
Formal Languages and Compilers
Lecture VI—Part 1: Syntactic Analysis

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science – POS Building, Room: 2.03

artale@inf.unibz.it

http://www.inf.unibz.it/∼artale/

Formal Languages and Compilers — BSc course

2020/21 – Second Semester

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Summary of Lecture VI—Part 1

Intro to Syntactic Analysis

Generating Languages from Grammars

Ambiguous Grammars
Top-Down Parsers

Problems: Backtrack and Infinite Loops
Predictive Parsers

LL(k) Grammars
Predictive Parser Program
Constructing Predictive Parsing Tables

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Intro to Syntactic Analysis

Every programming language has rules that describe the syntactic structure of
well-formed programs.
Context-Free Grammars (or BNF) are used to describe the syntax of
programs.

Remark: Regular Grammars/Expressions are not expressive enough to describe
the structure of programs, e.g., a RE cannot recognize balanced open and
closed parentheses (since they cannot arbitrary count).

From certain classes of grammars we can automatically construct a Parser.

Imposing a structure to a program is useful for the subsequent translation.

New programming constructs can be easily added for languages based on
grammars.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

The Role of the Parser

The Parser stands to a CFG as an Automaton stands to a RE.

The Parser obtains a sequence of Tokens from the lexical analyzer and verifies
that the sequence can be generated by means of a Derivation in the CFG of
the source program.

As a result the parser output a (representation of a) Parse-Tree.

Parsers are classified as Bottom-UP or Top-Down depending whether the
parse-tree is built from the leaves or from the root, respectively.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Syntax Error Handling

Many of the errors are syntactic in nature: much of the error detection and
recovery is done during parsing.

The techniques used to handle errors can vary depending from the compiler
design.
In general, the error handler in a Parser should:

Report the presence of errors clearly and accurately;
Try to “recover” to be able to detect further errors;
It should not slow down the processing of correct programs.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Summary

Intro to Syntactic Analysis

Generating Languages from Grammars

Ambiguous Grammars
Top-Down Parsers

Problems: Backtrack and Infinite Loops
Predictive Parsers

LL(k) Grammars
Predictive Parser Program
Constructing Predictive Parsing Tables

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Notion of Derivation

To characterize a Language starting from a Grammar we need to introduce
the notion of Derivation.

The notion of Derivation uses Productions to generate a string starting from
another string.

Direct Derivation (in symbols ⇒).
If α→ β ∈ P and γ, δ ∈ V∗, then, γαδ ⇒ γβδ.
Derivation (in symbols ⇒∗).
If α1 ⇒ α2, α2 ⇒ α3, ..., αn−1 ⇒ αn, then, α1 ⇒∗ αn.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Generating Languages from Grammars

Generative Definition of a Language. We say that a Language L is generated by
the Grammar G= (VT ,VN ,S,P), in symbols L(G), if:

L(G) = {w ∈ VT
∗ | S⇒∗ w}.

Example. Consider the following CF Grammar for arithmetic expressions:

E → E + E | E ∗ E | (E) | −E | id

The sequence of Tokens −(id + id) is a well-formed sentence:

E ⇒ −E ⇒ −(E)⇒ −(E + E)⇒ −(id + E)⇒ −(id + id)

Note: Token is a synonym of Terminal Symbol when talking of Grammars for
programming languages.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Derivation Trees for Context-Free Grammars

Derivation Trees, called also Parse Trees, are a visual method of describing
any derivation in a context-free grammar.
Let G= (VT ,VN ,S,P) be a CFG. A tree is a derivation tree for G if:

1 Every node has a label, which is a symbol of V;
2 The label of the root is S;
3 If a node, n, labeled with A has at least one descendant, then A must be in VN ;
4 If nodes n1, n2, . . . , nk are direct descendants of node n, with labels

A1,A2, . . . ,Ak , respectively, then:
A→ A1,A2, . . . ,Ak

must be a production in P.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Choices in Derivations

At each step in a Derivation there are two choices to be made:
1 Which non-terminal to replace;
2 Which Production to use for that non-terminal.

W.r.t. point (1), we have two derivations for −(id + id):

1. E ⇒ −E ⇒ −(E)⇒ −(E + E)⇒ −(id + E)⇒ −(id + id)

2. E ⇒ −E ⇒ −(E)⇒ −(E + E)⇒ −(E + id)⇒ −(id + id)

A Parser will consider either Leftmost Derivations—the leftmost non-terminal
is chosen—or Rightmost Derivations.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Parse-Trees and Derivations

A Parse-Tree is a visualization of a Derivation that ignores variations in the
order in which non-terminal are replaced—point (1) above.

The Parse-Tree associated to the two Derivations in the previous slide is

E

- E

()E

E E+

id id

Every Parse-Tree is associated with a unique leftmost and a unique rightmost
derivation, and viceversa.

Problem of Ambiguity: A sentence can have more than one Parse-Tree.
Related to point (2) above: Which Production to use for a given non-terminal

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Summary

Intro to Syntactic Analysis

Generating Languages from Grammars

Ambiguous Grammars
Top-Down Parsers

Problems: Backtrack and Infinite Loops
Predictive Parsers

LL(k) Grammars
Predictive Parser Program
Constructing Predictive Parsing Tables

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Ambiguity

A grammar is ambiguous if it has more than one Parse-Tree for some string.
Equivalently, there is more than one right-most or left-most derivation for some
string.

Ambiguity is bad: Leaves meaning of some programs ill-defined since we
cannot decide its syntactical structure uniquely.

Ambiguity is a property of Grammars, not of Languages.
Two alternative solutions:

1 Disambiguate the grammar
2 Use extra-grammatical mechanisms, like disambiguating rules, to discard

alternative Parse-Trees.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Ambiguity: Arithmetic Expressions

Consider the Grammar for arithmetic expressions:

E → E + E | E ∗ E | (E) | −E | id

The sequence of Tokens id + id ∗ id has two Parse-Trees

E

E + E

id * EE

id id

E

E*E

id+ EE

id id

The first Parse-Tree reflects the usual assumption that * takes precedence on +.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Eliminating Ambiguity by Disambiguating the Grammar

Sometime it is possible to eliminate ambiguity by rewriting the Grammar.

Example. Let us rewrite the Grammar for arithmetic expressions:

E → E+T | T
T → T∗F | F
F → (E) | id

Enforces precedence of * over +;
Enforces left-associativity of + and *

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Eliminating Ambiguity: Example

E → E+T | T
T → T∗F | F
F → (E) | id

The sequence of Tokens id + id ∗ id has now only one Parse-Tree

E

E + T

T T * F

F F id

id id

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Ambiguity: The Dangling Else

Consider the Grammar for if-then-else statements:

Stmt → if Expr then Stmt
| if Expr then Stmt else Stmt
| other

This Grammar is ambiguous.

Example. Consider the statement:
if E1 then if E2 then S1 else S2.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

The Dangling Else: Example

The statement: if E1 then if E2 then S1 else S2, has two Parse-Trees

Stmt

if E1 then Stmt

if E2 then S1 else S2

Stmt

if E1 then Stmt else S2

if E2 then S1

Typically, the first Parse-Tree is preferred.

Disambiguating Rule: Match each else with the closest unmatched then.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Disambiguating Dangling Else

Disambiguating Rule: Match each else with the closest unmatched then.

The rule can be incorporated into the Grammar if we distinguish between
matched and unmatched statements.

A statement between a then-else must be matched.

Stmt → Matched_stmt | Unmatched_stmt

Matched_stmt → if Expr then Matched_stmt else Matched_stmt

| Other-Stmt
Unmatched_stmt → if Expr then Stmt

| if Expr then Matched_stmt else Unmatched_stmt

This Grammar generates the same set of strings as the previous one but gives
just one Parse-Tree for if-then-else statements.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

The Dangling Else: Example (cont.)

The statement: if E1 then if E2 then S1 else S2, has now a unique Parse-Tree.

UStmt

if E1 then MStmt

if E2 then S1 else S2

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Disambiguating Rules: Precedence and Associativity
Declarations

Instead of rewriting the Grammar:
1 Use the more natural (ambiguous) Grammar;
2 Along with disambiguating declarations.

Most tools (e.g. YACC) allow precedence and associativity declarations for
terminals (e.g, “*” takes precedence over “+”) to disambiguate grammars (see
the Book, Sections 4.8-4.9, for more details).

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Inherent Ambiguity

It would be nice if for every ambiguous grammar, there were some way to “fix”
the ambiguity.

Unfortunately, certain CFLs are inherently ambiguous, meaning that every
grammar for the language is ambiguous.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Example: Inherent Ambiguity

The language {0i1j2k | i = j or j = k , i , j , k ≥ 1} is inherently ambiguous.

Intuitively, at least the strings of the form 0n1n2n can be generated by two
different parse trees, one based on checking the 0’s and 1’s, the other based
on checking the 1’s and 2’s.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

One Possible Ambiguous Grammar

S → AB | CD

A→ 0A1 | 01 A generates equal 0’s and 1’s

B → 2B | 2 B generates any sequence of 2’s

C → 0C | 0 C generates any sequence of 0’s

D → 1D2 | 12 D generates equal 1’s and 2’s

There are two derivations of every string with equal numbers of 0’s, 1’s, and 2’s.
E.g.:

S ⇒ AB ⇒ 01B ⇒ 012

S ⇒ CD ⇒ 0D ⇒ 012

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Ambiguity: Summary

No general techniques for handling ambiguity.

Impossible to convert automatically an ambiguous Grammar to an
unambiguous one.
Used with care, ambiguity can simplify the Grammar

Sometimes ambiguous Grammars allow for more natural definitions
But then we need extra-grammatical disambiguation mechanisms.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Summary

Intro to Syntactic Analysis

Generating Languages from Grammars

Ambiguous Grammars
Top-Down Parsers

Problems: Backtrack and Infinite Loops
Predictive Parsers

LL(k) Grammars
Predictive Parser Program
Constructing Predictive Parsing Tables

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Top-Down Parsing

The Top-Down Parsing—also called Recursive-Descent Parsing—builds the
Parse-Tree by starting with the root, labeled with the scope, and performing
the following two steps:

1 Select a node labeled with a Non-Terminal, say A;
2 Select one production for A and generate as many children of A as symbols on

the right-hand side of the production;

This procedure ends either when all the leaves are labeled with Tokens or we
can not apply any production.

Note. To solve point (1), top-down parsers proceed by left-most derivations.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Summary

Intro to Syntactic Analysis

Generating Languages from Grammars

Ambiguous Grammars
Top-Down Parsers

Problems: Backtrack and Infinite Loops
Predictive Parsers

LL(k) Grammars
Predictive Parser Program
Constructing Predictive Parsing Tables

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Backtrack in Top-Down Parsing

In general, the selection of a production for a Non-Terminal can involve
Backtrack: We may need to select another production if the first fails.

Note 1: A production fails if the Parse-Tree can not be completed to match
the input string.

Note 2: Backtrack can happen even if the Grammar is not ambiguous.

Note 3: Backtracking is rarely needed to parse programming languages.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Backtrack in Top-Down Parsing: An Example

Consider the (non ambiguous) Grammar for arithmetic expressions:

E → T+E | T
T → id∗T | id | (E)

and the input Tokens sequence: ” id + id”.

1 Start with the Non-Terminal E as the root of the Parse-Tree.
2 Use the production E→ T+E;
3 Use the production T→ id∗T:

id matches the first input Token but ∗ does not!
4 Backtrack: Use the production T→ id:

The Token id does match! Also the Token + matches!!

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Backtrack in Top-Down Parsing: An Example (Cont.)

5 We need now to choose a production for the second E : if we still choose
E→ T+E we fail; then we Backtrack and choose E→ T.

6 Follow the same step as before (Step 4.) for T and we succeed with T→ id:
The last Token matches!!!

7 The successful Parse-Tree is:

E

T + E

id T

id

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Loops in Top-Down Parsing — Left-Recursive
Grammars

It is possible for a Recursive-Descent Parser to loop forever!

Since top-down parsers proceed along left-most derivations, looping arises
with Left-Recursive Grammars.
Definition. A Grammar is said Left-Recursive if for a Non-Terminal, A, there
is a Derivation, A⇒∗ Aα, for some α ∈ V∗.
Example. The Grammar with production E → E+T is left-recursive.

Eliminating Immediate Left Recursion. If we have a production of the form,
A→ Aα1 | . . . | Aαn | β1 | . . . | βm, where β1, . . . , βm do not begin with A,
then an equivalent right-recursive Grammar is:
A → β1R | . . . | βmR
R → α1R | . . . | αnR | ϵ

In general, even non-immediate left-recursion can be eliminated (see the Book,
Section 4.3.3, for more details).

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Summary

Intro to Syntactic Analysis

Generating Languages from Grammars

Ambiguous Grammars
Top-Down Parsers

Problems: Backtrack and Infinite Loops
Predictive Parsers

LL(k) Grammars
Predictive Parser Program
Constructing Predictive Parsing Tables

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Predictive Parsers

Predictive Parsers: avoid backtracking since they can predict which
production to use by looking at the current Token being scanned in the
input—called Lookahead symbol.

The Lookahead symbol unambiguously determines which production to use.

Example. Given the following productions:

Stmt → if Expr then Stmt else Stmt

| while Expr do Stmt

| begin Stmt_list end

Then, depending whether the Lookahead is if ,while or begin the Parser will be
forced to use just one of the above productions.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Predictive Parsers (Cont.)

Criterion for the selection of a production.
If the right side of a production starts with a token then it will be used if such
token matches the Lookahead symbol;
If the right side of a production starts with a non-terminal then it will be used
if the Lookahead symbol can be generated from the non-terminal.

Predictive Parsing relies on information about what first symbol can be
generated by the right side of a production.

Definition (first). Let α be the right side of a production for non-terminal A.
Then, first(α) is the set of Tokens that start a string generated by α:

∀a ∈ VT .a ∈ first(α) iff α⇒∗ aβ, with α, β ∈ V∗.

Furthermore, if α = ϵ or α⇒∗ ϵ, then ϵ ∈ first(α).

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Predictive Parsers (Cont.)

A Predictive Parser decides between two productions A→ α and A→ β by
considering the Lookahead symbol;

If the Lookahead symbol is in first(α) then A→ α is used.

Important! To use a predictive parser it is necessary that

first(α) ∩ first(β) = ∅

for all α, β right side of alternative productions—i.e., productions associated
to the same non-terminal.

Note. As will be clear in the following slides, the above condition is necessary
but not sufficient.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Left-Factoring

A Grammar must be Left-Factored before use for predictive parsing.

Main Idea: If it is not clear which alternative production to use we rewrite the
productions to defer the decision until we see enough input to be able to
decide.

Example. Consider the following productions:
Stmt → if Expr then Stmt else Stmt

| if Expr then Stmt

Then, on seeing the Token if we cannot decide between the two productions
above. Left-Factored, this Grammar becomes:

Stmt → if Expr then Stmt Stmt ′

Stmt ′ → else Stmt | ϵ
Remark. The left-factored Grammar is still ambiguous: on input else it is
not clear what production to use for Stmt ′.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Summary

Intro to Syntactic Analysis

Generating Languages from Grammars

Ambiguous Grammars
Top-Down Parsers

Problems: Backtrack and Infinite Loops
Predictive Parsers

LL(k) Grammars
Predictive Parser Program
Constructing Predictive Parsing Tables

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

LL(k) Grammars

Predictive parsers accept LL(k) Grammars.
The first L means “left-to-right” scanning of the input;
The second L stands for producing a “leftmost derivation”;
k means “predict” based on k tokens of lookahead.

In practice, LL(1) Grammars are used.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

LL(1) Grammars

Given an LL(1) Grammar, then for each non-terminal and Token (Lookahead)
there is only one production that could lead to success.
Predictive parsers built on top of LL(1) Grammars can be specified as a
two-dimensional table—called the Parsing Table, with:

One dimension for current non-terminal to expand;
One dimension for next Token;
Each table entry contains one production or denotes a syntactic error.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Summary

Intro to Syntactic Analysis

Generating Languages from Grammars

Ambiguous Grammars
Top-Down Parsers

Problems: Backtrack and Infinite Loops
Predictive Parsers

LL(k) Grammars
Predictive Parser Program
Constructing Predictive Parsing Tables

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Predictive Parser Architecture

A table-driven predictive parser has: an input buffer (Tokens returned from the
Lexical Analyzer), a stack (containing Grammar symbols), and a parsing table.

Input id + id $

Stack

X

Y

Z

$

Output
Predictive Parsing

Program

Predictive Parsing
Table

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Predictive Parser Program

We use a stack to keep track of pending non-terminals.

Initially the stack contains $S with S, the scope of the Grammar, on top, and
$ the input right-end marker.
Now, let X the symbol on top of the Stack and a the current Token in the
input. There are three possibilities:

1 If X = a = $, the parser halts successfully;
2 If X = a ̸= $, the parser pops X from the stack and advances the input pointer;
3 If X is a non-terminal, the parser checks the parser table M[X , a]:

If M[X , a] = error, then an error recovery is done;
If M[X , a] = {X → UVW }, then the parser replaces X on top of the stack by
UVW (with U on top for leftmost derivations).

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Predictive Parser Program: An Example

Consider the following LL(1) Grammar, obtained by eliminating the left
recursion from the non-ambiguos Grammar for arithmetic expressions:

E → TE ′

E ′ → +TE ′ | ϵ
T → FT ′

T ′ → ∗FT ′ | ϵ
F → id | (E)

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Predictive Parser Program: An Example (Cont.)

A predictive table for the Grammar is:
id + ∗ () $

E E → TE ′ E → TE ′

E ′ E ′ → +TE ′ E ′ → ϵ E ′ → ϵ
T T → FT ′ T → FT ′

T ′ T ′ → ϵ T ′ → ∗FT ′ T ′ → ϵ T ′ → ϵ
F F → id F → (E)

Where empty entries indicate an error situation.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Predictive Parser Program: An Example (Cont.)

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Predictive Parser Program: An Example (Cont.)

The moves with input "id + id * id" are:

Stack Input Output
$E id + id ∗ id$
$E ′T id + id ∗ id$ E → TE ′

$E ′T ′F id + id ∗ id$ T → FT ′

$E ′T ′id id + id ∗ id$ F → id
$E ′T ′ +id ∗ id$
$E ′ +id ∗ id$ T ′ → ϵ
$E ′T+ +id ∗ id$ E ′ → +TE ′

$E ′T id ∗ id$
$E ′T ′F id ∗ id$ T → FT ′

Stack Input Output
$E ′T ′id id ∗ id$ F → id
$E ′T ′ ∗id$
$E ′T ′F∗ ∗id$ T ′ → ∗FT ′

$E ′T ′F id$
$E ′T ′id id$ F → id
$E ′T ′ $
$E ′ $ T ′ → ϵ
$ $ E ′ → ϵ
$ $ ACCEPT

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Summary

Intro to Syntactic Analysis

Generating Languages from Grammars

Ambiguous Grammars
Top-Down Parsers

Problems: Backtrack and Infinite Loops
Predictive Parsers

LL(k) Grammars
Predictive Parser Program
Constructing Predictive Parsing Tables

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Constructing Predictive Parsing Tables

To build parsing tables we make use of two functions: first and follow.
Definition (first). Let α be the right side of a production for non-terminal A.
Then, first(α) is the set of Tokens that start a string generated by α:

∀a ∈ VT .a ∈ first(α) iff α⇒∗ aβ, with α, β ∈ V∗.
Furthermore, if α = ϵ or α⇒∗ ϵ, then ϵ ∈ first(α).

Given a non-terminal A, follow(A) is the set of Tokens, a, that can appear
immediately to the right of A in some sentential form.
Definition (follow).

follow(A) = {a ∈ VT | S ⇒∗ αAaβ,with α, β ∈ V∗}.
Note. There may have been symbols between A and a, but they derived ϵ and
disappeared.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Computing first

first(X), with X ∈ V: Apply the following rules until no more terminals (or ϵ) can
be added:

1 If X ∈ VT , then first(X) = {X}.
2 If X → ϵ is a production, then add ϵ to first(X).
3 If X → Y1Y2 . . .Yk is a production then:

Add a to first(X) if for some i we have:
a ∈ first(Yi), and ϵ ∈ first(Y1) ∩ . . . ∩ first(Yi−1).
If ϵ ∈ first(Yj), for all j = 1, . . . , k, then add ϵ to first(X).

Note 1. first(Y1) \ {ϵ} ⊆ first(X).
Note 2. If ϵ ̸∈ first(Y1), then we add nothing more to first(X).

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Computing first (Cont.)

Given any sequence X1X2 . . .Xn ∈ V∗, we compute first(X1X2 . . .Xn):
1 Add first(X1)− {ϵ} to first(X1X2 . . .Xn).
2 If ϵ ∈ first(X1), then:

Add first(X2)− {ϵ} to first(X1X2 . . .Xn); otherwise Stop.
3 If ϵ ∈ first(X2), then:

Add first(X3)− {ϵ} to first(X1X2 . . .Xn); otherwise Stop.
4 . . .

5 If ϵ ∈ first(Xj), for all j = 1, . . . , n, then add ϵ to first(X1X2 . . .Xn).

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Computing follow

Definition. follow(A) = {a ∈ VT | S ⇒∗ αAaβ,with α, β ∈ V∗}.
follow(A): For each non-terminal, A, apply the following rules until nothing more
can be added:

1 Add $ to follow(S) (if S is the scope, and $ is the input right endmarker);
2 For all productions Y → αAY1 . . .Yn (where, α ∈ V∗ and Yi ∈ V):

1 Add first(Y1)− {ϵ} to follow(A).
2 If ϵ ∈ first(Y1), then:

Add first(Y2)− {ϵ} to follow(A); otherwise Stop.
3 . . .
4 If ϵ ∈ first(Yn−1), then:

Add first(Yn)− {ϵ} to follow(A); otherwise Stop.
5 If ϵ ∈ first(Yn), then:

Add follow(Y) to follow(A).

Important: ϵ never belongs to follow!

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

first and follow: An Example

Consider the Grammar for arithmetic expression:

E → TE ′

E ′ → +TE ′ | ϵ
T → FT ′

T ′ → ∗FT ′ | ϵ
F → id | (E)

first(E) =first(T) =first(F) = {(, id}.
first(E ′) = {+, ϵ}.
first(T ′) = {∗, ϵ}.

follow(E) =follow(E ′) = {), $}
follow(T) =follow(T ′) = {+,), $}
follow(F) = {+, ∗,), $}.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Constructing Predictive Parsing Tables (Cont.)

The production A→ α, with a in first(α), is used if a is the lookahead symbol.

Problem. When ϵ ∈ first(α). Then, the production A→ α is used if the
lookahead is in follow(A).

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Constructing Predictive Parsing Tables (Cont.)

Algorithm. Input: Grammar, G. Output: Parsing Table, M.
1 For each production A→ α in G do:

1 For each terminal a in first(α), add A→ α to M[A, a].
2 If ϵ ∈ first(α), then for each terminal a in follow(A), add A→ α to M[A, a].
3 If ϵ ∈ first(α) and $ is in follow(A), add A→ α to M[A, $].

2 Make each undefined entry an error.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

LL(1) Grammars: Final Remarks

While a parsing table, M, can be constructed for every Grammar, for some
Grammar M may have multiple entries.

Definition. A Grammar whose predictive parsing table has no multiple entries
is said to be LL(1).

The Grammar for arithmetic expressions (once factored) is LL(1).

The left-factored Grammar for if-then-else is not LL(1): Ambiguous
Grammars are never LL(1).

Even the non ambiguous Grammar for if-then-else (the one with Matched
Vs. Unmatched statements) is not LL(1).

General Remark: There are no universal rules by which a Grammar can be
reduced to be LL(1)!!!

We need more powerful parsing techniques than predictive parsers.

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

Summary of Lecture VI—Part 1

Intro to Syntactic Analysis

Generating Languages from Grammars

Ambiguous Grammars
Top-Down Parsers

Problems: Backtrack and Infinite Loops
Predictive Parsers

LL(k) Grammars
Predictive Parser Program
Constructing Predictive Parsing Tables

Alessandro Artale Formal Languages and Compilers Lecture VI—Part 1: Syntactic Analysis

