Principles of Compilers Lab

* Objectives

— For helping the process of building the compiler, we will
introduce some standard compiler building tools (namely
lex and yacc).

— These tool are usually available with the C programming
language.

— So the project will be developed using C.

— A brief introduction to C is also available at the lab web
page.

Introduction to C

e Objectives

* Program Structure

e Primitive Data Types
* |nput/Output
 Control

e Functions
 Standard Libraries

e Advanced Data Types

ompilers Lab - 23/2/2006

Introduction to C

* Objectives
* Program Structure
* Primitive Data Types
* |Input/Output
* Control
ez © Functions
U989 « Standard Libraries
* Advanced Data Types

of Compilers Lab - 23/2/2006

5

Objectives

pilers Lab - 23/2/2006

* Why we use C?

* Usesof C

* Brief history

* Program evolution

Objectives — Why use C?

* C has been used successfully for system
programming

* Several standard libraries and tools
* Simple syntax

* Code is nearly as fast as coded in assembly
languages

es of Compilers Lab - 23/2/2006

“Middle Level” programming

Objectives — Uses of C

* Operating Systems

* Language Compilers
* Assemblers

* Text Editors

| * Print Spoolers

ﬂ‘ » Network Drivers

* Databases Mangament

Objectives — brief History

* C was originally defined for writing the Unix
operating system at AT&T Labs, 1972, by Dennis
Ritchie and Ken Thompson.

* Based on B and BCPL, implemented for DEC-
PDP11

* ANSI C standard in 1983
* |n the earlies 80, it was used as a base for C++.
* In the earlies 90, it was used as a base for Java.

ciples of Compilers Lab - 23/2/2006

) R. Fillottrani

Objectives — Program Evolution

1. Editing (writing)
2. Compiling
a) Pre-processing
b) Compiling
c) Linking
~a 3. Executing

ompilers Lab - 23/2/2006

10

Introduction to C

* Objectives

* Program Structure

* Primitive Data Types
* |Input/Output

* Control

ooy © Functions

G4 « Standard Libraries

* Advanced Data Types

s of Compilers Lab - 23/2/2006

ottrani

11

Program Structure

* Basic components

* Program Layout

* Pre-processor Directives
* Comments

* First Example

ompilers Lab - 23/2/2006

12

Program Structure Basic components

* C only uses the following characters:
" Letters: A-Z, a-z
" Numbers: 0-9
" Basic Operators: + - * /| =
" Pairwise: {}[] () <>
" Space:
"Others: ., ;: $§“#%&! |

of Compilers Lab - 23/2/2006

13

Program Structure Basic components

* C only uses the following reserved keywords:

(o]
(=]
o
o
S
(2]
N
1
o)
(4+]
- |
(/2]
S
2
=3
£
O
o
[T
o
(/2]
2
o
(&)
(=
"
o

Pablo R. Fillottrani

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

iples of Compilers Lab - 23/2/2006

R. Fillottrani

Program Structure — Program Layout

15

All C program consists of at least one function,
called main().

main() is where execution starts.
Other functions may also be in the program.

Each function consists of a set of declarations,
and a sequence of statements.

Global declarations (common to all functions) are
possible.

Program Structure — Program Layout

— 23/2/2006

starts function
body

finishes function
body

terminates statement

Program Structure — Pre-processor Directives

* Cis small, several features are not directly
included in the language, like text-based
input and output.

* C programs are pre-processed hefore being
actually compiled.

* Instructions for this step are called
“directives”.

ciples of Compilers Lab - 23/2/2006

) R. Fillottrani

17

Program Structure — Pre-processor Directives

Examples:
* To include externally defined functions:

#include <stdio.h>

f Compilers Lab - 23/2/2006

ani

* To define constants:
#define Pl 3.141592

should be placed in the first
column

18

Program Structure — Comments

* Comments are placed anywhere in a
program.

* Must start with /* and end with */, and span
through several lines.

* Comments starting with // only last to the
end of the current line.

)les of Compilers Lab — 23/2/2006
Fillottrani

19

Program Structure — First example

900¢/¢/EC

Introduction to C

* Objectives
* Program Structure
* Primitive Data Types
* |Input/Output
* Control
T3 * Functions
oswtoh o Standard Libraries
* Advanced Data Types

iples of Compilers Lab - 23/2/2006

R. Fillottrani

21

Primitive Data Types

* Built-in Data Types
* Declarations

* Integers

* Floating Point

* Characters

* Assignment

* Expressions

* Example

22

Primitive Data Types Built-in Data Types

* All variables in C must be declared to be of
a type.

Data types can be built-in, or user-defined.

* Built-in Data Types correspond to
elementary information units.

* The particular characteristics of each type
depends on the compiler!

ciples of Compilers Lab - 23/2/2006

) R. Fillottrani
)

23

Primitive Data Types Built-in Data Types

* C built-in data types:

— int, long, short: integers

— double, float: floating point numbers
— char: characters

— void: special type with no value

Primitive Data Types Declarations

* A variable declaration (either local or
global) is of the form:
<type> {<variable_name> [= <initial_value>] }+;

f Compilers Lab - 23/2/2006

ani

For example:

int a;

float b43;

int pipo=-34;

char a, b,c;

float a=0.01, b=0.02;

25

Primitive Data Types Integers

* int, long and short values are integers with
no fractional part

* The range and the memory usage of each
type depends on the compiler.

* Usually, int ranges from -32768 to 32767.
~y *© Operators include +, -, %, /, =, %, ++, --
4 (prefix and sufix), +=, -=, *=, etc.

ciples of Compilers Lab - 23/2/2006

) R. Fillottrani

26

ciples of Compilers Lab - 23/2/2006

lo R. Fillottrani

Primitive Data Types Floating Point

277

float, and double are data types for flotaing point
number with single and double precision.

The range and the memory usage of each type
depends on the compiler.

Usually, doulbe ranges from 1.E-303 to 1.E+303.

Operators include +, -, *, /, =, ++, - (prefix and
sufix), +=, -=, *=, efc

Constants may be written in decimal notacion, or
in floating point notation.

Primitive Data Types Characters

* char is the only other built-in data type
besides numbers. Strings are managed as
arrays of chars.

* No special operators are defined (but chars
are treated as integers!).

* Constants may be written inside single
quotes. Example:

ciples of Compilers Lab - 23/2/2006

) R. Fillottrani

charc ="R’

28

Primitive Data Types Assignments

* Assignments change value of variables.

* Left hand part contains the variable to change;
right hand part contains an expression that when
evaluated defines the new value for the variable.

* Conversions may take place to make values
compatibles.

nles of Compilers Lab - 23/2/2006
Fillottrani

29

Primitive Data Types Expressions

* An expression is a sequence of operations that
returns a value.

* Sequences of operations are defined by operator
precedence, and parenthesis to change it.

* Every variable of a primitive data type can be part
of an expression of a primitive data type.

nles of Compilers Lab - 23/2/2006
Fillottrani

30

Primitive Data Types — Example

©
o
&
g
o
N

Introduction to C

* Objectives
* Program Structure
* Primitive Data Types
* |Input/Output
* Control
T3 * Functions
cJwtch o Standard Libraries
* Advanced Data Types

Principles of Compilers Lab - 23/2/2006

Pablo R. Fillottrani

32

Input/Output

* General properties
* Function printf

* Formatting

* Function scanf

* Example

ompilers Lab - 23/2/2006

33

Input/Output General properties

 Standard input/output functions are defined
in the library stdio.h

* The functions in this libraries are oriented
towards a text terminal (for us it will be
enough!)

* Other libraries are available.

r@ « Programmers can define their own i/o
= functions.

ciples of Compilers Lab - 23/2/2006

) R. Fillottrani

34

Input/Output Function printf

* printf is used to show some text on the
standard output device.

printf(“<string>” { ,<variable>}")

ciples of Compilers Lab - 23/2/2006

) R. Fillottrani

* A % character in the string signals that
what follows is the value of a variable from

= the list.

{14 * After the %, it is necessary a character

= specifying how the value should be shown.

35

Input/Output Function printf

* The list of variables defines the final output
of the string. Example:

f Compilers Lab - 23/2/2006

ani

printf(“Hello!”);
printf(“Total value is %f euro.”, total);
printf("Maximun between %d and %d is %d”, var1, var2, max);

36

Input/Output Formatting
* These are the permitted values after the %:

Principles of Compilers Lab - 23/2/2006

%cC char Single char
E %d (%i) int Signed int
% %e (%E) float or double Exponential format
(am
g %f float or double Signed decimal
%g (%G) float or double Use %f or %g as required

%0 int Unsigned octal value

%oX int Unsigned hexadecimal

%S Array of char Sequence of characters

ciples of Compilers Lab - 23/2/2006

) R. Fillottrani

Input/Output Formatting

Before each letter can appear a modifier of the form

<flag><width>[.<precision>]

38

Flags are - for left justify, + for always display sign, 0 for
padding with leading zeros, space for showing a space if
there is no sign.

Width is the number of characters used for displaying the
value.

Precision for numbers indicates the number of decimal
places that will be shown.

Also, in the screen it is possible to include escape
characters like \n, \b, \f, \t, \', \r, etc.

Input/Output Formatting
* Examples:

pilers Lab - 23/2/2006

printf(“Value: %10.3f, p);
printf(“Value: %-10.3F, p):
(
(

printf(*Value: %+5d", x);
printf(“%25s", “Hello®);

39

Input/Output Function scanf

* gcanfis used to read some text from the standard
intput device.

scanf(“<control_string>" { ,<variable>}")

* The control string specify how the sequence of
characters read from the keyboard should be
converted into values.

* The rule is that scanf processes the input from left
to right, and tries to match the characters with a
specifier in the control string.

ciples of Compilers Lab - 23/2/2006

) R. Fillottrani

40

Input/Output Function scanf

* The width modifier can also be used in the
control string.

ompilers Lab - 23/2/2006

scanf(“%d %d*, &i, &j);
scanf(“%10d*, &i);

41

Input/Output Example

©
o
&
g
o
N

Introduction to C

* Objectives
* Program Structure
* Primitive Data Types
* Input/Output
* Control
T3 * Functions
cJwtch o Standard Libraries
* Advanced Data Types

Principles of Compilers Lab - 23/2/2006

Pablo R. Fillottrani

43

Control

* Logic Expressions

* Conditional

* [terations

* Sentences break and continue
* Sentence switch

ompilers Lab - 23/2/2006

44

Control — Logic Expressions

* Control statements need to evaluate
boolean expressions.

* Boolean expressions are created from
basic comparison between variables and/or
constants.

* Operators for comparison: ==, >, <, !=, >=,
<=

* Operators for hoolean composition: !, &, |,
&&, I

ciples of Compilers Lab - 23/2/2006

) R. Fillottrani

45

Control — Logic Expressions

* Since there is no boolean data type, every
value different than 0 is considered true.

* Examples:

of Compilers Lab - 23/2/2006

46

Control — Conditional

* The conditional sentence has the form:
If (<condition>) <sentence1>;

lelse <sentence2>; |
* Each sentence may be a compound

sentence (sequence of sentences delimited
by brackets).

s of Compilers Lab - 23/2/2006

ottrani

47

Control — Conditional

* Examples:

if (a<b) printf("\n\nFirst number is less than
second\n\n");

if (a<b) {printf("\n\nFirst number is less than second\n");
printf("Their difference is : %d\n" , b-a);
printf("\n");
b

if (num2 ==0) printf("\n\nCannot devide by zero\n\n");

ompilers Lab - 23/2/2006

else printf("\n\nAnswer is %d\n\n",num1/num2);

48

Control — Iterations

* There are three sentences for interation in C: do,
while and for.

do <sentence>; while (<condition>)

©
(=}
o
S
%)
N
1
o]
(1)
- |
»n
e
Q@
=
£
o
o
o
(o)

ttrani

while (<condition>) <sentence>;
for (<expri>; <expr2>; <expr3>) <sentence>;

* Each sentence can be a compound sentence, in
which case the semicolon is optional.

49

Control — Iterations
* Examples

50

900¢/¢/EC

Control — Iterations

900¢/¢/EC

Control — Iterations

©
o
&
g
o
N

Control — Iterations

©
o
&
g
o
N

Control — Sentences break and continue

* The break statement allows to exit a loop
from any point of its body, bypassing
normal termination.

* |t's preferable to use it only in special
cases.

* The continue statement is a kind of opposite
of break. It forces the next iteration of the
loop.

ciples of Compilers Lab - 23/2/2006

) R. Fillottrani

55

Control — Sentences break and continue

23/2/2006

* Examples:

Control — Sentences break and continue

Control — Sentence switch

* The switch is good for choosing among a set of
alternative path which has more than two options.

* A variable is sucessively tested against a list of
integer or character constants. When a match is
found, the statement associated is executed.

nles of Compilers Lab - 23/2/2006

Fillottrani

switch (<expression>) {
{ case <constant> : <statement_seqg>; }*
[default : <statement_seq>; |

58

Control — Sentence switch
 Example:

©
o
&
g
o
N

Introduction to C

* Objectives

* Program Structure

* Primitive Data Types
* Input/Output

* Control

T3 * Functions

cJwtch o Standard Libraries

* Advanced Data Types

Principles of Compilers Lab - 23/2/2006

Pablo R. Fillottrani

60

Functions

* Definition

* Local variables
* Parameters

* Sentence return
* Invocation

* Global variables
* Examples

ompilers Lab - 23/2/2006

61

Functions — Definition

* Functions in C are the only way to structure
programs. Any program is a set of
functions definition, with a particular initial
function (main).

* A function is simply a named set of
sentences that returns a value, possibly
with the definition of local variables.

* You can activate the execution of these
sentences by this name.

nciples of Compilers Lab - 23/2/2006

blo R. Fillottrani

62

Functions — Definition

* Function communicate with other functions
mainly through a set of parameters, and the
value returned.

* Definition of a function is done with:

)les of Compilers Lab — 23/2/2006

Fillottrani

<return_type> <function_name> (<parameter list>)
<body>

<parameter_list> ::= { <type> <name> },*
<body> ::= [{ { <local_var_definition> |
<sentence> };* } |

63

Functions — Definition

* |In C the concept of procedure or subroutine
does not exists.

* Functions that are defined with the special
return type void are considered as
procedures.

* No special consideration is given to these
functions.

nles of Compilers Lab - 23/2/2006

Fillottrani

64

ciples of Compilers Lab - 23/2/2006

) R. Fillottrani

Functions — Local variables

65

Local variables are declared inside the body of a
function, and can be used only within it.

Initialization must be done in the declaration, or in
an assignment in the body, before its value can be
accessed.

Once the function finishes its execution, the
variable exists no longer.

Each new call to the function creates a set of new
local variables.

Functions — Parameters

* Inside the body of a function, parameters are
treated just as local variables (can be
accessed and assigned).

* In the call of a function, the programmer
must provide an initial value for these
parameters.

* Parameters are passed by copying its value
(so modifications inside the function are not
seen outside it).

nciples of Compilers Lab - 23/2/2006

blo R. Fillottrani

66

ciples of Compilers Lab - 23/2/2006

lo R. Fillottrani

Functions — Sentence return

67

The sentence return finishes the execution of a
function.

It must be followed by an expression that produces
the value returned by the function.

If the function is a procedure, no expression is
necessary.

Several of these sentences can be included in the
body of a function.

Control is transferred to the calling function, or
finishes execution if return is in main.

Functions — Invocation

* Invocation of a function must be done with:
<function_name> ({ <expression> },*)

* [f the function returns a non void value, this
invocation can be part of an expression.

* All function invocations can be considered as an
individual sentence (the return value is ignored if it
is not a procedure).

)les of Compilers Lab — 23/2/2006

Fillottrani

68

Functions — Invocation

* A function must be declared in a program
before it is first invoked.

* In some cases this is not possible, so
function prototypes (function definitions
with empty bodies) are necessary.

* The following definition must match the
given prototype.

ciples of Compilers Lab - 23/2/2006

) R. Fillottrani

69

ciples of Compilers Lab - 23/2/2006

lo R. Fillottrani

Functions — Global variables

70

All variable declaration outside function bodies are
considered as global variables for all functions in
the program.

Global variables provides a further communication
method between functions (not explicitly defined in
function headers).

Global variables increases the dependences
between functions, so should be avoided when
possible.

Functions — Examples

Functions — Examples

Introduction to C

* Objectives

* Program Structure

* Primitive Data Types
* Input/Output

* Control

T3 * Functions

2/weel » Standard Libraries

* Advanced Data Types

Principles of Compilers Lab - 23/2/2006

Pablo R. Fillottrani

73

Standard Libraries

* |Input/output

e String manipulation

* Character manipulation
* Advanced Math

* Time and Date

* Miscellaneous functions

of Compilers Lab - 23/2/2006

74

Standard Libraries — Input/output

 Standard libraries provide function definition
for common tasks.

* The name of the library must be include in a
pre-processor directive.

* stdio.h is the library for input/output
functions.

* Besides printf and scanf provides the

following functions:

— getchar()
— putchar()

ciples of Compilers Lab - 23/2/2006

) R. Fillottrani

75

Standard Libraries — String

* string.h is the library for string manipulation
functions.

* Strings are array characters.
* |t provides the following functions:

— strcat() // concatenates two strings

s of Compilers Lab - 23/2/2006

ottrani

— stremp() // compares two strings
— strepy() // copies one string into another

76

Standard Libraries — Character

* ctype.his the library for character
manipulation functions.

* |t provides the following functions:

— isdigit() // returns a non-zero value if parameter is digit char

— isalpha()// returns a non-zero value if parameter is letter char

— isalnum()/* returns a non-zero value if parameter is letter or
digit */

— islower() ()/* returns a non-zero value if parameter is a
lowercase letter */

— isupper() ()/* returns a non-zero value if parameter is an
uppercase letter */

)les of Compilers Lab — 23/2/2006

Fillottrani

77

Standard Libraries — Mathematics

* math.h is the library for advanced
mathematical functions.

* |t provides the following functions:

— acos() // returns the arc cosine of parameter

— asin() // returns the arc sine of parameter

— atan() // returns the arc tangent of parameter

) I/ returns the cosine of parameter

) /[returns the natural logarithm (base e) of parameter
(

)les of Compilers Lab — 23/2/2006

Fillottrani

— cos(
— exp(
— fabs() // returns the absolute value of parameter
— sqrt() // returns the square root of parameter

78

Standard Libraries — Time & Date

functions.
* |t provides the following functions:

— time() // returns the current calender time of system
— difftime()// returns the difference in secs between two times

— clock() // returns the number of system clock cycles since
// program execution

2 * fime.h is the library for time and date
i

Standard Libraries — Miscellaneous

* stdlib.h is the library of miscellaneous
functions.

* It provides the following functions:
— malloc() // provides dynamic memory allocation
— rand() // provides the next random number in the sequence
— srand() // used to set the starting point for rand)

of Compilers Lab - 23/2/2006

80

Introduction to C

* Objectives

* Program Structure

* Primitive Data Types
* Input/Output

* Control

o * Functions

2wt/ o Standard Libraries

* Advanced Data Types

Principles of Compilers Lab - 23/2/2006

Pablo R. Fillottrani

81

Advanced Data Types

* Arrays

* Pointers
* String

* Structures

pilers Lab - 23/2/2006

82

Advanced Data Types Arrays

* Arrays allow the manipulation of sequences of
data items in an uniform way.

* Data items in the sequence are accesed by
indexes, starting from 0.

* An array declaration in C looks like:

nles of Compilers Lab - 23/2/2006

Fillottrani

oY <element_type> <name> [<max_numbers
Eiiﬁﬁﬁ..f fj <element_type> <name> k

83

Advanced Data Types Arrays

* Always, the last index of an array is its size
minus one (since indexes start at 0).

* Any type (bulit-in or not) can be defined as the
element type of an array.

* Character arrays and strings are not the same.

nles of Compilers Lab - 23/2/2006

Fillottrani

84

Advanced Data Types Arrays

* Arrays are modified and accessed with the
following syntax:

ompilers Lab - 23/2/2006

<array_name> [<index>]

85

Advanced Data Types Arrays

Advanced Data Types Arrays

Advanced Data Types Pointers

* Pointers are very powerful, but dangerous,
data type in C.

* Every variable is seen as an area of memory
which has a name.

* So, every variable can be accessed by its
hame, or the name of the area of memory it is
assigned to.

iples of Compilers Lab - 23/2/2006

R. Fillottrani

88

Advanced Data Types Pointers

Int X;

declares a variable of type int with name x

int *y;

declares a variable of type pointer to int with namey.

2 * Declarations:
i

sy The same as
A int X, *y:

89

Advanced Data Types Pointers

* Access: prefix operators * and &
X="y,;
assigns the value pointed by y to x

of Compilers Lab - 23/2/2006

y = &X;
assigns the address of xto y

y=X
should be considered errors

90

Advanced Data Types Pointers

— 23/2/2006

* Example: variable swap (correct?)

Advanced Data Types Pointers

— 23/2/2006

* Example: variable swap (correct?)

Advanced Data Types Pointers

— 23/2/2006

* Example: variable swap (correct?)

Advanced Data Types Pointers

* Remember the need to pass to the scanf
function the address of the variable to be read,
and not ist value

of Compilers Lab - 23/2/2006

Int X;
scanf(“%d",&x);

94

ciples of Compilers Lab - 23/2/2006

) R. Fillottrani

Advanced Data Types Pointers

95

There is a close connection between pointers and
arrays.

The declaration int a[10]; is similar to declaring a
pointer to a[0] (ie a is equal to &a[0]).

The only difference is that a is a constant pointer; its
value cannot be changed.

The expression ai] is converted by the compiler to
*(a+i), 0 it is possible in C to do pointer arithmetic

(12).

Advanced Data Types Pointers

— 23/2/2006

* Example: array of random values

Advanced Data Types String

* There is also a close connection between
arrays and strings.

* Strings are considered as character arrays,
with a null character (\0) in the last occupied
position.

* Strings constant are included in double

quotes. (what’s the difference between ‘A" and
“A“?)

ciples of Compilers Lab - 23/2/2006

) R. Fillottrani

97

Advanced Data Types String

* For copying, comparing, concatenating, and
other string manipulation, functions in the

standard library string.h are provided. (why a=b, or
a==b IS not enough?)

nles of Compilers Lab - 23/2/2006

Fillottrani

* Example: copying a string constant
sy strcopy(a,“hello”);
S int a[6]= “hello*;

98

Advanced Data Types String

23/2/2006

 Example: sortin

Advanced Data Types String

23/2/2006

* Example: sorting (ll)

Advanced Data Types String

23/2/2006

* Example: sorting (lll)

Advanced Data Types String

23/2/2006

* Example: sorting (IV)

Advanced Data Types Structures

* Structures in C allow the creation of data
types from heterogeneous elements (records
in some other languages).

* For defining a new type:

struct <type_name> {

{ <variable_definition> };* }

iples of Compilers Lab - 23/2/2006

R. Fillottrani

* For defining a new variable:
struct <type_name> <variable_name>;

103

Advanced Data Types Structures

* For accessing a field in a struct variable:
<variable name>.<field name>

of Compilers Lab - 23/2/2006

* Struct variables can be assigned with the =
operator.

104

Advanced Data Types Structures

— 23/2/2006

* Example: complex numbers

Advanced Data Types Structures

* |tis possible to define pointers to structures
in the usual way.

* Access to structure fields through pointers
can be simplify with the -> operator.

struct comp *p;
/l then (*p).imag is equivalent to p->imag

)les of Compilers Lab — 23/2/2006

Fillottrani

106

Advanced Data Types Structures

* Pointers to structures also allow recursive
data types (lists, trees, etc), but then dynamic
memory allocation is left to the programmer.

* The malloc() function reserves a chunk of
memory according to ist parameter, and
returns a pointer to it.

int *ptr;

ptr = (*int) malloc(sizeof(int)*10);

ciples of Compilers Lab - 23/2/2006

lo R. Fillottrani

107

Advanced Data Types Structures

* Recursive data structures are useful, but it is
cumbersome to manage it in C.

* The malloc() function reserves a chunk of
memory according to ist parameter, and
returns a pointer to it.

int *ptr;

ptr = (*int) malloc(sizeof(int)*10);

nles of Compilers Lab - 23/2/2006

Fillottrani

108

Advanced Data Types Structures
* Example: linked list

©
o
&
g
[+¢]
N
|

