A.Artale, A. S. Kamble

UMIST-CT213: DATABASE TECHNOLOGY

TUTORIAL No. 2 – Solution

Summary

· Question 1 - Transactions and Log Files

· Question 2 – Recovery from System Failure

· Question 3 – Concurrency Control

Ans1: Transactions and Log Files (20 marks)

Given:

Database elements X,Y,Z with starting values X = 4, Y = 5, Z = 1

Two transactions T1, T2 where

T1: X := 2 x X; Y = Y + X

T2: Z := 2 x Z; X = X - Z

Assumption: T2 starts after T1 finishes. UNDO logging technique is used to recover from a system failure.

1.a Table containing: a) primitive actions for both T1 and T2 (in the appropriate sequential order), b) the values of local variables, c) the values of X,Y,Z both in main memory and on disk, d) the status of log in main memory. Use READ, WRITE, OUTPUT, FLUSHLOG for showing actions together with the required assignment statements for local variables.

We can consider 2 local variable t and s as there are 3 database elements.

T1;T2
t
s
X
Y
Z
Disk X
Disk Y
Disk Z
Log

4
5
1
<START T1>

READ(X,t)
4

4

t := 2*t
8

8

READ(Y,s)

5

s := s + t

13

WRITE(X,t)

8

< T1,X,4>

WRITE(Y,s)

13

< T2,Y,5>

FLUSHLOG

OUTPUT(X)

8

OUTPUT(Y)

13

FLUSHLOG

<COMMIT T1>

READ(Z,t)
1

1

t := 2*t
2

READ(X,s)

8
8

s := s - t

6

WRITE(Z,t)

2

< T1,Z,1>

WRITE(X,s)

6

< T2,X,8>

FLUSHLOG

OUTPUT(Z)

2

OUTPUT(X)

6

FLUSHLOG

<COMMIT T2>

 (10 marks)

1.b Using REDO logging recovery technique. Execution order is inverted (i.e., T1 starts after T2 finishes)

T2;T1
t
s
X
Y
Z
Disk X
Disk Y
Disk Z
Log

4
5
1
<START T2>

READ(Z,t)
1

1

t := 2*t
2

READ(X,s)

4
4

s := s - t

2

WRITE(Z,t)

2

< T2,Z,2>

WRITE(X,s)

2

< T2,X,2>

FLUSHLOG

<COMMIT T2>

OUTPUT(Z)

2

OUTPUT(X)

2

<START T1>

READ(X,t)
2

2

t := 2*t
4

READ(Y,s)

5

5

s := s + t

9

WRITE(X,t)

2

< T1,X,4>

WRITE(Y,s)

4

< T2,Y,9>

FLUSHLOG

9

<COMMIT T1>

OUTPUT(X)

4

OUTPUT(Y)

9

 (10 marks)

Ans2: Recovery from System Failure (40 marks)
Given: Log file as follows (to be read from left to right)

<START T1> < T1,X,0> < T1,Y,0> <START T2> < T2,Z,0> < T1,W,5> <COMMIT T1> <START T3> < T3,Y,10> <START T4> < T4,X,5> <COMMIT T2> < T4,W,10> < T4,V,5> <COMMIT T4> < T3,V,10> <COMMIT T3>

Assumption: Nonquiescent Checkpoint under an UNDO logging technique immediate after one of the following log records has been written:

i. < T1,Y,0>

ii. < T2,Z,0>

iii. <START T3>

iv. <COMMIT T2>

v. < T4,V,5>

2.a Complete the log file (for each of the above point) with the insertion of START CKPT and END CKPT log records.

i
ii
iii

<START T1>

< T1,X,0>

< T1,Y,0>

<START CKPT (T1)>

<START T2>

< T2,Z,0>

< T1,W,5>

<COMMIT T1>

<END CKPT>

<START T3>

< T3,Y,10>

<START T4>

< T4,X,5>

<COMMIT T2>

< T4,W,10>

< T4,V,5>

<COMMIT T4>

< T3,V,10>

<COMMIT T3>
<START T1>

< T1,X,0>

< T1,Y,0>

<START T2>

< T2,Z,0>

<START CKPT (T1,T2)>

< T1,W,5>

<COMMIT T1>

<START T3>

< T3,Y,10>

<START T4>

< T4,X,5>

<COMMIT T2>

<END CKPT>

< T4,W,10>

< T4,V,5>

<COMMIT T4>

< T3,V,10>

<COMMIT T3>
<START T1>

< T1,X,0>

< T1,Y,0>

<START T2>

< T2,Z,0>

< T1,W,5>

<COMMIT T1>

<START T3>

<START CKPT (T2,T3)>

< T3,Y,10>

<START T4>

< T4,X,5>

<COMMIT T2>

< T4,W,10>

< T4,V,5>

<COMMIT T4>

< T3,V,10>

<COMMIT T3>

<END CKPT>

iv
v

<START T1>

< T1,X,0>

< T1,Y,0>

<START T2>

< T2,Z,0>

< T1,W,5>

<COMMIT T1>
<START T3>

< T3,Y,10>

<START T4>

< T4,X,5>

<COMMIT T2>

<START CKPT (T3,T4)>
< T4,W,10>

< T4,V,5>

<COMMIT T4>

< T3,V,10>

<COMMIT T3>

<END CKPT>
<START T1>

< T1,X,0>

< T1,Y,0>

<START T2>

< T2,Z,0>

< T1,W,5>

<COMMIT T1>

<START T3>

< T3,Y,10>

<START T4>

< T4,X,5>

<COMMIT T2>

< T4,W,10>

< T4,V,5>

<START CKPT (T3,T4)>

<COMMIT T4>

< T3,V,10>

<COMMIT T3>

<END CKPT>

(3 marks each, Total: 15 marks)

Consider now the log file as after above completion under point ii and suppose there is a crash. Show the actions to that need to be done to recover from the crash in each of the following situations. Use primitive actions WRITE, OUTPUT, ABORT(T) in the appropriate order and justify the answer.

2.b The last record in the log file is <COMMIT T4>

(6 marks)

In this case, T3 is active (uncommitted) and hence only T3 has to be undone.

Undo the changes writing old values of T3. The following actions need to be performed:

 WRITE(Y,10)

 OUTPUT(Y)

 ABORT(T3)

The log file before <START CKPT (T1;T2) > is USELESS and it can be erased, hence, new log file will be as follows:

<START CKPT (T1;T2)>

< T1,W,5>

<COMMIT T1>

<START T3>

< T3,Y,0>

<START T4>

< T4,X,5>

<COMMIT T2>

<END CKPT>

< T4,W,10>

< T4,V,5>

<COMMIT T4>

<ABORT T3>

2.c The last record in the log file is < T4,X,5>

(6 marks)

In this case, T2, T3, T4 are active (uncommitted) and hence only T2, T3, T4 need to be undone. The following actions need to be performed:

 WRITE(X,5)

 WRITE(Y,10)

 WRITE(Z,0)

 OUTPUT(X)

 OUTPUT(Y)

 OUTPUT(Z)

 ABORT(T2)

 ABORT(T3)

 ABORT(T4)

The log file before <START T2)> is USELESS and it can be erased, hence, new log file will be as follows:

<START T2)>

<T2,Z,0>

<START CKPT (T1;T2)>

< T1,W,5>

<COMMIT T1>

<START T3>

< T3,Y,10>

<START T4>

< T4,X,5>

<ABORT T2>

<ABORT T3>

<ABORT T4>

Assumption: Nonquiescent Checkpoint under REDO logging recovery technique.

The log file is as follows:

<START T1> < T1,X,3> < T1,Y,5> <START T2> < T2,Z,12> < T1,W,7> <COMMIT T1> <START T3> < T3,Y,16> <START CKPT (T2,T3)> <START T4> < T4,X,32> <COMMIT T2> < T4,W,10> <END CKPT> < T4,V,28> <COMMIT T4> < T3,V,14> <COMMIT T3>

Use primitive actions WRITE, OUTPUT, ABORT(T) in the appropriate order and justify the answer.

2.d The last record in the log file is <COMMIT T4>

(6 marks)

· T1 doesn’t have problem as it is committed before the checkpoint. Since <COMMIT T4> is the last record in log file, T3 also does not have problem.

· After the checkpoint T2 is committed and T4 is also recognised as committed. Hence, only T2 & T4 need to be redone. Since T3 is active, we need to abort T3.

The following actions need to be performed:

 WRITE(Z,12)

 WRITE(X,32)

 WRITE(W,10)

 WRITE(V,28)

 OUTPUT(Z)

 OUTPUT(X)

 OUTPUT(W)

 OUTPUT(V)

 ABORT(T3)

The log file before <START T2 > is USELESS and it can be erased, hence, new log file will be as follows:

<START T2)>

<T2,Z,12>

< T1,W,7>

<COMMIT T1>

<START T3>

< T3,Y,16>

<START CKPT (T2;T3)>

<START T4>

< T4,X,32>

<COMMIT T2>

<T4,W,10>

<END CKPT>

< T4,V,28>

<COMMIT T4>

<ABORT T3>

2.e The last record in the log file is <T4,X,32>

(7 marks)

In this case, only problematic transaction is T1, and it needs to be redone. T2, T3, T4 need to be aborted.

The following actions need to be performed:

 WRITE(X,3)

 WRITE(Y,5)

 WRITE(W,7)

 OUTPUT(X)

 OUTPUT(Y)

 OUTPUT(W)

 ABORT(T2)

 ABORT(T3)

 ABORT(T4)

New log file will be as follows:

<START T1)>

<T1,X,3>

<T1,Y,5>

<START T2>

<T2,Z,12>

< T1,W,7>

<COMMIT T1>

<START T3>

< T3,Y,16>

<START CKPT (T2;T3)>

<START T4>

< T4,X,32>

<ABORT T2>

<ABORT T3>

<ABORT T4>

Ans3: Concurrency Control (40 marks)

Given: Two schedules S1 and S2 as follows:

S1: r3(X); r1(Y); r2(Z); r3(Y); r1(Z); w2(Y); r3(Y); w1(Y); w2(Z); w3(X)

S2: r4(Y); r2(X); w2(X); r1(X); w4(Y); r1(Y); r2(Z); w1(Y); w2(Z); r1(Z); r3(Y); w1(Z); w3(X)

3.a Show the precedence graph and check whether the schedule is conflict-serializable. Justify each precedence relation in the graph, i.e., for each arch in the obtained graph show a conflicting pair of actions which gives rise to such an arch.

 Step1: Pick up an action (for example, ri(X) or wi(X))

Step2: From action ri(X) (or wi(X)), read the schedule from the left to right. Find all possible conflicting actions, i.e., actions involving the same variable made by different transactions. Write the precedence graph given the conflicts found.

From the given exercise, we have the precedence as follows:

For S1:
(i) r1(Y) <s1 w2(Y)

==> T1 <s1 T2

(ii) r3(Y) <s1 w2(Y)

==> T3 <s1 T2

(iii) r3(Y) <s1 w1(Y)

==> T3 <s1 T1

(iv) w2(Y) <s1 w1(Y)

==> T2 <s1 T1

(v) w2(Y) <s1 r3(Y)

==> T2 <s1 T3

The precedence graph is:

OR

A schedule is not conflict-serializable since it contains cycles: T1 <s1 T2 & T2 <s1 T1 (corresponding actions shown at (i) and (iv) respectively); and T2 <s1 T3 & T3 <s1 T2 (corresponding actions shown at (v) and (ii) respectively).

(8 marks)

For S2:
(i) r4(Y) <s2 w1(Y); w4(Y) <s2 w1(Y)

==> T4 <s2 T1

(ii) r2(X) <s2 w3(X); w2(X) <s2 w3(X)

==> T2 <s2 T3

(iii) w2(X) <s2 r1(X); w2(Z) <s2 w1(Z)

==> T2 <s2 T1

(iv) r1(X) <s2 w3(X); w1(Y) <s2 w3(Y)

==> T1 <s2 T3

(v) w4(Y) <s2 r3(Y)

==> T4 <s2 T3

The precedence graph is:

A schedule is conflict-serializable since there is no cycle.
(8 marks)

3.b If the schedule is conflict-serializable, show all admissible (given the precedence graph) serial schedules.

For S1:
Since schedule is not conflict-serializable, there is no (zero) serial schedule.

(2 marks)

For S2:
The possible serial schedules are:

(i)
T2; T4; T1; T3

(ii)
T4; T2; T1; T3
(2 marks)

===

Now, Given: Schedule S as follows:

S: r4(Y); r2(X); r1(X); w4(Y); r1(Y); r2(Z); w2(X); w1(Y); r1(Z); r3(Z); r3(X); w1(Z); w3(Z)

Assumption: Scheduler deals with Two-Phase Locking with shared and exclusive locks and allowing upgrading (i.e., a shared lock can be upgraded to an exclusive lock), add shared and exclusive locks and unlocks to S.

Insert each shared and exclusive lock as delayed as possible, while unlock as soon as possible (always in accordance with the Two-Phase Locking strategy). Show S in a table with 3 columns T1, T2, T3.

3.c

(10 marks)

T1
T2
T3
T4

Sl2(X); r2(X);

Sl4(Y); r4(Y);

Sl1(X); r1(X);

Xl4(Y); w4(X); Ul4(X)

Sl2(Z); r2(Z);

Sl1(Y); r1(Y);

Ul1 (X); Ul1 (Y)

Sl3(Y); r3(Y);

Xl3(Y); w3(X) Ul3(X)

Xl2(X); w2(X);

Ul2(Z);Ul2(X)

3.d

(10 marks)

T1
T2
T3
T4

Sl4(Y); r4(Y);

Sl2(X); r2(X);

Sl1(X); r1(X);

Xl4(Y); w4(X); U4(X)

Sl1(Y); r1(Y);

Sl2(Z); r2(Z);

Xl2(X): Denied

S is not a legal schedule since write action w2(X) is denied. In essence, a scheduler dealing with Two-Phase Locking will never produce such a schedule.

================ THE END ================================

T1

T2

T3

T1

T2

T3

T4

T1

T3

T2

