Exercises for Discrete Maths

Discrete Maths

Teacher: Alessandro Artale Teaching Assistants: Elena Botoeva, Daniele Porello http://www.inf.unibz.it/~artale/DML/dml.htm

Week 4

Computer Science

Free University of Bozen-Bolzano

Disclaimer. The course exercises are meant for the students of the course of Discrete Mathematics and Logic at the Free University of Bozen-Bolzano.

EXERCISE SET 7.4, P. 440: CARDINALITY AND COMPUTABILITY

Exercise 26. Prove that any infinite set A contains a countably infinite subset.

<u>Proof.</u> We construct inductively a function $f : \mathbb{N} \mapsto A$.

Basis Step: Pick an arbitrary¹ element $a_1 \in A$. Let $f(1) = a_1$.

Inductive Step: Assume that f(n) has been defined for $n \ge 1$. Now, $A - \{f(1), \ldots, f(n)\} \ne \emptyset$ because A is infinite. Pick an arbitrary $b \in A - \{f(1), \ldots, f(n)\}$. Define f(n+1) = b.

Next we prove that f is injective. If $1 \le m < n$ then $f(m) \in \{f(1), \ldots, f(n-1)\}$ whereas $f(n) \in A - \{f(1), \ldots, f(n-1)\}$. Thus $f(n) \ne f(m)$, that is, f is bijective from \mathbb{N} to $f(\mathbb{N})$. Thus $f(\mathbb{N})$ is countable by definition of countable set.

EXERCISE SET 8.1, P. 449: RELATIONS

Exercise 17. Let $A = \{2, 3, 4, 5, 6, 7, 8\}$ and R a relation over A. Draw the directed graph of R, after realizing that xRy iff x - y = 3n for some $n \in \mathbb{Z}$. Check that R is an equivalence relation.

Solution. The relation is:

$$R = \{(2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (8, 5), (8, 2), (7, 4), (6, 3), (5, 2), (5, 8), (2, 8), (4, 7), (3, 6), (2, 5)\}.$$

EXERCISE SET 8.2, PP. 458–459: PROPERTIES OF RELATIONS

Exercise 1. Let $A = \{0, 1, 2, 3\}$ and R a relation over A:

 $R = \{(0,0), (0,1), (0,3), (1,1), (1,0), (2,3), (3,3)\}$

Draw the directed graph of R. Check whether R is an equivalence relation. Give a counterexample in each case in which the relation does not satisfy one of the properties of being an equivalence relation.

Solution.

R is not reflexive because $(2,2) \notin R$. It is not symmetric because $(3,2) \notin R$. It is not transitive because (1,0) and (0,3) are in *R* but $(1,3) \notin R$.

Exercise 20. Let $X = \{a, b, c\}$ and 2^X be the power set of X. A relation R is defined on 2^X as follows: For all $A, B \in 2^X, (A, B) \in R$ *iff* the number of elements in A equals the number of elements in B. Show that R is an equivalence relation.

¹Formally, the Axiom of Choice allows us to do so.

 $\mathbf{2}$

Exercise 21. Let $X = \{a, b, c\}$ and 2^X be the power set of X. A relation R is defined on 2^X as follows: For all $A, B \in 2^X, (A, B) \in R$ *iff* the number of elements in A is less than the number of elements in B. Show that R is not an equivalence relation.

Exercise 37. If R and S are reflexive, then $R \cap S$ is so. Explain why.

Exercise 38. If R and S are symmetric, then $R \cap S$ is so. Explain why.

Exercise 39. If R and S are transitive, then $R \cap S$ is so. Explain why.

Exercise 40. If R and S are reflexive, then $R \cup S$ is so. Explain why.

Exercise 41. If R and S are symmetric, then $R \cup S$ is so. <u>**Proof.**</u> Let $(x, y) \in R \cup S$. Then either $(x, y) \in R$ and then $(y, x) \in R$, or $(x, y) \in S$ and then $(y, x) \in S$. Thus, $(y, x) \in R \cup S$.

Exercise 42. If R and S are transitive, then $R \cup S$ is not necessarily so. Counter-example: $R = \{(a, b)\}$ and $S = \{(b, c)\}$.

Exercise 51. Let $R = \{(0, 1), (0, 2), (1, 1), (1, 3), (2, 2), (3, 0)\}$. Find its transitive closure R^t , after drawing the directed graph of R.

EXERCISE SET 8.3, P. 475–477: EQUIVALENCE RELATIONS

Exercise 2. A relation R induced by a partition is an equivalence relation—reflexive, symmetric, transitive. See Theorem 8.3.1.

a) Let $A = \{0, 1, 2, 3, 4\}$ and let a partition be $P = \{\{0, 2\}, \{1\}, \{3, 4\}\}$. Find the ordered pairs in R.

Solution.

Then equivalence classes are:

$$\{0, 2\} = [0] = [2] \{1\} = [1] \{3, 4\} = [3] = [4]$$

and hence

$$R = \{(0,0), (2,2), (0,2), (2,0), (1,1), (3,3), (4,4), (3,4), (4,3)\}.$$

b) Let $A = \{0, 1, 2, 3, 4\}$ and let a partition be $P = \{\{0\}, \{1, 3, 4\}, \{2\}\}$. Solution.

Reasoning as above,

 $R = \{(0,0), (1,1), (3,3), (4,4), (1,3), (3,1), (1,4), (4,1), (3,4), (4,3), (2,2)\}.$

c) Let $A = \{0, 1, 2, 3, 4\}$ and let a partition be $P = \{\{0\}, \{1, 2, 3, 4\}\}$. Solution.

Reasoning as above,

$$R = \{(0,0), (1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (1,3), (3,1), (1,4), (4,1), (2,3), (3,2), (2,4), (4,2), (3,4), (4,3)\}$$

Exercise 8. Consider the powerset of $X = \{a, b, c\}$ and define R on the powerset as follows: URV iff U and V have the same cardinality. Find the equivalence classes of R.

Solution.

The equivalence classes are: $[\{\emptyset\}] = \{\emptyset\}; [\{a\}] = \{\{a\}, \{b\}, \{c\}\}; [\{a, b\}] = \{\{a, b\}, \{a, c\}, \{b, c\}\}; [\{a, b, c\}] = \{\{a, b, c\}\}.$

Exercise 28. Consider the following relation I over reals: xIy iff $(x - y) \in \mathbb{Z}$. Prove that it is an equivalence and characterize its equivalence classes. See the book solution.

Exercise 46. Let R be a relation on a set A and suppose R is symmetric and transitive. Prove the following: If for every x in A there exists a y in A such that xRy, then R is an equivalence relation.

<u>Proof.</u> For every x in A there is a y in A such that xRy, then, by symmetry, yRx, and by transivity, xRx. Thus R is also reflexive and so it is an equivalence relation.