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Exercises for Section 5.3 (p. 266)

Induction

Example 5.3.2. ∀n ≥ 3 we have that 2n + 1 < 2n

5.3.16. Show that 2n < (n + 1)!, for n ≥ 2.

Proof. The base step is as follows:

Base Step: n = 2: we have to check that 22 < 3!, but 4 < 6, so this is true.

Inductive Step: Assume 2k < (k + 1)!, for k ≥ 2. We have

2k+1 = 2 · 2k < 2 · (k + 1)!

Since k ≥ 2, we have (k + 2) > 2. Therefore:

2 · (k + 1)! < (k + 2) · (k + 1)! = (k + 2)!

This completes the inductive step.

5.3.19. Show that n2 < 2n, for n ≥ 5.

Proof. The base step is as follows:

Base Step: n = 5: 52 = 25 < 25 = 32, which is true.

Inductive Step: Assume k2 < 2k, for k ≥ 5 We have:

(k + 1)2 = k2 + 2k + 1 < 2k + 2k + 1

It suffices to show that (*): 2k + 1 < 2k, for k ≥ 5. That was proved for Example
5.3.2. This completese the inductive proof.
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Exercises for Section 5.5 (p. 288)

Loop Invariants

Exercise 5.5.6. Pre-condition: m nonnegative integer, x is a real number, i = 0,
and exp = 1

Program:
while (i 6= m)
1. exp := exp · x
2. i := i + 1
end while

Post-condition: exp = xm

Loop-invariant: I(n) is ‘i = n and exp = xn’

Proof. :

Basis Property: n = 0, then i = 0, exp = x0 = 1.

Inductive Property:
i 6= m and I(k), then:
by 1.: expnew = expold · x = xk · x = xk+1

by 2.: inew = iold + 1 = k + 1

Eventual Falsity of the Guard: At each iteration, i = i + 1, and i = 0 at the
start, so after m iterations we have i = m.

Correctness of the Post-Condition: Guard false implies i = m after m itera-
tions and I(m) = xm.
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Exercises for Section 5.9 (p. 334)

Structural Induction

Exercise 5.9.5. Define a set S recursively as follows:

I.: Base: 1 ∈ S
II.: Recursion: If s ∈ S, then a) 0s ∈ S and b) 1s ∈ S.
III.: Restriction: Nothing is in S other than objects defined in I. and II.

above.

Use structural induction to prove that every string in S ends in a 1.

Basis Property: ‘1’ ends in 1.

Inductive Property: Assume that s ends with ‘1’. Then:

a) 0s ends in 1 and b) 1s ends in 1.

Exercise 5.9.10. Define a set S recursively as follows:

I.: Base: 0 ∈ S and 5 ∈ S
II.: Recursion: If s ∈ S and t ∈ S, then a) s + t ∈ S and b) s− t ∈ S.
III.: Restriction: Nothing is in S other than objects defined in I. and II.

above.

Use structural induction to prove that every integer in S is divisible by 5.

Basis Property: 0 and 5 are both divisible by 5.

Inductive Property: Assume that s and t are divisible by 5, i.e. there are inte-
gers k and q such that s = 5 · k and t = 5 · q. Then:

a) s + t = 5 · k + 5 · q = 5(k + q),
b) s− t = 5 · k − 5 · q = 5(k − q),
so s + t and s− t are both divisible by 5.
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