Formal Languages and Compilers
Lecture VI—Part 3: Syntactic Analysis

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science — POS Building, Room: 2.03
artale@inf.unibz.it
http://www.inf.unibz.it/~artale/

Formal Languages and Compilers — BSc course

2020/21 — Second Semester

Summary of Lecture VI—Part 3

e LR Parsing Algorithm: An Intro

e Automata and Bottom-up Parsing
e SLR Parsing

» Closure and Goto Operations, Canonical Collection;
» SLR Parsing Tables

Intro to LR Parsers

LR(k) Grammars are the most general Non-Backtracking
Grammars that can be used in bottom-up parsers.

» “L": Left-to-right scanning of the input;
» “R”": Rightmost derivations;
» “k": number of lookahead symbols to take a decision.

Predictive Grammars, i.e.,, LL Grammars, are a proper subset of LR
Grammars (e.g., if-then-else is not LL but it is LR).

An LR parser can detect a syntactic error as soon as possible.

Disadvantage. Is difficult to build an LR parser by hand. We need
specialized tools like YACC.

LR Parser Architecture
An LR parser has: An input buffer (Tokens returned from the Lexical
Analyzer); A stack containing Grammar symbols and States; A parsing

table with two parts, Action and Goto, implementing a DFA to decide
between shift and reduce.

Input |id | + | id] $

A
Sm
LR Parser Output
< EEEEEE——
X Program utpu
Sm—1
X
: Y
So Action | Goto

Stack

LR Parsing Algorithm

e The stack stores a string of the form sp.X151 ... 557-1XmSm, where:
» X; is a Grammar Symbol;
> s; is a state summarizing the information contained in the stack
below it.

e The combination (State on top of the stack, Lookahead symbol) is
used to index the Action-Coto table.

e Configuration of an LR Parser. Is a pair made by the content of the

stack (s; on top) and the right-part of the input (starting with the
Lookahead):

(s0X151 - - Sm—1XmSm, @idi+1 - .. an%)

LR Parsing Algorithm (Cont.)

The next move of the parser is based on the pair (sp, a;) and on what
specified in the Action table:

@ action[sp, a;] = shift s;. The parser executes a shift entering the
configuration: (soX151 ... XmSmaiSj, ait1-..an$).

@® action[sp, a;] = reduce A — B. The parser executes a reduce
entering the configuration: (soXis1 ... Xm—rSm—rAs, ajait1...an%);
where s = goto(Sm—r, A) and r =| B |. The parser pops 2r symbols
from the stack (r states and the r Grammar symbols) and then
pushes both A and s. The production A — B is in the output.

© actionsp, aj] = error.

O action[sp,, $] = accept. The parser stops successfully.

Example: LR Parser on “id*id+id

SIATE e x () $ B
0 |ss 4 AEERT)
1 56 acc
2 2. a7 2
3 4 4 M4 4
4 |ss 4 LR
5 6 6 6 6 G rammar
6 |s5 4 9. 3
| as 4 10 rl. E - E + T
8 6 stl
9 Fliisy rli i |
10 B 3 3.k | r2. £ T
1 55rS 5 s |
3. T — TxF
rd. T — F
StAck INPUT ACTION
S sk STACKE F S S iveur, R |
m o idkid +idS | shif N (E)
@ oids #id +id $ | reduce by F — id r5. F
3 0F3 *id +id $ | reduce by 7 — F .
@ or2 *id +id$ | shife r6. F — id
(5) 0T2%7 id +id$ | shift :
6 0T2x%7ids +id $ | reduce by F — id |
M 0T2x7F 10 +id$ | reduce by T - T%F
® or2 +1d$ | reduce by £ - T
© 0EI +id$ | shift
10) 0E1+6 ids$ | shife
(1) 0E1+6ids $ | reduce by F — id
(12 0E1+6F3 $ | reduce by 7 - F |
(I3) 0E1+67T9 $ | E~E+T
4 0E1 $ | accept
|-Accepte . i el

Example: LR Parser on “id*id+id

R
0 |ss5 4 L2
1 s6 acc
2 2 57 2o
3 M 4 4 r4
4 |ss5 s4 8ot
5 6 16 6 16
6 |ss s4 9
s s4 10
8 56 sl
9 fil iy F18Gic
10 353 3l s ‘
11 56405 I55L6ES ‘
StAck INPUT ACTION
m o id*id +id$ | shift
2 0ids *id +id $ | reducc by F — id
(3) 0F3 *id +id$ | reduce by T — F
@ or2 *id +id $ | shift
5) 0T2%7 id+id$ | shift |
6 0T2%7id5 +id$ | reduce by F — id |
M 0T2%7F 10 +id$ | reduce by T — TxF
® or2 +id$ | reduce by E ~ T
9 0EI +id$ | shift ‘
(10) 0E1+6 id$ | shift
() 0E1+6ids5 $ | reduce by F — id
(12) 0E1+6F3 $ | reduce by T — F |
(13) 0El1+6T9 $ |E-E+T
(14 0E1 $ | accept l
{-aoeente .t e

Summary

e Parsing Algorithm: An Intro

e Automata and Bottom-up Parsing
e SLR Parsing

» Closure and Goto Operations, Canonical Collection;
» SLR Parsing Tables

Automata and LR Parsing

e Definition 1. Right-Sentential Form: A string o derived from the
scope of the lanquage, S =7,, a, by means of right-most
derivations.

e Definition 2. Handle: Substring of a right-sentential form that
matches a right hand side of a production.

e The Handle will always appear on top of the stack, never inside.

Automata and LR Parsing (Cont.)

e The Action and Goto tables define the transition function of an
Automaton that recognizes handles on top of the stack.

e The automaton does not need to read the stack every time: The
state on top of the stack is the state the automaton would be after
reading the symbols of the stack.

e This is why an LR parser has full control on the content of the
stack just knowing the state on top of the stack.

Summary

e Parsing Algorithm: An Intro

e Automata and Bottom-up Parsing
e SLR Parsing

» Closure and Goto Operations, Canonical Collection;
» SLR Parsing Tables

SLR Parsers

Simple LR (SLR) is the simplest LR parsing Grammar.

Definition. An LR(0) Item of a Grammar, G, is a production with a
dot at some position in the right side.

Example. The production A — XYZ gives rise to four items:

A—. XYZ
A— X.YZ
A—-XY.Z
A— XYZ.

The production A — € generates the item A —.

Intuition. An item indicates how much of a production we have
seen in the parsing process, and can be represented by a pair of
integers:

(Number of Production, Dot Position)

Constructing SLR Parsing Tables

[tems are useful to build the transition function of the Automaton
recognizing handles.

Items representing the same situation are grouped together into
sets.

Each of these sets represents a state of the DFA recognizing
handles.

The Canonical Collection of LR(0) Items provides the basis to
construct the SLR parsing tables (implementing the DFA).

The canonical collection is defined in terms of two operations,

Closure and Goto, and an Augmented Grammar, i.e., a Grammar
with a new scope S’ and a new production S” — S.

» The production S” — S indicates acceptance, i.e., the parser accepts
iff it is about to reduce by S’ — S.

Summary

e Parsing Algorithm: An Intro

e Automata and Bottom-up Parsing
e SLR Parsing

» Closure and Goto Operations, Canonical Collection;
» SLR Parsing Tables

The Closure Operation

Algorithm. Closure(l).
If I is a set of items for an augmented Grammar G, then closure(l)
is the set of items such that:

@ Initially every item in / is added to closure(l);

@ If A— a.BB € closure(l) and B — y, then we add the item B —.y
to closure(l). Go to step 1 until no more items can be added to
closure(l).

Intuition. A — a.Bf € closure(l) indicates that:
@ We expect to see something derivable from A, and
® < is already on top of the stack, thus
© we expect to see something derivable from Bf3, and then
O if B — y we could also expect something derivable from y.

The Closure Operation: An Example

e Example. Consider the augmented grammar on the left, then,
closure({E’ —. E}) contains the items shown on the right:

Augmented Grammar

E/

mM T 4 4 mm

Ll Ll

—

E
E+T
T
TxF

closure({E" —.E})

E/

mM m 4 4 m m

N

.E
E+T
.T
T xF
.F
.(E)
.id

The Goto Operation

e Definition. If / is a set of items and X € Vy U VT, then, goto(/, X)
is the closure of the set of all items A — aX. 8 such that
A—a XBisin Il

e Intuition 1. goto(/, X) represents the transition of the automaton
from state / and input X.

e Intuition 2. If / is a set of items valid for a prefix o of a
right-sentential form, then, goto(/, X) is valid for the prefix aX.

The Goto Operation: An example

Example. If | = {E' - E. |, E — E.+T}, then:
goto(l, +) = closure({E — E+. T}), is the set:

E —- E+.T
T — . TxF
T — .F
F — .(E)
F — .id

Canonical Collection

Algorithm. Canonical Collection for an Augmented Grammar G
@ Initially, C = {closure({S" —.S}H};

® For each set of items / in C and each Grammar symbol X
If goto(l, X) # @ and goto(l, X) ¢ C, then
add goto(/, X) to C;

® Go to step 2 if new items have been added, otherwise stop.

1

[y

Example: Canonical Collection for Arithmetic
Expressions

<

=

id
E

T
Whewuw

F -

I5
/6:

oW

TTrrTY

w~~uw

Tx. F
E
id

T
~uw

W e
T o7

Lw wk

h
/22

—+
ST

T
ww

/31

L u
+* % <
wk =~ Y

T T 1
w~ ~ w

oW
—F x —
Wy 1
Tt
T TR

<

Example: Canonical Collection for Arithmetic
Expressions

Augmented Grammar

r0. B — E
r1.E —- E+ T
.E — T
r3.T — TxF
rd. T — F

r5. F — (E)
re. F — id

Example: Canonical Collection for Arithmetic
Expressions

Example: Canonical Collection for Arithmetic

Expressions

~
LT

-

id.
E

T
W~~uuw

Fo—

/52
ls

TTTTITTTY

Lk~ ww

S

/11

w ~

sgo T
= Wy

T 1
ALl Wl
=~ -

[

+ %
wy ~~ o
T 11 7
Lw wk~ ~

/22
/32

TRy
+* % =
wk ~ W
T T 1
W~ ~ w
e = =
oW

P
EETTF
O O O M
W~ ww

<

Example: Goto Function for Arithmetic Expressions

e The above figure represents the transition function of the DFA
recognizing viable prefixes of the Grammar for Arithmetic
Expressions.

e Viable Prefix: Prefix of right-sentential form that could be on top

of the stack of an SLR Parser.

Summary

e LR Parsing Algorithm: An Intro

e Automata and Bottom-up Parsing
e SLR Parsing

» Closure and Goto Operations, Canonical Collection;
» SLR Parsing Tables

SLR Parsing Tables

Algorithm. SLR Parsing Tables Action and Goto.

@ Construct C = {lp, l1,...,In}, the canonical collection for the
augmented grammar G'.

® To each item set /[, we create a new state s,x. Then the action

table is:
» action[sy, a] = “shift s;", if A — a.ap € I, and goto(lx, a) = ;.
> action[sg, a] = “reduce A — o', for all A — a. € I, and for all a in
FOLLOW(A). Here A # S'.
» action[sx, $] = "accept’, if S’ = S. € L.

© goto[si, Al = s, if goto(lx, A) = ;.
O All the entries not defined by rules (2) and (3) are made “error”.
©® The initial state, I, is the one constructed from the closure of
S —-.S
Note. The Parsing table does not contains multiple entries if and only
if the Grammar is SLR.

Summary of Lecture VI—Part 3

e LR Parsing Algorithm: An Intro

e Automata and Bottom-up Parsing
e SLR Parsing

» Closure and Goto Operations, Canonical Collection;
» SLR Parsing Tables

