
Formal Languages and Compilers
Lecture VII—Semantic Analysis:

Syntax Directed Translation

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science – POS Building, Room: 2.03

artale@inf.unibz.it

http://www.inf.unibz.it/∼artale/

Formal Languages and Compilers — BSc course

2020/21 – Second Semester

Summary of Lecture VII

• Syntax Directed Translations

• Syntax Directed Definitions
• Implementing Syntax Directed Definitions

▶ Dependency Graphs
▶ S-Attributed Definitions
▶ L-Attributed Definitions

• Translation Schemes

Semantic Analysis

• Semantic Analysis computes additional information related to the
meaning of the program once the syntactic structure is known.

• In typed languages as C, semantic analysis involves adding
information to the symbol table and performing type checking.

• The information to be computed is beyond the capabilities of
standard parsing techniques, therefore it is not regarded as syntax.

• As for Lexical and Syntax analysis, also for Semantic Analysis we need
both a Representation Formalism and an Implementation Mechanism.

• As representation formalism this lecture illustrates what are called
Syntax Directed Translations.

Syntax Directed Translation: Intro

• The Principle of Syntax Directed Translation states that the meaning
of an input sentence is related to its syntactic structure, i.e., to its
Parse-Tree.

• By Syntax Directed Translations we indicate those formalisms for
specifying translations for programming language constructs guided
by context-free grammars.
▶ We associate Attributes to the non-terminal symbols of the grammar;
▶ Values for attributes are computed by Semantic Rules associated with

grammar productions.

Syntax Directed Translation: Intro (Cont.)

• Evaluation of Semantic Rules may:
▶ Generate Code;
▶ Insert information into the Symbol Table;
▶ Perform Semantic Check;
▶ Issue error messages;
▶ etc.

• There are two notations for attaching semantic rules:
1 Syntax Directed Definitions. High-level specification hiding many

implementation details (also called Attribute Grammars).
2 Translation Schemes. More implementation oriented: Indicate the

evaluation order of the semantic rules.

Summary

• Syntax Directed Translations

• Syntax Directed Definitions
• Implementing Syntax Directed Definitions

▶ Dependency Graphs
▶ S-Attributed Definitions
▶ L-Attributed Definitions

• Translation Schemes

Syntax Directed Definitions

• Syntax Directed Definitions are a generalization of context-free
grammars in which:

1 Grammar symbols have an associated set of Attributes;
2 Productions are associated with Semantic Rules for computing the

values of attributes.

• Such formalism generates Annotated Parse-Trees where each node
of the tree is a record with a field for each attribute (e.g., X .a
indicates the attribute a of the grammar symbol X).

Syntax Directed Definitions (Cont.)

• The value of an attribute of a grammar symbol at a given parse-tree
node is defined by a semantic rule associated with the production
used at that node.

• We distinguish between two kinds of attributes:
1 Synthesized Attributes. They are computed from the values of the

attributes of the children nodes.
2 Inherited Attributes. They are computed from the values of the

attributes of both the siblings and the parent nodes.

Form of Syntax Directed Definitions

• Each production, A→ α, is associated with a set of semantic rules:
b := f (c1, c2, . . . , ck), where f is a function and either

1 b is a synthesized attribute of A, and c1, c2, . . . , ck are attributes of
the grammar symbols of the production (including A itself), or

2 b is an inherited attribute of a grammar symbol in α, and c1, c2, . . . , ck

are attributes of grammar symbols in α or attributes of A.

• Note 1. Terminal symbols are assumed to have an attribute which
coincides with the attribute supplied by the lexical analyzer.

• Note 2. Procedure calls (e.g. print in the next slide) define values of
Dummy synthesized attributes of the non terminal on the left-hand
side of the production.

Syntax Directed Definitions: An Example

• Example. Let us consider the Grammar for arithmetic expressions.
The Syntax Directed Definition associates to each non terminal a
synthesized attribute called val.

Production Semantic Rule
L→ En print(E .val)
E → E1 + T E .val := E1.val + T .val
E → T E .val := T .val
T → T1 ∗ F T .val := T1.val ∗ F .val
T → F T .val := F .val
F → (E) F .val := E .val
F → digit F .val :=digit.lexval

S-Attributed Definitions
Definition. An S-Attributed Definition is a Syntax Directed Definition
that uses only synthesized attributes.
• Evaluation Order. Semantic rules in an S-Attributed Definition can

be evaluated by a bottom-up, or PostOrder, traversal of the
parse-tree.

• Example. The above arithmetic grammar is an example of an
S-Attributed Definition. The annotated parse-tree for the input
3*5+4n is:

L

E .val = 19 n

E .val = 15 + T .val = 4

T .val = 15 F .val = 4

T .val = 3 * F .val = 5 digit.lexval= 4

F .val = 3 digit.lexval= 5

digit.lexval= 3

Inherited Attributes

• Inherited Attributes are useful for expressing the dependence of a
construct on the context in which it appears.

• Note: It is always possible to rewrite a syntax directed definition to
use only synthesized attributes, but it is often more natural to use
both synthesized and inherited attributes.

• Evaluation Order. Inherited attributes can not be evaluated by a
simple PreOrder traversal of the parse-tree:
▶ Unlike synthesized attributes, the order in which the inherited

attributes of the children are computed is important!!! Indeed:
▶ Inherited attributes of the children can depend from both left and right

siblings!

Inherited Attributes: An Example

• Example. Let us consider the syntax directed definition with both
inherited and synthesized attributes for the grammar for “type
declarations”:

Production Semantic Rule
D → T L L.in := T .type
T →int T .type :=integer
T →real T .type :=real
L→ L1, id L1.in := L.in; addtype(id.entry, L.in)
L→ id addtype(id.entry, L.in)

• The non terminal T has a synthesized attribute, type, determined by
the tokens int/real in the corresponding production.

• The production D → T L is associated with the semantic rule
L.in := T .type which set the inherited attribute L.in.

• Note: The production L→ L1, id distinguishes the two occurrences
of L.

Inherited Attributes: An Example (Cont.)

• Synthesized attributes can be evaluated by a PostOrder traversal.

• Inherited attributes that do not depend from right children can be
evaluated by a PreOrder traversal.

• The annotated parse-tree for the input real id1, id2, id3 is:
D

T .type = real L.in =

real

real L.in =

real

, id3

L.in =

real

, id2

id1

• L.in is then inherited top-down the tree by the other L-nodes.

• At each L-node the procedure addtype inserts into the symbol table
the type of the identifier.

Inherited Attributes: An Example (Cont.)

• Synthesized attributes can be evaluated by a PostOrder traversal.

• Inherited attributes that do not depend from right children can be
evaluated by a PreOrder traversal.

• The annotated parse-tree for the input real id1, id2, id3 is:
D

T .type = real L.in = real

real L.in =

real

, id3

L.in =

real

, id2

id1

• L.in is then inherited top-down the tree by the other L-nodes.

• At each L-node the procedure addtype inserts into the symbol table
the type of the identifier.

Inherited Attributes: An Example (Cont.)

• Synthesized attributes can be evaluated by a PostOrder traversal.

• Inherited attributes that do not depend from right children can be
evaluated by a PreOrder traversal.

• The annotated parse-tree for the input real id1, id2, id3 is:
D

T .type = real L.in = real

real L.in = real , id3

L.in =

real

, id2

id1

• L.in is then inherited top-down the tree by the other L-nodes.

• At each L-node the procedure addtype inserts into the symbol table
the type of the identifier.

Inherited Attributes: An Example (Cont.)

• Synthesized attributes can be evaluated by a PostOrder traversal.

• Inherited attributes that do not depend from right children can be
evaluated by a PreOrder traversal.

• The annotated parse-tree for the input real id1, id2, id3 is:
D

T .type = real L.in = real

real L.in = real , id3

L.in = real , id2

id1

• L.in is then inherited top-down the tree by the other L-nodes.

• At each L-node the procedure addtype inserts into the symbol table
the type of the identifier.

Inherited Attributes: An Example (Cont.)

• Synthesized attributes can be evaluated by a PostOrder traversal.

• Inherited attributes that do not depend from right children can be
evaluated by a PreOrder traversal.

• The annotated parse-tree for the input real id1, id2, id3 is:
D

T .type = real L.in = real

real L.in = real , id3

L.in = real , id2

id1
• L.in is then inherited top-down the tree by the other L-nodes.

• At each L-node the procedure addtype inserts into the symbol table
the type of the identifier.

Summary

• Syntax Directed Translations

• Syntax Directed Definitions
• Implementing Syntax Directed Definitions

▶ Dependency Graphs
▶ S-Attributed Definitions
▶ L-Attributed Definitions

• Translation Schemes

Dependency Graphs

• Implementing a Syntax Directed Definition consists primarily in
finding an order for the evaluation of attributes
▶ Each attribute value must be available when a computation is

performed.

• Dependency Graphs are the most general technique used to evaluate
syntax directed definitions with both synthesized and inherited
attributes.

• A Dependency Graph shows the interdependencies among the
attributes of the various nodes of a parse-tree.
▶ There is a node for each attribute;
▶ If attribute b depends on an attribute c there is a link from the node

for c to the node for b (b ← c).

• Dependency Rule: If an attribute b depends from an attribute c ,
then we need to fire the semantic rule for c first and then the
semantic rule for b.

Evaluation Order

• The evaluation order of semantic rules depends from a Topological
Sort derived from the dependency graph.

• Topological Sort: Any ordering m1,m2, . . . ,mk such that if
mi → mj is a link in the dependency graph then mi < mj .

• Any topological sort of a dependency graph gives a valid order to
evaluate the semantic rules.

Dependency Graphs: An Example

• Example. Build the dependency graph for the parse-tree of real id1,
id2, id3.

Implementing Attribute Evaluation: General Remarks

• Attributes can be evaluated by building a dependency graph at
compile-time and then finding a topological sort.

• Disavantages
1 This method fails if the dependency graph has a cycle: We need a test

for non-circularity;
2 This method is time consuming due to the construction of the

dependency graph.

• Alternative Approach. Design the syntax directed definition in such
a way that attributes can be evaluated with a fixed order avoiding to
build the dependency graph (method followed by many compilers).

Summary

• Syntax Directed Translations

• Syntax Directed Definitions
• Implementing Syntax Directed Definitions

▶ Dependency Graphs
▶ S-Attributed Definitions
▶ L-Attributed Definitions

• Translation Schemes

Evaluation of S-Attributed Definitions

• Synthesized Attributes can be evaluated by a bottom-up parser as the
input is being analyzed avoiding the construction of a dependency
graph.

• The parser keeps the values of the synthesized attributes in its stack.

• Whenever a reduction A→ α is made, the attribute for A is
computed from the attributes of α which appear on the stack.

• Thus, a translator for an S-Attributed Definition can be simply
implemented by extending the stack of an LR-Parser.

Extending a Parser Stack

• Extra fields are added to the stack to hold the values of synthesized
attributes.

• In the simple case of just one attribute per grammar symbol the stack
has two fields: state and val

state val

Z Z .x
Y Y .x
X X .x
.

• The current top of the stack is indicated by the pointer variable top.
• Synthesized attributes are computed just before each reduction:

▶ Before the reduction A→ XYZ is made, the attribute for A is
computed: A.a := f (val [top], val [top − 1], val [top − 2]).

Extending a Parser Stack: An Example
• Example. Consider the S-attributed definitions for the arithmetic

expressions. To evaluate attributes the parser executes the following
code

Production Code
L→ En print(val [top − 1])
E → E1 + T val [ntop] := val [top] + val [top − 2]
E → T
T → T1 ∗ F val [ntop] := val [top] ∗ val [top − 2]
T → F
F → (E) val [ntop] := val [top − 1]
F → digit

• The auxiliary variable ntop is set to the new top of the stack: when a
reduction A→ α is done, with |α| = r , then ntop = top − r + 1 .
After the reduction is done top is set to ntop.

• During a shift action both the token and its attribute (as returned by
the lexical analyzer) are pushed into the stack.

Extending a Parser Stack: An Example (Cont.)
• The following Figure shows the moves made by the parser on input

3*5+4n.
▶ Stack states are replaced by their corresponding grammar symbol;
▶ Instead of the token digit the actual value is shown.

Summary

• Syntax Directed Translations

• Syntax Directed Definitions
• Implementing Syntax Directed Definitions

▶ Dependency Graphs
▶ S-Attributed Definitions
▶ L-Attributed Definitions

• Translation Schemes

L-Attributed Definitions

• L-Attributed Definitions contain both synthesized and inherited
attributes but do not need to build a dependency graph to evaluate
them.

• Definition. A syntax directed definition is L-Attributed if each
inherited attribute of Xj in a production A→ X1 . . .Xj . . .Xn,
depends only on:

1 The synthesised and inherited attributes of the symbols to the left (this
is what L in L-Attributed stands for) of Xj , i.e., X1X2 . . .Xj−1, and

2 The inherited attributes of A.

• Theorem. Inherited attributes in L-Attributed Definitions can be
computed by a PreOrder traversal of the parse-tree.

Evaluating L-Attributed Definitions

• L-Attributed Definitions are a class of syntax directed definitions
whose attributes can always be evaluated by single traversal of the
parse-tree.

• The following procedure evaluate L-Attributed Definitions by mixing
PostOrder (synthesized) and PreOrder (inherited) traversal.
Algorithm: L-Eval(n: Node)
Input: Node of an annotated parse-tree.
Output: Attribute evaluation.
Begin

For each child m of n, from left-to-right Do
Begin

Evaluate inherited attributes of m;
L-Eval(m)

End;
Evaluate synthesized attributes of n

End.

Summary

• Syntax Directed Translations

• Syntax Directed Definitions
• Implementing Syntax Directed Definitions

▶ Dependency Graphs
▶ S-Attributed Definitions
▶ L-Attributed Definitions

• Translation Schemes

Translation Schemes

• Translation Schemes are more implementation oriented than syntax
directed definitions since they indicate the order in which semantic
rules and attributes are to be evaluated.

• Definition. A Translation Scheme is a context-free grammar in which

1 Attributes are associated with grammar symbols;
2 Semantic Actions are enclosed between braces {} and are inserted

within the right-hand side of productions.

• Note: Yacc uses Translation Schemes.

Translation Schemes (Cont.)

• Translation Schemes deal with both synthesized and inherited
attributes.

• Semantic Actions are treated as terminal symbols: Annotated
parse-trees contain semantic actions as children of the node standing
for the corresponding production.

• Translation Schemes are useful to evaluate L-Attributed definitions at
parsing time (even if they are a general mechanism).
▶ An L-Attributed Syntax-Directed Definition can be turned into a

Translation Scheme.

Translation Schemes: An Example

• Consider the Translation Scheme for the L-Attributed Definition for
“type declarations”:

D → T {L.in := T .type} L
T → int {T .type :=integer}
T → real {T .type :=real}
L→ {L1.in := L.in} L1, id {addtype(id.entry, L.in)}
L→ id {addtype(id.entry, L.in)}

Translation Schemes: An Example (Cont.)

• Example (Cont). The parse-tree with semantic actions for the input
real id1, id2, id3 is:

D

T {L.in := T .type} L

real {T.type := real} {L1.in := L.in} L1 , id3{addtype(id3.entry, L.in)}

{L2.in := L1.in} L2 , id2 {addtype(id2.entry, L1.in)}

id1 {addtype(id1.entry, L2.in)}

• Traversing the Parse-Tree in depth-first order (PostOrder) we can
evaluate the attributes.

Design of Translation Schemes

• When designing a Translation Scheme we must be sure that an
attribute value is available when a semantic action is executed.

• When the semantic action involves synthesized attributes: The action
can be put at the end of the production.
▶ Example. The following Production and Semantic Rule:

T → T1 ∗ F T .val := T1.val ∗ F .val
yield the translation scheme:

T → T1 ∗ F {T .val := T1.val ∗ F .val}

Design of Translation Schemes (cont.)

• When the semantic action involves inherited attributes of a grammar
symbol: The action must be put before the symbol itself.
▶ Example. The following Production and Semantic Rule:

D → T L L.in := T .type
yield the translation scheme:

D → T {L.in := T .type} L

Design of Translation Schemes: Summary

• Rules for Implementing L-Attributed SDD’s. If we have an
L-Attibuted Syntax-Directed Definition we must enforce the following
restrictions:

1 An inherited attribute for a symbol in the right-hand side of a
production must be computed in an action before the symbol;

2 A synthesized attribute for the non terminal on the left-hand side can
only be computed when all the attributes it references have been
computed: The action is usually put at the end of the production.

Parsing-Time Evaluation of Translation Schemes

• Attributes in a Translation Scheme following the above rules can be
computed at parsing time similarly to the evaluation of S-Attributed
Definitions.

• Main Idea. Starting from a Translation Scheme (with embedded
actions) we introduce a transformation that makes all the actions
occur at the right ends of their productions.
▶ For each embedded semantic action we introduce a new Marker (i.e., a

non terminal, say M) with an empty production (M → ϵ);
▶ The semantic action is attached at the end of the production M → ϵ.

Parsing-Time Evaluation of Translation Schemes (Cont.)

• Example. Consider the following translation scheme:
S → aA{C .i = f (A.s)}C
S → bAB{C .i = f (A.s)}C
C → c{C .s = g(C .i)}

Then, we add new markers M1,M2 with:
S → aAM1C
S → bABM2C
M1 → ϵ {M1.s := f (val [top])}
M2 → ϵ {M2.s := f (val [top − 1])}
C → c {C .s := g(val [top − 1])}

The inherited attribute of C is the synthesized attribute of either M1
or M2: The value of C .i is always in val[top -1] when C → c is
applied.

Parsing-Time Evaluation of Translation Schemes (Cont.)

General rules to compute translations schemes during bottom-up parsing
assuming an L-attributed grammar.

• For every production A→ X1 . . .Xn introduce n new markers
M1, . . . ,Mn and replace the production by A→ M1X1 . . .MnXn.

• Thus, we know the position of every synthesized and inherited
attribute of Xj and A:

1 Xj .s is stored in the val entry in the parser stack associated with Xj ;
2 Xj .i is stored in the val entry in the parser stack associated with Mj ;
3 A.i is stored in the val entry in the parser stack immediately before the

position storing M1.

• Remark 1. Since there is only one production for each marker a
grammar remains LL(1) with addition of markers.

• Remark 2. Adding markers to an LR(1) Grammar can introduce
conflicts for not L-Attributed SDD’s!!!

Parsing-Time Evaluation of Translation Schemes (Cont.)

Example. Computing the inherited attribute Xj .i after reducing with
Mj → ϵ.

top→

(top-2j)→

(top-2j+2)→

Mj Xj .i
Xj−1 Xj−1.s
Mj−1 Xj−1.i
.

X1 X1.s
M1 X1.i
MA A.i

• A.i is in val [top − 2j + 2];

• X1.i is in val [top − 2j + 3];

• X1.s is in val [top − 2j + 4];

• X2.i is in val [top − 2j + 5];

• and so on.

Summary of Lecture VII

• Syntax Directed Translations

• Syntax Directed Definitions
• Implementing Syntax Directed Definitions

▶ Dependency Graphs
▶ S-Attributed Definitions
▶ L-Attributed Definitions

• Translation Schemes

