
Formal Languages and Compilers
Lecture IX—Intermediate Code Generation

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science – POS Building, Room: 2.03

artale@inf.unibz.it

http://www.inf.unibz.it/∼artale/

Formal Languages and Compilers — BSc course

2020/21 – Second Semester

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Summary of Lecture IX

Three-Address Code

Code for Assignments

Code for Boolean Expressions and Flow-of-Control Statements

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Intermediate Code Generation

An intermediate code is generated as a program for an abstract machine.
1 The intermediate code should be easy to translate into the target program.
2 A machine-independent Code Optimizer can be applied before generating the

target code.

As intermediate code we consider the three-address code, similar to
assembly: sequence of instructions with at most three operands such that:

1 There is at most one operator, in addition to the assignment (we make explicit
the operators precedence).

2 The general form is: x := y op z

where x,y,z are called addresses, i.e., either identifiers, constants or
compiler-generated temporary names.

Temporary names must be generated to compute intermediate operations.
Addresses are implemented as pointers to their symbol-table entries.

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Types of Three-Address Statements

Three-Address statements are akin to assembly code: Statements can have labels
and there are statements for flow-of-control.

1 Assignment Statements: x := y op z.
2 Unary Assignment Statements: x := op y.
3 Copy Statements: x := y.
4 Unconditional Jump: goto L (with L a label of a statement).
5 Conditional Jump: if x relop y goto L.

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Types of Three-Address Statements (Cont.)

6 Procedure Call: param x, and call p,n for calling a procedure, p, with n

parameters. With return y the returned value of the procedure is indicated.
param x1

param x2

. . .

param xn

call p, n

7 Indexed assignments: x := y[i] or x[i] := y.
Note: x[i] denotes the value in the location i memory units beyond the
location x.

8 Pointer Assignmets: x := &y, x := *y, or *x := y; where &y stands for the
address of y, and *y for the value stored at y.

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Summary

Three-Address Code

Code for Assignments

Code for Boolean Expressions and Flow-of-Control Statements

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Assignments and Symbol Tables: The Translation
The following S-attributed definition generates three-address code for assignments.

Production Semantic Rules
S → id := E p := lookup(id.name);

if p ̸= nil then emit(p ′ :=′ E .addr)
else error

E → E1 + E2 E .addr := newtemp();
emit(E .addr ′ :=′ E1.addr ′+′ E2.addr)

E → E1 ∗ E2 E .addr := newtemp();
emit(E .addr ′ :=′ E1.addr ′∗′ E2.addr)

E → −E1 E .addr := newtemp();
emit(E .addr ′ :=′ ′uminus′ E1.addr)

E → (E1) E .addr := E1.addr
E → id p := lookup(id.name);

if p ̸= nil then E .addr := p
else error

E → num E .addr := newtemp();
E .addr := num.val

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Assignments and Symbol Tables: Notes

The function emit() output to a file a three-address code such that:
1 Everything quoted is taken literally;
2 The rest is evaluated.

Temporary names are generated for intermediate computations.
The function newtemp() generates distinct temporary names t1, t2,

Expressions have a synthesized attribute:
1 E .addr : Temporary name holding the value of E ;

Names/addresses stand for pointers to their symbol table entries: other info
are needed for the final code generation (in particular, the storage address).

Note. Under this assumption Temporary Names must be also entered into the
symbol table as they are created by the newtemp() function.

The function lookup(id.name) return nil if the entry is not found in the
symbol table, otherwise a pointer to the entry is returned.

The lookup(id.name) can be easily modified to account for scope: If name
does not appear in the current symbol table the enclosing symbol table is
checked (see the Lecture on “Symbol Table”).

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Code for Assignments: An Example

Given the assignment a := b ∗ −c + d the code generated by the above grammar is:

S

:=id

a

E t3

E+E t2

id* E t1E

did E-

b id

c

t1 := uminus c
t2 := b ∗ t1
t3 := t2 + d
a := t3

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Summary

Three-Address Code

Code for Assignments

Code for Boolean Expressions and Flow-of-Control Statements

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Boolean Expressions

Boolean Expressions are used to either compute logical values or as
conditional expressions in flow-of-control statements.

We consider Boolean Expressions with the following grammar:

E → E or E | E and E | not E | (E) | E relop E | true | false

There are two methods to evaluate Boolean Expressions
1 Numerical Representation. Encode true with ’1’ and false with ’0’ and we

proceed analogously to arithmetic expressions.
2 Jumping Code. We represent the value of a Boolean Expression by a position

reached in a program.

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Numerical Representation of Boolean Expressions

Expressions will be evaluated from left to right assuming that: or and and are
left-associative, and that or has lowest precedence, then and, and finally not.
Example 1. The translation for “a or (b and (not c))” is:
t1 := not c
t2 := b and t1
t3 := a or t2

Example 2. A relational expression such as a<b is equivalent to the
conditional statement if a<b then 1 else 0. Its translation involves jumps to
labeled statements:
100: if a<b goto 103

101: t := 0

102: goto 104

103: t := 1

104:

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Numerical Representation: The Translation

The following S-Attributed Definition makes use of the global variable
nextstat that gives the index of the next three-address code statement and
is incremented by emit.
Production Semantic Rules
E → E1 or E2 E .addr := newtemp();

emit(E .addr ′ :=′ E1.addr ′or′ E2.addr)
E → E1 and E2 E .addr := newtemp();

emit(E .addr ′ :=′ E1.addr ′and′ E2.addr)
E → not E1 E .addr := newtemp();

emit(E .addr ′ :=′ ′not′ E1.addr)
E → (E1) E .addr := E1.addr
E → E1 relop E2 E .addr := newtemp();

emit(′if ′ E1.addr relop.op E2.addr ′goto′

nextstat+ 3);
emit(E .addr ′ :=′ ′0′);
emit(′goto′ nextstat+ 2);
emit(E .addr ′ :=′ ′1′)

E → true E .addr := newtemp(); emit(E .addr ′ :=′ ′1′)
E → false E .addr := newtemp(); emit(E .addr ′ :=′ ′0′)

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Jumping Code for Boolean Expressions

The value of a Boolean Expression is represented by a position in the code.

Consider Example 2: We can tell what value t will have by whether we reach
statement 101 or statement 103.

Jumping code is extremely useful when Boolean Expressions are in the context
of flow-of-control statements.

We start by presenting the translation for flow-of-control statements
generated by the following grammar:
S → if E then S

| if E then S1 else S2

| while E do S

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Flow-of-Control Statements

In the translation, we assume that a three-address code statement can have a
symbolic label, and that the function newlabel() generates such labels.
We associate with E two labels using inherited attributes:

1 E.true, the label to which control flows if E is true;
2 E.false, the label to which control flows if E is false.

We associate to S the inherited attribute S.next that represents the label
attached to the first statement after the code for S .

Note 1. This method of generating symbolic labels can lead to a proliferation
of label: The backpatching method (see the Book) creates labels only when
needed and emits directly the code.

Note 2. To substitute symbolic labels with actual addresses a second pass is
needed: backpatching will avoid also the two-pass translation.

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Flow-of-Control Statements (Cont.)

The following figures show how the flow-of-control statements are translated.

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Flow-of-Control Statements: The Translation

Production Semantic Rules
P → S S .next = newlabel();

P.code := S .code || gen(S .next ′ :′)
S → if E then S1 E .true := newlabel(); E .false := S .next;

S1.next := S .next;
S .code := E .code || gen(E .true ′ :′) || S1.code

S → if E then S1 else S2 E .true := newlabel(); E .false := newlabel();
S1.next := S .next; S2.next := S .next;
S .code := E .code || gen(E .true ′ :′) || S1.code ||

gen(′goto′ S .next) ||
gen(E .false ′ :′) || S2.code

S → while E do S1 E .begin := newlabel();
E .true := newlabel(); E .false := S .next;
S1.next := E .begin;
S .code := gen(E .begin ′ :′) || E .code ||

gen(E .true ′ :′) || S1.code ||
gen(′goto′ E .begin)

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Flow-of-Control Statements with Translation Schemes

Translation Scheme
P → {S .next = newlabel(); } S {P.code := S .code || gen(S .next ′ :′)}
S → if {E .true := newlabel(); E .false := S .next; } E then

{S1.next := S .next; } S1{S .code := E .code || gen(E .true ′ :′) ||
S1.code}

S → if {E .true := newlabel(); E .false := newlabel(); } E then
{S1.next := S .next; } S1 else { S2.next := S .next; } S2

{S .code := E .code || gen(E .true ′ :′) || S1.code ||
gen(′goto′ S .next) || gen(E .false ′ :′) || S2.code}

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Jumping Code for Boolean Expressions (Cont.)

Boolean Expressions are translated in a sequence of conditional and
unconditional jumps to either E.true or E.false.

a < b. The code is of the form:
if a < b goto E.true
goto E.false

E1orE2. If E1 is true then E is true, so E1.true = E .true. Otherwise, E2 must
be evaluated, so E1.false is set to the label of the first statement in the code
for E2.

E1andE2. Analogous considerations apply.

not E1. We just interchange the true and false with that for E .

Note. Both the true and false attributes are inherited and the translation is
an L-attributed grammar.

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Jumping Code for Boolean Expressions: The Translation

Production Semantic Rules
E → E1 or E2 E1.true := E .true; E1.false := newlabel();

E2.true := E .true; E2.false := E .false;
E .code := E1.code || gen(E1.false ′ :′) || E2.code

E → E1 and E2 E1.true := newlabel(); E1.false := E .false;
E2.true := E .true; E2.false := E .false;
E .code := E1.code || gen(E1.true ′ :′) || E2.code

E → not E1 E1.true := E .false; E1.false := E .true;
E .code := E1.code

E → (E1) E1.true := E .true; E1.false := E .false;
E .code := E1.code

(Follows →)

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Jumping Code for Boolean Expressions: The Translation

Production Semantic Rules
E → E1 relop E2 E .code := E1.code || E2.code ||

gen(′if ′ E1.addr relop.op E2.addr ′goto′ E .true) ||
gen(′goto′ E .false)

E → id p = lookup(id.name);
if(p.type = bool) then

E .code := gen(′if ′ p = true ′goto′ E .true)||
gen(′goto′ E .false)

else if(p ̸= nil) then
E .addr = p;E .code =′ ′

else error
E → true E .code := gen(′goto′ E .true)
E → false E .code := gen(′goto′ E .false)

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Flow-of-Control and Boolean Expressions: An Example

Example. Translate the following statement:
while a < b do

if c or d then
x := y + z

else
x := y - z

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

Summary of Lecture IX

Three-Address Code

Code for Assignments

Code for Boolean Expressions and Flow-of-Control Statements

Alessandro Artale Formal Languages and Compilers Lecture IX—Intermediate Code Generation

