by sacrificing some
expressive power.
A logical language La has more expressive power than a
logical language Lb , if each formula of Lb denotes the
“same” set of models of its correspondent formula of La , and
if there is a formula of La denoting a set of models which is
denoted by no formula in Lb .

Example:
Consider La as FOL, and Lb as FOL without negation and
disjunction. Given a common domain, the La formula
∃x . [ P(x ) ∨ Q(x ) ] has a set of models which can not be captured
by any formula of Lb .
(Exercise: check it out with D = {a})
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Tableaux Calculus: Correctness

Theorem—Soundness and Completeness. A formula ϕ in FOL
is satisfiable if and only if the tableaux for ϕ contains an open
(completed) branch.
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Tableaux Calculus: Soundness

Soundness: If the Tableaux has one open (completed) branch
then the formula is satisfiable.

To prove Soundness we need to show that the Interpretation that
satisfies the set of literals labeling the nodes of a completed
branch can be extended to a model of the formula labeling the
root.
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Tableaux Calculus: Soundness (cont.)

There are four steps in the proof (similar to the propositional
case):

1 Define a property of formulas;
2 Show that the set of formulas in a completed branch has

this property;
3 Prove that a set with this property is satisfiable;
4 Note that the formula in the root is in the set.
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Tableaux Calculus: Soundness (cont.)

Step 1.
Definition–Hintikka Set. Let Θ be a set of closed formulas in
FOL. Then Θ is a Hintikka set iff:

1 For all ground literals L appearing in a formula of Θ, either
L ̸∈ Θ or ¬L ̸∈ Θ.

2 If ϕ ∧ ψ ∈ Θ, then ϕ ∈ Θ and ψ ∈ Θ.
3 If ϕ ∨ ψ ∈ Θ, then ϕ ∈ Θ or ψ ∈ Θ.
4 If ∀x .ϕ ∈ Θ, then ϕ[x /a] ∈ Θ for all constants a in Θ.
5 If ∃x .ϕ ∈ Θ, then ϕ[x /a] ∈ Θ for some constant a in Θ.
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Tableaux Calculus: Soundness (cont.)
Step 2.
Lemma 1. If Θ is the union of formulas gathered on an open
branch from the root to a completed leaf, then Θ is a Hintikka set.
Proof.

If a grond literal appears at step n during the Tableaux
construction, it will be preserved in any other node down to
the leaf, Θl . Thus, all literals in Θ appear in Θl . Since the
branch is completed, no complementary pair of literals
appears in Θl , so condition (1) holds for Θ.
For formulas different from ∀x .ϕ, conditions 2, 3, or 5 easily
hold since the branch is supposed to be completed, i.e., the
completion rules have been applied.
Consider a formula of the form ∀x .ϕ. Since those formulas
are never eliminated when the corresponding rule is
applied, then the ∀-rule is applied to all possible constants
in Θ and condition (4) holds.
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Tableaux Calculus: Soundness (cont.)

Step 3.
Lamma 2. Let Θ be a Hintikka set. Then Θ is satisfiable.

Let ∆ = {c1, c2, . . .} be the set of constants in Θ. We define
an interpretation, I = (∆, ·I ), and then show that the
interpretation is a model of Θ. For each n-ary predicate P :

(ci1 , . . . , cin ) ∈ PI if P(ci1 , . . . , cin ) ∈ Θ
(ci1 , . . . , cin ) ̸∈ PI if ¬P(ci1 , . . . , cin ) ∈ Θ
(ci1 , . . . , cin ) ∈ PI otherwise

By condition (1), I is well defined.
By structural induction we can easily show that
∀ϕ ∈ Θ, I |= ϕ.
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Tableaux Calculus: Soundness (cont.)

Step 4.
Proof of Soundness.

Assume that ϕ has a Tableaux with a completed branch.
By Lemma 1, Θ, the union of formulas on the nodes of that
branch, is a Hintikka set.
By Lemma 2, we can find an interprtation I for Θ.
Since ϕ ∈ Θ, then I |= ϕ.
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Tableaux Calculus: Completeness

Completeness: It is easier to prove the contrapositive: If the
Tableaux has a clash in every branch, then the formula is
unsatisfiable.
Proof. By induction on the height of the Tree generated by the
Completion Rules.

Basis Case. h = 0. Clearly a leaf is a set of literals and if it
contains a clash it is unsatisfiable.
Induction Step. By Inductive Hypothesis, for any node m,
root of a tree with height hm < hn , the set of formulas, Θm ,
labeling node m is unsatisfiable if the Tree rooted at m, say
Tm , contains a clash in every branch. The cases of
AND-rule and OR-rule is as in propositional logic.

Alessandro Artale Reasoning in First Order Logic



Tableaux Calculus: Completeness (cont.)

∀-rule. Θn = {∀x .ϕ(x )} ∪ Θ′
n . Then,

Θn−1 = {∀x .ϕ(x ), ϕ(a)} ∪ Θ′
n , with hn−1 < hn . Now, if Tn

has a clash in every branch so is Tn−1 and by induction
Θn−1 is unsatisfiable.
If, by absurd, Θn is satisfiable, then, there is a model
I = (∆I , ·I ) such that I |= Θn . Thus, I |= Θ′

n , and
I |= ∀x .ϕ(x ). Since, by the Tableaux construction, the
constant a ∈ Θn , then aI ∈ ∆I and since I |= ∀x .ϕ(x ) then
I |= ϕ(a), which contradicts the fact that Θn−1 is
unsatisfiable.

Alessandro Artale Reasoning in First Order Logic



Tableaux Calculus: Completeness (cont.)

∃-rule. Θn = {∃x .ϕ(x )} ∪ Θ′
n . Then, Θn−1 = {ϕ(a)} ∪ Θ′

n ,
with a ̸∈ Θn and hn−1 < hn . Now, if Tn has a clash in every
branch so is Tn−1 and by induction Θn−1 is unsatisfiable.
By absurd, let Θn be satisfiable, i.e., there is a model
I = (∆I , ·I ) such that I |= Θn . Thus, I |= Θ′

n , and
I |= ∃x .ϕ(x ). In particular, I |= ∃x .ϕ(x ), i.e., there exists
d ∈ ∆I s.t. I , α [x /d ] |= ϕ(x ). Since a ̸∈ Θn , i.e., the constant
a is fresh new, we can define a new interpretation, I ′, that
extends I by mapping aI ′ = d . Then, I ′ |= ϕ(a) and then
I ′ |= Θn−1, contradicting the inductive hypothesis.
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Other Reasoning Problems

Subsumption
Γ |= P ⊑ Q
P and Q predicate symbols of the same arity
Q subsumes P in Γ iff Γ |= ∀x̂ . [ P(x̂ ) → Q(x̂ ) ]

Instance Checking

The constant a is an instance of the unary predicate P
Γ |= P(a).
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Example

Given a theory Γ,
if STUDENT ⊑ PERSON is entailed by Γ
and if STUDENT(john) is entailed by Γ
then PERSON(john) is entailed by Γ

i.e., if

Γ |= STUDENT ⊑ PERSON

Γ |= STUDENT(john)
then
Γ |= PERSON(john)
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Subsumption

Subsumption can be seen as a binary relation in the space
of predicates with same arity: P/n ⊑ Q/n .
The subsumption relation is a partial ordering relation in
the space of predicates of same arity.

Exercise: prove it.
Hint : a partial ordering relation is a transitive, reflexive, and
antisymmetric relation.
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Model Checking

Model Checking. Verify that a given Interpretation, I , is a model
for a closed formula ϕ: I |= ϕ

Example:
∆ = {a, b},
PI = {a},
QI = {b}.
is a model of the formula:
∃y . [ P(y ) ∧ ¬Q(y ) ] ∧ ∀z . [ P(z ) ∨ Q(z ) ]
i.e.,
I |= ∃y . [ P(y ) ∧ ¬Q(y ) ] ∧ ∀z . [ P(z ) ∨ Q(z ) ]

Remark: Model Checking is decidable for FOL.
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Summary

Main lesson: Logic can be a useful tool. It allows us to
represent information about a domain in a very
straight-forward way then deduce additional facts using one
general domain-independent "algorithm": deduction.
Consequently, logic lends itself to large-scale,
distributed-design problems.
Each logic is made up of a syntax, a semantics, a definition
of the reasoning problems and the computational properties,
and inference procedures for the reasoning problems
(possibly sound and complete). The syntax describes how to
write correct sentences in the language, the semantics tells
us what sentences mean in the "real world." The inference
procedure derives results logically implied by a set of
premises.
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Summary (cont.)

Logics differ in terms of their representation power and
computational complexity of inference. The more restricted
the representational power, the faster the inference in
general.
Propositional logic: we can only talk about facts and
whether or not they are true. In the worst case, we can use
the brute force truth-table method to do inference. Proof
methods such as tableaux are generally more efficient,
easier to implement, and easier to understand.
First-order logic: we can now talk about objects and
relations between them, and we can quantify over objects.
Good for representing most interesting domains, but
inference is not only expensive, but may not terminate.
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