Exercises for Discrete Maths

Discrete Maths

Teacher: Alessandro Artale Teaching Assistants: Elena Botoeva, Daniele Porello http://www.inf.unibz.it/~artale/DML/dml.htm

Week 2

Computer Science

Free University of Bozen-Bolzano

Disclaimer. The course exercises are meant for the students of the course of Discrete Mathematics and Logic at the Free University of Bozen-Bolzano.

Induction

Example 5.3.2. $\forall n \geq 3$ we have that $2n + 1 < 2^n$

5.3.16. Show that $2^n < (n+1)!$, for $n \ge 2$.

Proof. The base step is as follows:

Base Step: n = 2: we have to check that $2^2 < 3!$, but 4 < 6, so this is true.

Inductive Step: Assume $2^k < (k+1)!$, for $k \ge 2$. We have

$$2^{k+1} = 2 \cdot 2^k < 2 \cdot (k+1)!$$

Since $k \ge 2$, we have (k+2) > 2. Therefore:

$$2 \cdot (k+1)! < (k+2) \cdot (k+1)! = (k+2)!$$

This completes the inductive step.

5.3.19. Show that $n^2 < 2^n$, for $n \ge 5$.

Proof. The base step is as follows:

Base Step: n = 5: $5^2 = 25 < 2^5 = 32$, which is true.

Inductive Step: Assume $k^2 < 2^k$, for $k \ge 5$ We have:

$$(k+1)^2 = k^2 + 2k + 1 < 2^k + 2k + 1$$

It suffices to show that (*): $2k + 1 < 2^k$, for $k \ge 5$. That was proved for Example 5.3.2. This completese the inductive proof.

Loop Invariants

Exercise 5.5.6. Pre-condition: m nonnegative integer, x is a real number, i = 0, and exp = 1

Program: while $(i \neq m)$ 1. $exp := exp \cdot x$ 2. i := i + 1end while

Post-condition: $exp = x^m$

Loop-invariant: I(n) is 'i = n and $exp = x^n$ '

Proof. :

Basis Property: n = 0, then i = 0, $exp = x^0 = 1$.

Inductive Property:

 $i \neq m$ and I(k), then: by 1.: $exp_{new} = exp_{old} \cdot x = x^k \cdot x = x^{k+1}$ by 2.: $i_{new} = i_{old} + 1 = k + 1$

Eventual Falsity of the Guard: At each iteration, i = i + 1, and i = 0 at the start, so after m iterations we have i = m.

Correctness of the Post-Condition: Guard false implies i = m after m iterations and $I(m) = x^m$.

Structural Induction

Exercise 5.9.5. Define a set S recursively as follows:

I.: Base: $1 \in S$ II.: Recursion: If $s \in S$, then a) $0s \in S$ and b) $1s \in S$. III.: Restriction: Nothing is in S other than objects defined in I. and II. above.

Use structural induction to prove that every string in S ends in a 1.

Basis Property: '1' ends in 1.

Inductive Property: Assume that s ends with '1'. Then:

a) 0s ends in 1 and b) 1s ends in 1.

Exercise 5.9.10. Define a set *S* recursively as follows:

I.: Base: $0 \in S$ and $5 \in S$ **II.:** Recursion: If $s \in S$ and $t \in S$, then a) $s + t \in S$ and b) $s - t \in S$. **III.:** Restriction: Nothing is in S other than objects defined in I. and II. above.

Use structural induction to prove that every integer in S is divisible by 5. **Basis Property:** 0 and 5 are both divisible by 5.

Inductive Property: Assume that s and t are divisible by 5, i.e. there are integers k and q such that $s = 5 \cdot k$ and $t = 5 \cdot q$. Then:

a) $s + t = 5 \cdot k + 5 \cdot q = 5(k + q)$, b) $s - t = 5 \cdot k - 5 \cdot q = 5(k - q)$, so s + t and s - t are both divisible by 5.