
Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (1)

Databases 2
Lecture IV

Alessandro Artale
Faculty of Computer Science – Free University of Bolzano

Room: 221

artale@inf.unibz.it

http://www.inf.unibz.it/ �artale/

2003/2004 – First Semester

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (2)

Summary of Lecture IV

� Query Compilation and Optimization

� Algorithms for Implementing Query Operators

– One-Pass Algorithms

– One-And-A-Half Passes Algorithms

� Nested-Loop Join

– Two-Pass Algorithms

� Sort-Based Algorithms

� Index-Based Algorithms.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (3)

Query Compilation Overview

SQL query

Parsing

Query Rewriting

Plan Generation

Execute Plan

query parse tree

logical query plan tree

physical query plan tree

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (4)

Query Optimization

� Crucial for query optimization are both the query rewriting and the plan

generation phases.

� To select the best query plan decision involve:

1. Choose the best algorithm for implementing each of the operations of the

logical query plan;

2. Choose the logical query plan that leads to the most efficient algorithm

for answering the query.

� Each of these choices depend on:

1. The size of the relations involved;

2. Existence of indexes on the relations;

3. Layout of data on disk.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (5)

Cost of Physical-Query-Plan Operators

� Physical-Query-Plan Operators implement both relational algebra opera-

tors, and generic operations like the scan of a relation – to bring into main

memory all the tuples of a relation – or the sort of a relation.

� The Cost associated to the execution of each operator is based on the number

of disk I/O – as specified by the I/O Model of Computation.

� For estimating the cost of an operator the following parameters are used:

1. M: The number of main memory buffers (assumed equal in size to a disk

block) available during the execution of an operator;

2. Parameters that measure size and distribution of data in relations:

(a) B(R): number of blocks holding the relation

�

– if a relation is

clustered, i.e., stored in fully dedicated blocks, then B(R) measures the

cost of scanning the relation;

(b) T(R): number of tuples in

�

;

(c) V(R,A): number of distinct values for the attribute

�

of the relation

�

.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (6)

Cost Parameters: An Example

ACCOUNT

Account

�

Branch Balance

A-101 Downtown 500

A-102 Perryridge 400

A-110 Downtown 600

A-201 Perryridge 900

A-215 Mianus 700

A-217 Brighton 750

A-218 Perryridge 700

A-222 Redwood 700

A-305 Round Hill 350

B(ACCOUNT) 3

T(ACCOUNT) 9

V(ACCOUNT,Account

�

) 9

V(ACCOUNT,Branch) 6

V(ACCOUNT,Balance) 7

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (7)

Summary

� Query Compilation and Optimization

� Algorithms for Implementing Operators

– One-Pass Algorithms

– One-And-A-Half Passes Algorithms

� Nested-Loop Join

– Two-Pass Algorithms

� Sort-Based Algorithms

� Index-Based Algorithms.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (8)

Classification of Operators

Operators can be classified into three classes:

1. Tuple-at-a-time, unary operators. Operators that do not require whole

relation in main memory – selection, projection.

2. Full-relation, unary operators. Operators that require whole relation in

main memory – ��
�

�

.

3. Full-relation, binary operators. At least one of the involved relations

should reside in main memory – all the remaining operators belong to this

class.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (9)

Classification of Algorithms

Algorithms for implementing the various Database operations can be classified

into three classes:

1. One-Pass. Data is read only once from disk;

2. Two-Pass. Data is read a first time from disk, processed, written to the disk,

and then re-read from disk a second time.

3. Multipass. Generalization of the two-pass algorithm to include three or

more passes.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (10)

Summary

� Query Compilation and Optimization

� Algorithms for Implementing Operators

– One-Pass Algorithms

– One-And-A-Half Passes Algorithms

� Nested-Loop Join

– Two-Pass Algorithms

� Sort-Based Algorithms

� Index-Based Algorithms.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (11)

One-Pass Algorithms for Tuple-at-Time Operators

Algorithm for Selection, �� � � �

, and Projection, �� � � �

.

1. Read the blocks of

�

one at a time into a memory buffer;

2. Perform the desired operation on the current tuples;

3. Move the selected/projected tuples on the output buffer.

Cost Analysis

� The algorithm requires that

� � �
.

� The disk I/O cost is B(R).

� Note: The cost can be reduced in the case of a Selection with a condition on

an attribute that has an index (see slide 56)

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (12)

One-Pass Algorithms for Full-Relation, Unary Operators
– Duplicate Elimination –

Algorithm for Duplicate Elimination

� � � �

.

� Read each block of

�

one at a time, and for every tuple:

1. If is the first time the tuple is seen: Copy the tuple to the output;

2. Otherwise: Do not output the tuple.

� One copy of every tuple already seen has to be kept in main memory – this is

why we have a Full-Relation algorithm – to make the above decision.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (13)

One-Pass Algorithms for Full-Relation, Unary Operators
– Duplicate Elimination (cont.) –

� Problem.

If we have � tuples, deciding whether a new tuple is among them takes a

time proportional to �. The full operation takes time proportional to � �

.

� Solution.

Using appropriate structures to memorize the already seen tuples: A

Balanced Binary Tree requires

��� � � to locate a tuple, then the full process

takes time proportional to � �� � �.

Cost Analysis

� The algorithm requires that
� � � � � � � � �

.

� The disk I/O cost is B(R).

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (14)

One-Pass Algorithms for Full-Relation, Binary Operators
– Cartesian Product –

Computing

� � �

– assuming that

�

is smaller in size.

� Read the whole

�

into main memory (no special structure is needed);

� Read into another buffer one block of

�

at a time;

� For each tuple

� � �

concatenate

�

with each tuple of

�

;

� Output each concatenated tuple.

Cost Analysis

� Number of memory buffers required:

� � � � � � � �� �
�

� �� � � � �

.

� The disk I/O cost is B(R) + B(S);

� Considerable amount of CPU time to concatenate tuples.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (15)

Cartesian Product Algorithm: An Example

STUDENT

StudID

�

Name Course

123 John CS

142 Marc CS

154 Mary Maths

221 Judi Physics
�

ACCOUNT

Acc

�

Branch Balance

A-101 Downtown 500

A-102 Perryridge 400

A-110 Downtown 600

A-201 Perryridge 900

A-215 Mianus 700

A-217 Brighton 750

A-218 Perryridge 700

A-222 Redwood 700

A-305 Round Hill 350

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (16)

Cartesian Product Algorithm: An Example (Cont.)

� Cycle 1: The first block of ACCOUNT is brought in Main Memory.

MAIN MEMORY OUTPUT

STUDENT

123 John CS

142 Marc CS

154 Mary Maths

221 Judi Physics

ACCOUNT (

� � �

Block)

A-101 Downtown 500

A-102 Perryridge 400

A-110 Downtown 600

STUDENT � ACCOUNT(Cycle 1)

StudID

�

Name Course Acc
�

Branch Balance

123 John CS A-101 Downtown 500

123 John CS A-102 Perryridge 400

123 John CS A-110 Downtown 600

142 Marc CS A-101 Downtown 500

142 Marc CS A-102 Perryridge 400

142 Marc CS A-110 Downtown 600

154 Mary Maths A-101 Downtown 500

154 Mary Maths A-102 Perryridge 400

154 Mary Maths A-110 Downtown 600

221 Judi Physics A-101 Downtown 500

221 Judi Physics A-102 Perryridge 400

221 Judi Physics A-110 Downtown 600

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (17)

Cartesian Product Algorithm: An Example (Cont.)

� Cycle 2: The second block of ACCOUNT is brought in Main Memory.

MAIN MEMORY OUTPUT

STUDENT

123 John CS

142 Marc CS

154 Mary Maths

221 Judi Physics

ACCOUNT (

� � �

Block)

A-201 Perryridge 900

A-215 Mianus 700

A-217 Brighton 750

STUDENT � ACCOUNT(Cycle 2)

StudID

�

Name Course Acc
�

Branch Balance

123 John CS A-201 Perryridge 900

123 John CS A-215 Mianus 700

123 John CS A-217 Brighton 750

142 Marc CS A-201 Perryridge 900

142 Marc CS A-215 Mianus 700

142 Marc CS A-217 Brighton 750

154 Mary Maths A-201 Perryridge 900

154 Mary Maths A-215 Mianus 700

154 Mary Maths A-217 Brighton 750

221 Judi Physics A-201 Perryridge 900

221 Judi Physics A-215 Mianus 700

221 Judi Physics A-217 Brighton 750

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (18)

Cartesian Product Algorithm: An Example (Cont.)

� Cycle 3: The third block of ACCOUNT is brought in Main Memory.

MAIN MEMORY OUTPUT

STUDENT

123 John CS

142 Marc CS

154 Mary Maths

221 Judi Physics

ACCOUNT (

� � �

Block)

A-218 Perryridge 700

A-222 Redwood 700

A-305 Round Hill 350

STUDENT � ACCOUNT(Cycle 3)

StudID

�

Name Course Acc
�

Branch Balance

123 John CS A-218 Perryridge 700

123 John CS A-222 Redwood 700

123 John CS A-305 Round Hill 350

142 Marc CS A-218 Perryridge 700

142 Marc CS A-222 Redwood 700

142 Marc CS A-305 Round Hill 350

154 Mary Maths A-218 Perryridge 700

154 Mary Maths A-222 Redwood 700

154 Mary Maths A-305 Round Hill 350

221 Judi Physics A-218 Perryridge 700

221 Judi Physics A-222 Redwood 700

221 Judi Physics A-305 Round Hill 350

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (19)

One-Pass Algorithms for Full-Relation, Binary Operators
– Natural Join –

Computing

� � �
�

� � � � � �
�

� �

–

�
�

�
�

�

are set of attributes.

� Read the whole

�

into a main memory search structure (Balanced Binary

Trees), with

�

as a search key;

� Read into another buffer one block of

�

at a time;

� For each tuple

� � �

search all the tuples in

�
that agree with

�

on the value

of

�

, using the search structure;

� Join such tuples (concatenation with only one repetition of the

�

attributes),

and then output them.

Cost Analysis

� Number of memory buffers required:

� � � � � � � �� �
�

� �� � � � �

.

� The disk I/O cost is
� �� � � � �� �

;

� Considerable amount of CPU time to concatenate tuples.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (20)

Natural Join Algorithm: An Example

Assume that three tuples fit in one block.

BRANCH

BName SortCode Phone

Downtown 156432 01636754

Perryridge 452341 01436754

Mianus 335699 01994545

Brighton 657841 01227676

Redwood 521775 01336546

Round Hill 903215 01764008

�

ACCOUNT

Acc

�

BName Balance

A-101 Downtown 500

A-102 Perryridge 400

A-110 Downtown 600

A-201 Perryridge 900

A-215 Mianus 700

A-217 Brighton 750

A-218 Perryridge 700

A-222 Redwood 700

A-305 Round Hill 350

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (21)

Natural Join Algorithm: An Example (Cont.)

� Cycle 1: The first block of ACCOUNT is brought in Main Memory.

MAIN MEMORY OUTPUT
BRANCH

Downtown 156432 01636754

Perryridge 452341 01438300

Mianus 335699 01994545

Brighton 657841 01227676

Redwood 521775 01336546

Round Hill 903215 01764008

ACCOUNT (

� � �

Block)

A-101 Downtown 500

A-102 Perryridge 400

A-110 Downtown 600

BRANCH

�

ACCOUNT(Cycle 1)

BName SortCode Phone Acc

�

Balance

Downtown 156432 01636754 A-101 500

Downtown 156432 01636754 A-110 600

Perryridge 452341 01438300 A-102 400

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (22)

Natural Join Algorithm: An Example (Cont.)

� Cycle 2: The second block of ACCOUNT is brought in Main Memory.

MAIN MEMORY OUTPUT
BRANCH

Downtown 156432 01636754

Perryridge 452341 01438300

Mianus 335699 01994545

Brighton 657841 01227676

Redwood 521775 01336546

Round Hill 903215 01764008

ACCOUNT (

� � �

Block)

A-201 Perryridge 900

A-215 Mianus 700

A-217 Brighton 750

BRANCH

�

ACCOUNT(Cycle 2)

BName SortCode Phone Acc

�

Balance

Perryridge 452341 01438300 A-201 900

Mianus 335699 01994545 A-215 700

Brighton 657841 01227676 A-217 750

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (23)

Natural Join Algorithm: An Example (Cont.)

� Cycle 3: The third block of ACCOUNT is brought in Main Memory.

MAIN MEMORY OUTPUT
BRANCH

Downtown 156432 01636754

Perryridge 452341 01438300

Mianus 335699 01994545

Brighton 657841 01227676

Redwood 521775 01336546

Round Hill 903215 01764008

ACCOUNT (

� � �

Block)

A-218 Perryridge 700

A-222 Redwood 700

A-305 Round Hill 350

BRANCH

�

ACCOUNT(Cycle 3)

BName SortCode Phone Acc

�

Balance

Perryridge 452341 01438300 A-218 700

Redwood 521775 01336546 A-222 700

Round Hill 903215 01764008 A-305 350

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (24)

Summary

� Query Compilation and Optimization

� Algorithms for Implementing Operators

– One-Pass Algorithms

– One-And-A-Half Passes Algorithms

� Nested-Loop Join

– Two-Pass Algorithms

� Sort-Based Algorithms

� Index-Based Algorithms.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (25)

Nested-Loop Join

� Algorithms with “One-And-A-Half”-passes: Used when relations don’t fit

in main memory (which is the common situation in real Databases).

� One of the arguments is read only once, while the other is read more times.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (26)

Nested-Loop Join (cont.)

Computing

� � �

using a tuple-based nested-loop join algorithm, with
�

smaller

in size – a naive way to implement join.

TUPLE-BASED-NESTED-LOOP-JOIN(

�
�

�

)

FOR each tuple � of

�

DO

FOR each tuple � of

�

DO

IF � and � join THEN

output the resulting tuple;

Cost Analysis

� If we buffer each relation one block at a time:

Number of Disk I/O:

� �� � � � �� � � � �� �

.

� Example. Let

� � � �
� �
�

� � �
�

� � � �
� � � �
�

� � � �
� �
�

� � �

, then:

ONE-PASS JOIN costs
� � � � � � � � �

� �
�

� � �

disk I/O;

TUPLE-BASED NESTED-LOOP JOIN costs

� � � � � � � � � � � � � �
�

�
�

� � �
�

� � �

disk I/O.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (27)

Block-Based Nested-Loop Join

Optimize the TUPLE-BASED NESTED-LOOP JOIN algorithm.

Use as much main memory as we can to store

�

, i.e., if
�

are the available

memory buffers we reserve

��� �

buffers to

�

and

�

to
�

.

BLOCK-BASED-NESTED-LOOP-JOIN(

�
�

�

)

FOR each chunk of

�� �

blocks of
�

DO

read them to a main-memory search structure

with the common attributes as search key;

FOR each tuple � of
�

DO

search the current tuples of

�

that join with �;

output the resulting joining tuples;

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (28)

Block-Based Nested-Loop Join: Cost Analysis

� Example. Let

� � � �
� �
�

� � �
�

� � � �
� � � �
�

� � � � �

, then:

BLOCK-BASED NESTED-LOOP JOIN. Reading the whole
�

requires

�

iterations. At each of such iterations we read

� � �

blocks for
�

and the whole

�
�

� � �

blocks for

�

– i.e., at each iteration we do

�
�

� � �
disk I/O. Then the

final cost is

�
�

� � �

disk I/O.

TUPLE-BASED NESTED-LOOP JOIN costs

� � � � � � � � � � � � � �
� �
�

� � �
�

� � �

disk I/O.

� Formal Analysis.

Number of iterations:

� �� �
��� � ;

Number of blocks per iteration:
�� � � � � � �

;

Total Number of Disk I/O:
� �� �

�� � � � ��� � � � � � � �

;

Good Approximation:
� �� �	� � �
 �

� .

� Exercise. What if we start by buffering

�

instead of

�

?

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (29)

Summary

� Query Compilation and Optimization

� Algorithms for Implementing Operators

– One-Pass Algorithms

– One-And-A-Half Passes Algorithms

� Nested-Loop Join

– Two-Pass Algorithms

� Sort-Based Algorithms

� Index-Based Algorithms.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (30)

Two-Pass Algorithms Based on Sorting

Two- or Multi-Pass Algorithms are used when full relations do not fit in main

memory – which is the norm for large databases.

� General Idea. Given a relation with

� � � � � �

then:

1. Read

�

blocks of

�

into main memory;

2. Sort these

�

blocks in main memory using efficient structures – for

Balanced Binary Trees sorting � elements costs � �� � �.

3. Write the sorted buffers into

�

disk blocks, called sorted sublist of

�

.

Go to step 1 if there are unconsidered blocks for R.

4. Use a Second Pass to “merge” the sorted sublists for computing the final

result.

� Steps 1,2,3 above form the common First Pass in a Two-Pass algorithm

based on sorting.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (31)

Two-Pass Algorithms Based on Sorting
– Natural Join –

Computing

� � �
�

� � � � � �
�

� �

with a sort-based algorithm:

1. “Sort”

�

and

�

by

�

if they are not already sorted;

2. “Merge” the sorted relations matching all tuples with common values of

�

:

(a) Read the current block of both

�

and

�

in main memory;

(b) Find the tuple with the least value � for

�

;

(c) If � does not appear at the front of the other relation then consider the

successive least �;

(d) Otherwise, identify ALL tuples from BOTH relations having sort key �.

Note. If necessary read subsequent blocks from

�

and/or

�

to find

ALL tuples with search key �. If more than the

�

available buffers are

necessary the algorithm doesn’t work anymore.

(e) Output the joining tuples;

(f) If either relation has no more unconsidered tuples in main memory, reload

the buffer for this relation, and go back to step 2b.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (32)

Sort-Based Natural Join: Example

Suppose that three tuples fit on a block, and the sorted relations (w.r.t. BName)

are:

BRANCH

BName SortCode Phone

Brighton 657841 01227676

Downtown 156432 01636754

Mianus 335699 01994545

Perryridge 452341 01436754

Redwood 521775 01336546

Round Hill 903215 01764008

�

ACCOUNT

Acc

�

BName Balance

A-217 Brighton 750

A-101 Downtown 500

A-110 Downtown 600

A-215 Mianus 700

A-102 Perryridge 400

A-201 Perryridge 900

A-218 Perryridge 700

A-222 Redwood 700

A-305 Round Hill 350

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (33)

Sort-Based Natural Join: Example (Cont.)

� Cycle 1: The first block of both BRANCH and ACCOUNT are brought in

Main Memory. MAIN MEMORY

BRANCH

BName SortCode Phone

Brighton 657841 01227676

Downtown 156432 01636754

Mianus 335699 01994545

�

ACCOUNT

Acc

�

BName Balance

A-217 Brighton 750

A-101 Downtown 500

A-110 Downtown 600

OUTPUT

BRANCH

�

ACCOUNT(Cycle 1)

BName SortCode Phone Acc

�

Balance

Brighton 657841 01227676 A-217 750

Downtown 156432 01636754 A-101 500

Downtown 156432 01636754 A-110 600

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (34)

Sort-Based Natural Join: Example (Cont.)

� Cycle 2: The second block of ACCOUNT is brought in Main Memory.

MAIN MEMORY

BRANCH

BName SortCode Phone

Brighton 657841 01227676

Downtown 156432 01636754

Mianus 335699 01994545
�

ACCOUNT

Acc

�

BName Balance

A-215 Mianus 700

A-102 Perryridge 400

A-201 Perryridge 900

OUTPUT

BRANCH

�

ACCOUNT(Cycle 2)

Mianus 335699 01994545 A-215 700

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (35)

Sort-Based Natural Join: Example (Cont.)

� Cycle 3: The second block of BRANCH and the third of ACCOUNT are

brought in Main Memory.

MAIN MEMORY

BRANCH

BName SortCode Phone

Perryridge 452341 01436754

Redwood 521775 01336546

Round Hill 903215 01764008

�

ACCOUNT

Acc
�

BName Balance

A-215 Mianus 700

A-102 Perryridge 400

A-201 Perryridge 900

A-218 Perryridge 700

A-222 Redwood 700

A-305 Round Hill 350

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (36)

Sort-Based Natural Join: Example (Cont.)

OUTPUT(Cycle 3)

BRANCH

�

ACCOUNT(Cycle 3)

Perryridge 452341 01438300 A-102 400

Perryridge 452341 01438300 A-201 900

Perryridge 452341 01438300 A-218 700

Redwood 521775 01336546 A-222 700

Round Hill 903215 01764008 A-305 350

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (37)

Sort-Based Natural Join: Cost Analysis

� Number of Disk I/O:

� � � � � � � � � � � � �

.

1. Sorting with a two-phase merge sort algorithm costs
�

disk I/O per block.

Then the sorting phase requires

� � � � � � � � � � � � �

disk I/O.

2. The merge-join phase requires reading each block of the involved

relations one time. Thus, this phase costs
� � � � � � � � � � �

disk I/O.

3. Total Cost:

� � � � � � � � � � � � �
disk I/O.

� Number of memory buffer required:

� � max

� � � � �
�

� � � � �

.

– Needed to perform the sort.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (38)

Sort-Based Join: Cost Analysis (cont.)

� Example. Let

� � � �
� � � � �
�

� � � �
� � � �
�

� � � � �

, and for no � do the

tuples of

�

and

�

that agree on � occupy more than

� � �

blocks, then the cost

of different techniques are:

Sort-Based Join:

� � � � � � � � � � � � �
� �
�

� � �

disk I/O.

Block-Based Nested-Loop Join:

� �� �
�� � � � �� � � � � � � �

� �
�

� � �

disk I/O.

Tuple-Based Nested-Loop Join:

� � � � � � � � � � � � � �
� �
�

� � �
�

� � �

disk I/O.

� Note. The cost of BLOCK-BASED NESTED-LOOP JOIN grows following a

quadratic function – proportional to
� � � � � � � � �

– while SORT-BASED

JOIN grows linearly – proportional to

� � � � � � � � �

. Then SORT-BASED

JOIN is a better performing algorithm as far as the size of the relations grows.

– Indeed, try with:
� � � �

� � �
�

� � �
�

� � � �
� �
�

� � �
�

� � � � �

.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (39)

Two-Pass Algorithms Based on Sort-Merge

� Algorithms still based on sorting.

� Instead of completing the sorting, they combine the second phase of the

sorting with the operation implementation itself.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (40)

Two-Pass Algorithms Based on Sort-Merge
– Duplicate Elimination –

Computing

� � � �

with a sort-merge based algorithm.

First Pass: Generation of the sorted sublists for

�

(the sorting order is made on

an arbitrary attribute).

Second Pass.

1. Read in main memory one block from every sorted sublist;

2. Consider the first tuple from each block and select the least in sorted order,

say

�

;

3. Output one copy of

�

;

4. Remove all copies of

�

from the blocks currently in memory.

5. If a block is exhausted we read the next block from the same sublist, and if

there are tuples

�

we remove them as well;

6. If there are unconsidered tuples in main memory go back to step 2.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (41)

Duplicate Elimination: An Example

Suppose that tuples are integer numbers, only two tuples fit on a block,

� � �

,

and

�

has

� �

tuples:

�

2,5 2,1 2,2 4,5 4,3 4,2 1,5 2,1 3

1,2 2,2 2,5 2,3 4,4 4,5 1,1 2,3 5

� � � � ��
�

First Pass.

1. Read the first 3 blocks of

�

(6 tuples) into the 3 main memory buffers;

2. Sort them and write the sorted sublist

� � back to the disk;

3. In a similar way generate the sorted sublists

� � �

��
� .

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (42)

Duplicate Elimination: An Example (cont.)

Second Pass – Cycle 1.

1. Read in main memory the first block from every sorted sublist:

Sublists Main Memory Waiting on Disk

� � �
�

� �
�

� �
�

�

� � �
�

� �
�

� �
�

�

��
� �
�

� �
�

� �

2. The least tuple of the three blocks in main memory is

�

.

3. We copy

�

to the output:

Output Buffer

1

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (43)

Duplicate Elimination: An Example (cont.)

Second Pass – Cycle 1 (cont.).

4. Remove the tuple

�

from all the blocks in memory.

Sublists Main Memory Waiting on Disk

� � � �
�

� �
�

�

� � �
�

� �
�

� �
�

�

�
� �
�

� �

5. Since the buffer for

�
� is exhausted we read the next block from this sublist

in main memory:

Sublists Main Memory Waiting on Disk

� � � �
�

� �
�

�

� � �
�

� �
�

� �
�

�

��
� �
�

� �

6. Since there are still tuples in memory go back to step 2.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (44)

Duplicate Elimination: An Example (cont.)

Second Pass – Cycle 2.

2. The least tuple of the three blocks in main memory is now
�

.

3. We copy

�

to the output:

Output Buffer

1 2

4. Remove the tuple

�

from all the blocks in memory:

Sublists Main Memory Waiting on Disk

� � �
�

� �
�

�

� � � �
�

� �
�

�

��
� � �

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (45)

Duplicate Elimination: An Example (cont.)

Second Pass – Cycle 2 (cont.).

5. Since the buffer for

� � is exhausted we read the next block from this sublist,

and since there are tuples

�

we remove them as well;

Sublists Main Memory Waiting on Disk

� � �

� � � �
�

� �
�

�

��
� � �

6. Since there are still tuples in memory go back to step 2.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (46)

Duplicate Elimination: An Example (cont.)

Second Pass – End.

To complete the process, the tuples

�
�

�
�

�

are consumed in succession giving the

desired output:

Output Buffer

1 2 3 4 5

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (47)

Duplicate Elimination: Cost Analysis

� Number of Disk I/O:

� � � � � �

.

1.

� � � �

to read each block of

�

when creating the sorted sublists;

2.

� � � �

to write each sublist back to disk;

3.

� � � �

to read each block from the sublist in the second pass.

� Number of memory buffer required:

� � � � � �
.

1. Assuming

�

buffers are available. Then, each sorted sublist can be at

most

�

blocks long;

2. For the second pass one block for EACH sublist should be in main

memory. Then, the number of sublists is at most

�

;

3. Given

�

available buffers, we can process at most

�

sublists, each at

most

�

blocks long:
� � � � � � �

.

� Exercise. Try the example with M = 2 and verify that the algorithm goes in

Memory Overflow.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (48)

Sort-Merge Natural Join

Computing

� � �
�

� � � � � �
�

� �

with a sort-merge based algorithm.

First Pass: Create sorted sublists for both

�

and

�

of size

�

using
�

as sort key.

Second Pass.

1. Bring the first block of EACH sublist into main memory;

2. Find the tuple with the least value � for

�

;

3. If � does not appear in the blocks of the other relation then consider the

successive least �;

4. Otherwise, identify ALL the tuples from BOTH relations having sort key

�—perhaps bringing new blocks in main memory;

5. Output the joining tuples;

6. If the buffer for one of the sublists is exhausted reload the buffer for this

sublist.

7. If there are unconsidered tuples in main memory go back to step 2.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (49)

Sort-Merge Natural Join: An Example

� Assume that the joining attribute is of type integer, only two tuples fit on

a block,

� � �

, and

�

and

�

both have

� �

tuples—in the following we

represent only the joining attribute.

� First Pass: generate the sorted sublists:

�

2,5 2,1 2,2 4,5 4,3 4,2 1,5 2,1 3

1,2 2,2 2,3 4,4 5,5 1,1 2,2 3,4 5

� � � �

�

2,1 2,1 1,2 2,3 3,3 3,2 6,5 4,4 4

1,1 1,2 2,2 2,3 3,3 2,3 4,4 4,5 6
� � � �

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (50)

Sort-Merge Natural Join: An Example (Cont.)

Second Pass – Cycle 1. Note: We show the situation in main memory for each

value of the joining attribute.

� Since after Steps 1-3, 1 is the least common value for the joining attribute we

read in main memory ALL the blocks for this joining attribute (as specified

in Step 4):

Sublists Main Memory Waiting on Disk

� � �
�

� �
�

� �
�

� �
�

� �
�

�

� � �
�

� �
�

� �
�

� �

� � �
�

� �
�

� �
�

� �
�

� �
�

�

� � �
�

� �
�

� �
�

� �

Note. For the Sublist

� � two blocks are read in main memory respecting the

Step 4 of the algorithm.

� (Step 5) The Natural Join between the tuples having joining attribute = 1 is

computed and moved to the output.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (51)

Sort-Merge Natural Join: An Example (Cont.)

� (Step 6) The buffer for

� � is exhausted: we read its successive block.

Sublists Main Memory Waiting on Disk

� � �
�

� �
�

� �
�

� �
�

� �
�

�

� � �
�

� �
�

� �

� � �
�

� �
�

� �
�

� �
�

�

� � �
�

� �
�

� �
�

� �

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (52)

Sort-Merge Natural Join: An Example (Cont.)

Second Pass – Cycle 2.

� (Steps 2-4) Read in main memory ALL the blocks for the joining attribute 2:

Sublists Main Memory Waiting on Disk

� � �
�

� �
�

� �
�

� �
�

� �
�

�

� � �
�

� �
�

� �

� � �
�

� �
�

� �
�

� �
�

�

� � �
�

� �
�

� �
�

� �

Since there are only

�

buffers available (

� � �

) while this step requires

�

buffers the algorithm fails with a memory overflow error.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (53)

Sort-Merge Natural Join: Cost Analysis

� Number of Disk I/O:

� � � � � � � � � � � � �

.

1. Creating the sorted sublist costs

�

disk I/O per each block of data;

2. The merge-join phase requires reading each block of the involved

relations one more time. Thus the merge-join phase costs

� � � � � � � � � � �

disk I/O.

3. Total Cost:

� � � � � � � � � � � � �

disk I/O.

� Number of memory buffer required:
� � � � � � � � � � �

.

1. This is obtained similarly to the case of sort-based duplicate elimination

noting that now

� � � � � � � � �

blocks need to be processed:� � � � � � � � � � � �
.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (54)

Sort-Merge Natural Join: Cost Analysis. Example

� Example. Let

� � � �
� �
�

� � �
�

� � � �
� � � �
�

� � � � �
, and for no � do the

tuples of

�

and

�

that agree on � occupy more than
� � �

blocks. Then, the

cost of different techniques are:

Sort-Merge Join:

� � � � � � � � � � � � �
� �
�

� � �

disk I/O.

Sort-Based Join:

� � � � � � � � � � � � �
� �
�

� � �

disk I/O.

Block-Based Nested-Loop Join:
� �� �

�� � � � �� � � � � � � �
� �
�

� � �

disk I/O.

Tuple-Based Nested-Loop Join:
� � � � � � � � � � � � � �

� �
�

� � �
�

� � �

disk I/O.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (55)

Summary

� Query Compilation and Optimization

� Algorithms for Implementing Operators

– One-Pass Algorithms

– One-And-A-Half Passes Algorithms

� Nested-Loop Join

– Two-Pass Algorithms

� Sort-Based Algorithms

� Index-Based Algorithms

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (56)

Index-Based Algorithms

� Index-Based Algorithms are useful for the Selection operator, but also the

other operators can take advantage.

� In the following we describe how Selection and Join operators can be

implemented taking into account the existence of indexes.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (57)

Index-Based Selection

� The One-Pass algorithm scan ALL the tuples: It costs

� � � �

disk I/O.

� Suppose the query is �� � �
� � �

, and there is an index on the attribute

�

.

� Algorithm: Search the index for the value � and get the pointers to

EXACTLY those tuples of

�

having value � for

�

.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (58)

Index-Based Selection: Cost Analysis

� V(R,A): number of distinct values for the attribute

�

of the relation

�

.

� Number of Disk I/O

– If the index is a secondary index – tuples are spread on different blocks –

then �� � �
� � �

requires about

� � �
 �

� �

�

� �
�

Disk I/O.

– If the index is a primary index – tuples with a given value are stored one

next to the other – then �� � �
� � �

requires at least

� � �
 �

� �

�

� �
�

(if values are uniformly distributed).

� Note: If the index does not fit in main memory we need to consider the disk

I/O for index lookup.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (59)

Index-Based Selection: An Example

The number

� � �
 �

� �

�

� �
�

is an estimate of the number of tuples with a fixed value

for the attribute

�

.

ACCOUNT

Account

�

Branch Balance

A-101 Downtown 500

A-102 Downtown 400

A-110 Downtown 600

A-201 Downtown 900

A-215 Downtown 400

A-217 Downtown 500

A-218 Downtown 900

A-222 Downtown 600

T(ACCOUNT) 8

V(ACCOUNT,Account

�

) 8

V(ACCOUNT,Branch) 1

V(ACCOUNT,Balance) 4
� � � � � � �� � � �

� � � � � �� � �
�

� � �� �� � � �
�

1
� � � � � � �� � � �

� � � � � �� � �
�

�
	 � � � � �
�

8

� � � � � � �� � � �

� � � � � �� � �
�

� �
 � � �� �
�

2

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (60)

Selection: An Example

�� � �� � � � � � � � � 	
�� � ��
�� � � � �� ��� �� � � � �� � � � � � 	� � �� � � ��� �� �� �� �
Suppose that

� � "! # $% &(' �
� � �
�

� � �

,

� � "! # $% &(' �
� � � �

(i.e.,

� �

tuples per block),

) � ! # $% &('
�

�+* ,- . /

-

0 ,1 ! �
� � �

,

) � "! # $% &('
�

243 % ' $1 ! * -

0 , 1 ! �
� � � �

.

We estimate the cost of the query assuming that the following indexes exist:

1. A primary index for Branch-Name;

2. A secondary index for Customer-Name.

� Using the primary index we need to read

� �5 �6 � � 7 � �

� �5 �6 � � 7 � �
� � �� � �- � � � � � � � � �

tuples,

and

� � 5 �6 � � 7 � �

� �5 �6 � � 7 � �
� � �� � �- � � � � � �

89 9
89 � � �

blocks.

� Using the secondary index we need to read

� �5 �6 � � 7 � �

� �5 �6 � � 7 � �
�� �� � � � �- � � � � � � � �

tuples. But since tuples are not stored in sequence, the number of blocks

needed is at most

� �

.

� ONE-PASS ALGORITHM takes

� � "! # $% &(' �
� � � �

disk I/O.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (61)

Selection: An Example (cont.)

� Intersecting pointers from both indexes in main memory:

� � � � � .

� One tuple in:

) � ! # $% &('
�

� * , - . /

-

0 ,1 ! � �) � "! # $% &('
�

243 % ' $1 ! * -

0 ,1 ! �
� � � � � � � � � �
�

� � �

has both Branch-Name = Stretford and Customer-Name = John. Then,

� � � � � � �

, and we need to access just

�

block.

Summing up.

1. No Index:

� � �

disk I/O;

2. Primary Index:

� �

disk I/O;

3. Secondary Index:

� �

disk I/O;

4. Intersecting Pointers:

�

disk I/O;

5. Index with Concatenated Keys:

�

disk I/O.

What if there is a Disjunctive Selection?

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (62)

Index-Based Join

Computing

� � �
�

� � � � � �
�

� �

assuming that

�

has an index for

�

:

1. Read each block of

�

and for each tuple �, with �� its projection on the

�

attributes:

(a) Use the index on

�

with search key �� to find all the tuples of

�

that can

be joined with �;

(b) Output the joining tuples.

Note: This procedure is essentially a nested loop algorithm that just takes

advantage from the existence of an index to selectively search

�

.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (63)

Index-Based Join: Cost Analysis

Cost Analysis

� Reading the full

�

costs

� � � �

disk I/O.

� For each tuple of

�

we must read about

� �� �
� ��

�
� � tuples of

�

, then we need to

distinguish two cases:

1.

�

has a secondary index for

�

then reading

�

costs

� � � � �
� � �� �

� ��
�

� �
�

� Total Number of disk I/O:

� � � � � � � � � �
� � �� �

� ��
�

� �
�

;

2.

�

has a primary index for
�

then reading

�

costs

� � � � �
� � �� �

� ��
�

� �
�

� Total Number of disk I/O:

� � � � � � � � � �
� � �� �

� ��
�

� �
�

.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (64)

Index-Based Join: An Example

Consider our running example:� � � � �
�

� � � �
� �
�

� � �
�

� � � �
� � � �
�

� � � �
� � �
�

� � �
�

� � � �
� �
�

� � �
�

) � �
�

� �
�

� � �

(i.e.,

� �� �
� ��

�
� � � � �

), then:

1.

�

has a secondary index for

�

:

Join Cost:

� � � � � � � � � �
� � �� �

� ��
�

� �
�

� �
�

� � � � � �
�

� � � � 8
�

9 9 9
� 9 9 �

� � �
�

� � �

disk I/O;

2.

�

has a primary index for

�

:

Join Cost:

� � � � � � � � � �
� � �� �

� ��
�

� �
�

� �
�

� � � � � �
�

� � � � 89 9
� 9 9 �

� �
�

� � �

disk I/O.

3. TUPLE-BASED NESTED-LOOP JOIN:

� � � � � � � � � � � � � �
�

�
�

� � �
�

� � �

disk I/O.

BLOCK-BASED NESTED-LOOP JOIN:

� �� �
�� � � � �� � � � � � � �

�

�
�

� � �

disk I/O.

SORT-MERGE JOIN costs

� � � � � � � � � � � � �
� �
�

� � �

disk I/O.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (65)

Index-Based Join: An Example (cont.)

A better situation if there is an index on the bigger relation:

�

�

has a primary index for

�

, and

� �
 �

� �

�

� � � � �

(i.e.,

) � �
�

� �
� � � �

):

Join Cost =

� � � � � � � � � �
� � �
 �

� �

�

� �
�

� � � � � �
�

� � � � �
�

9 9 9
�9 9 �

� �
�

� � �

disk I/O.

� If

�

is also a key, i.e.,

� �
 �

� �

�

� � � �
(i.e.,

) � �
�

� �
� � �
�

� � �

):

Join Cost =

� � � � � � � � � � � � � � � � �
�

� � � � �
�

� � �

disk I/O.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (66)

Summary of Join Algorithms Performances

� Sort-Based Join algorithms are in general the most efficient algorithms to

compute a Join;

� Block-Based Nested-Loop Join algorithms are used when there are many

tuples sharing a common attribute (sort-based join could stop because of a

memory overflow);

� Index-Based Join algorithms are comparable with sort-based join when the

biggest relation has a primary index on the joining attribute.

Free University of Bolzano–Database 2. Lecture IV, 2003/2004 – A.Artale (67)

Summary of Lecture IV

� Query Compilation and Optimization

� Algorithms for Implementing Operators

– One-Pass Algorithms

– One-And-A-Half Passes Algorithms

� Nested-Loop Join

– Two-Pass Algorithms

� Sort-Based Algorithms

� Index-Based Algorithms

