Introduction to Yacc

 Input file

* Output files
Parsing conflicts
Pseudovariables
Examples

= « General Description
S
‘o

General Description

* A parser generator is a program that
takes as input a specification of a syntax,
and produces as output a procedure for
recognizing that language.

» Historically, they are also called
compiler-compilers.

« YACC (Ket another compiler-compiler) is
an LALR(1) (LookAhead, Left-to-right,
Rightmost derivation producer with 1
lookahead token) parser generator.

« YACC was originally designed for being
complemented by Lex.

(Lo}
o
o
N
[y
™
(=]
—
©o
F
1
0
=
[
Q.
S
o
(&)
(T
o
(7]
)
Ig
(&)
c
=
o

Pablo R. Fillottrani

parts.

()
D
-
i«
)
=
O
)
O
2
O
2
Q
(fam
hd
-
Q.
=
(&)
&)
©
Y

Input File

9002/€0/91

Input File — Definition Part

* The definition part includes information
about the tokens used in the syntax
definition:

%token NUMBER

%token ID

« Yacc automatically assigns numbers for
tokens, but it can be overridden by

%token NUMBER 621

Yacc also recognizes single characters
as tokens. Therefore, assigned token
numbers should no overlap ASCII codes.

(Lo}
o
o
N
[y
™
(=]
—
©o
F
1
0
=
[
Q.
S
o
(&)
(T
o
(7))
)
Ig
(&)
c
=
o

Pablo R. Fillottrani

Input File — Definition Part

* The definition part can include C
code external to the definition of the
parser and variable declarations,
within %<{ and %7} in the first
column.

* It can also include the specification

of the starting symbol in the
grammar:

Opstart nonterminal

©
=)
<)
N
[y
)
=]
—
)
F
1
"
1 59
[
Q
€
o
o
G
5]
"
)
Ig
o
c
=
o

Pablo R. Fillottrani

Input File — Rule Part

* The rules part contains grammar
definition in a modified BNF form.

<non_term> : <body> {<action>}
| <body> {<action>}

Principles of Compilers - 16/03/2006

Pablo R. Fillottrani

=<4 « Actions is C code in {} and can be
embedded inside <body>
(Translation schemes)

Input File — Auxiliary Routines Part

* The auxiliary routines part is only C
code.

* It includes function definitions for
every function needed in rules part

* |t can also contain the main()
function definition if the parser is
going to be run as a program.

‘w « The main() function must call the
function yyparse().

Principles of Compilers - 16/03/2006

Pablo R. Fillottrani

Input File

« If yylex() is not defined in the
auxiliary routines sections, then it

: should be included:

#include "lex.yy.c"

» Yacc input file generally finishes
with .y

inciples of Compilers - 16/03/2006

Output Files

« The output of Yacc is a file named y.tab.c

« If it contains the main() definition, it must
be compiled to be executable.

 Otherwise, the code can be an external
function definition for the function

int yyparse()

Principles of Compilers - 16/03/2006

Pablo R. Fillottrani

Output Files

+ |f called with the —d option in the command line,
Yacc produces as output a header file y.tab.h
with all its specific definition (particularly
important are token definitions to be included,
for example, in a Lex input file).

(Lo}
o
o
N
[y
™
(=]
—
©o
F
1
0
=
[
Q.
S
o
(&)
(T
o
(7]
)
Ig
(&)
c
=
o

Pablo R. Fillottrani

 If called with the —v option, Yacc produces as
output a file y.output containing a textual
description of the LALR(1) parsing table used by
the parser. This is useful for tracking down how
the parser solves conflicts.

Parsing conflicts

« Yacc has built-in disambiguities rules, so
it can parse grammars even in the
presence of conflicts.

* The file y.output describes eventual
conflicts and how they are solved.

» Conflicts shift/reduce will be solved by
giving preference to shift.

eay © Conflicts reduce/reduce will be solved by
JI¢d giving preference to the first grammar
rule listed in the input file.

Principles of Compilers - 16/03/2006

Pablo R. Fillottrani

Parsing conflicts

« Yacc also provides way to define precedence
and associativity of operators.

* In the definition part, we can include
%left "+, "-’
%left “*°, DIVISION

 This line states that + and — have the same precedence
and are left associative, and that the * and DIVISION
édefined as token) have the same precedence but higher
han + and -, and are also left associative.

« The other possible declarations are %right and
%nonassoc.

* This definitions have the advantages of
simEIifying the grammar, and reducing the table
so that parser is more efficient.

(Lo}
o
o
N
[y
™
(=]
—
©o
F
1
0
=
[
Q.
S
o
(&)
(T
o
(7]
)
Ig
(&)
c
=
o

Pablo R. Fillottrani

Parsing conflicts (cont.)

YACC attaches a precedence and associativity
to each production.

To decide between shift the token “a” vs.
reduce with A -> a:

— Reduces if the precedence of the production is
greater that that of “a”; or

Precedences are the same and associativity for the
%y Production is left;

Otherwise Shift.

ormally, the precedence of a production is that one
the righmost terminal, but can be forced
ppending: %prec <terminal>

Principles of Compilers - 16/03/2006

Pablo R. Fillott®ni

Pseudovariables

« Every symbol (token or non-terminal) in a
grammar production is associated with a
pseudovariable used to associate an attribute to
the grammar symbol.

Pseudovariables are named $1, $2,... for the
first, second,... symbol of a production.

 The pseudovariable $$ refers to the head of the
production.

exp : exp PLUS term {$$ = $1 + $3} |
exp MINUS term {$$ = $1 - $3} |
term {$$ = $1};

Principles of Compilers - 16/03/2006

Pablo R. Fillottrani
°

Pseudovariables

 The pseudovariable assigned to a token is
defined by the lexical analyzer yylex() as the
value of the global variable yylval.

 Pseudovariables are integers by default, but it is
possible to assign a different type.

 |If several types are needed for different
pseudovariables, a union type must be defined.

Principles of Compilers - 16/03/2006

Pablo R. Fillottrani

%union { double val; char op; }
%type <val> exp term factor
%type <op> addop mulop

Examples Parenthesis (.y)

({e]
(=)
(=)
N
—
™
(=]
~
({=]
F

\}
>~
—
=L
n
Q
c
<4
-
U
L -
(C
al
n
@
Q.
(O
X
LL]

9002/€0/91

Examples Parenthesis (.lex)

9002/€0/91

Examples — Roman numbers (.y)

({e]
(=)
(=)
N
—
™
(=]
~
({=]
F

Examples - Roman numbers (.y)

({e]
(=)
(=)
N
—
™
(=]
~
({=]
F

Examples Roman numbers (.lex)

({e]
(=)
(=)
N
—
™
(=]
~
({=]
F

Examples Roman numbers (.lex)

©
o
o
N
S~
™
o
S
©
F
1

Jdex

"
-
O
Q
=
S
-
-
©
=
o
a'd
U
v
@
=
O
X
LLI

9002/€0/91

Jdex

"
-
O
Q
=
S
-
-
©
=
o
a'd
U
v
@
=
O
X
LLI

9002/€0/91

Examples Roman numbers (.c)

({e]
(=)
(=)
N
—
™
(=]
~
({=]
F

Examples Calculator (.y)

({e]
(=)
(=)
N
—
™
(=]
~
({=]
F

Examples Calculator (.y)

({e]
(=)
(=)
N
—
™
(=]
~
({=]
F

Examples Calculator (.y)

©
o
o
N
S~
™
o
—
©
F
1

Examples Calculator (.y)

({e]
(=)
(=)
N
—
™
(=]
~
({=]
F

Examples Calculator (.lex)

({e]
(=)
(=)
N
—
™
(=]
~
({=]
F

