
Formal Languages and Compilers
Lecture VI: Lexical Analysis

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science – POS Building, Room: 2.03

artale@inf.unibz.it

http://www.inf.unibz.it/∼artale/

Formal Languages and Compilers — BSc course

2019/20 – Second Semester

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Summary of Lecture VI

Lexemes and Tokens.

Lexer Representation: Regular Expressions (RE).

Implementing a Recognizer of RE’s: Automata.
Lexical Analyzer Implementation.

Breaking the Input in Substrings.
Dealing with conflicts.
Lexical Analyzer Architecture.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Lexical Analyzer

Lexical Analysis is the first phase of a compiler.

Main Task: Read the input characters and produce a sequence of Tokens
that will be processed by the Parser.

Upon receiving a “get-next-token” command from the Parser, the input is read
to identify the next token.

While looking for next token it eliminates comments and white-spaces.

Tokens are treated as Terminal Symbols in the Grammar for the source
program.

Source Program Lexical Analyzer Parser

Symbol Table

token

get-next-token

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Token Vs. Lexeme

In general, a set of input strings (Lexemes) give rise to the same Token. For
example:

Token Lexeme Description
var var language keyword
if if language keyword
then then language keyword
else else language keyword
while while language keyword
.

relation <,<=,=, <>,>,>= comparison operators
id position, A1, x, y, . . . sequence of letters and digits
num 14, 3.14, 6.02E23, . . . numeric constant

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Attributes for Tokens

When a Token can be generated by different Lexemes the Lexical Analyzer
must transmit also the Lexeme to the subsequent phases of the compiler.

Such information is specified as an Attribute associated to the Token.

Usually, the attribute of a Token is a pointer to the symbol table entry that
keeps information about the Token.

Important!

The Token influences parsing decisions: Parser relies on the token distinctions,
e.g., identifiers are treated differently than keywords;

The Attribute influences the semantic and code generation phase.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Attributes for Tokens: An Example

Example. Let us consider the following assignment statement:
E := M ∗ C ∗ ∗2

then the following pairs ⟨token,attribute⟩ are passed to the Parser:

⟨id, pointer to symbol-table entry for E⟩
⟨assign-op, ⟩
⟨id, pointer to symbol-table entry for M⟩
⟨mult-op, ⟩
⟨id, pointer to symbol-table entry for C⟩
⟨exp-op, ⟩
⟨num, integer value 2⟩.

Some Tokens have a null attribute: the Token is sufficient to identify the
Lexeme.

From an implementation point of view, each token is encoded as an integer
number.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Identifiers Vs. Keywords

Programming languages use fixed strings to identify particular Keywords–e.g.,
if, then, else, etc.

Since keywords are just identifiers the Lexical Analyzer must distinguish
between these two possibilities.

If keywords are reserved—not used as identifiers—we can initialize the
symbol-table with all the keywords and mark them as such.

Then, a string is recognized as an identifier only if it is not already in the
symbol-table as a keyword.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Summary

Lexemes and Tokens.

Lexer Representation: Regular Expressions (RE).

Implementing a Recognizer of RE’s: Automata.
Lexical Analyzer Implementation.

Breaking the Input in Substrings.
Dealing with conflicts.
Lexical Analyzer Architecture.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Main Objective

What we want to accomplish:

Given a way to describe Lexemes of the input language, automatically
generate the Lexical Analyzer.

This objective can be split in the following sub-problems:

1 Lexer specification language: How to represent Lexemes of the input
language.

2 The lexical analyzer mechanism: How to generate Tokens starting from
Lexeme representations.

3 Lexical analyzer implementation: Coding (1) + (2) + breaking inputs into
substrings corresponding to the pair Lexeme/Token.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Problem 1. Lexer Specification Language: Regular
Expressions

Regular Expressions are the most popular specification formalisms to describe
Lexemes and map them to Tokens.

Example. An identifier is made by a letter followed by zero or more letters or
digits:

letter (letter | digit)∗

The vertical bar | means “or”;
Parentheses are used to group sub-expressions;
The ∗ means zero or more occurrences.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Regular Expressions

Each Regular Expression, say R, denotes a Language, L(R). The following are the
rules to build them over an alphabet V:

1 If a ∈ V ∪ {ϵ} then a is a Regular Expression denoting the language {a};
2 If R,S are Regular Expressions denoting the Languages L(R) and L(S) then:

1 R | S is a Regular Expression denoting L(R) ∪ L(S);
2 RS is a Regular Expression denoting the concatenation L(R)L(S), i.e.

L(R)L(S) = {rs | r ∈ L(R) and s ∈ L(S)};
3 R∗ is a Regular Expression denoting L(R)∗, zero or more concatenations of

L(R), i.e. L(R)∗ =
∪∞

i=0 L(R)i ;
4 (R) is a Regular Expression denoting L(R).

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Regular Expressions: Examples

Example. Let V = {a, b}.
1 The Regular Expression a | b denotes the Language {a, b}.
2 The Regular Expression (a | b)(a | b) denotes the Language {aa, ab, ba, bb}.
3 The Regular Expression a∗ denotes the Language of all strings of zero or more

a’s, {ϵ, a, aa, aaa, . . .}.
4 The Regular Expression (a | b)∗ denotes the Language of all strings of a’s and

b’s.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Regular Expressions: Shorthands

Notational shorthands are introduced for frequently used constructors.
1 +, One or more instances. If R is a Regular Expression then R+ ≡ RR∗.
2 ?, Zero or one instance. If R is a Regular Expression then R? ≡ ϵ | R.
3 Character Classes. If a, b, . . . , z ∈ V then [a, b, c] ≡ a | b | c , and

[a − z] ≡ a | b | . . . | z .

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Regular Definitions

Regular Definitions are used to give names to regular Expressions and then to
re-use these names to build new Regular Expressions.

A Regular Definition is a sequence of definitions of the form:
D1 → R1

D2 → R2

. . .

Dn → Rn

Where each Di is a distinct name and each Ri is a Regular Expression over the
extended alphabet V ∪ {D1,D2, . . . ,Di−1}.
Note: Such names for Regular Expression will be often the Tokens returned
by the Lexical Analyzer. As a convention, names are printed in boldface.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Regular Definitions: Examples

Example 1. Identifiers are usually strings of letters and digits beginning with a
letter:

letter → A | B |. . . | Z | a | b | . . . | z
digit → 0 | 1 | · · · | 9

id → letter(letter | digit)∗

Using Character Classes we can define identifiers as:

id → [A− Za − z][A− Za − z0− 9]∗

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Regular Definitions: Examples (Cont.)

Example 2. Numbers are usually strings such as 5230, 3.14, 6.45E4, 1.84E-4.

digit → 0 | 1 | · · · | 9
digits → digit+

optional-fraction → (.digits)?
optional-exponent → (E(+ | −)?digits)?

num → digits optional-fraction optional-exponent

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Summary

Lexemes and Tokens.

Lexer Representation: Regular Expressions (RE).

Implementing a Recognizer of RE’s: Automata.
Lexical Analyzer Implementation.

Breaking the Input in Substrings.
Dealing with conflicts.
Lexical Analyzer Architecture.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Problem 2. The Lexical Analyzer Mechanism.
Finite Automata

We need a mechanism to recognize Regular Expressions and so associating
Tokens to Lexemes.
While Regular Expressions are a specification language, Finite Automata are
their implementation.

Given an input string, w , and a Regular Language, L, they answer “yes” if
w ∈ L and “no” otherwise.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Deterministic Finite Automata

A Deterministic Finite Automata, DFA for short, is a tuple: A = (S ,V, δ, s0,F):

S is a finite non empty set of states;

V is the input symbol alphabet;

δ : S × V→ S is a total function called the Transition Function;

s0 ∈ S is the initial state;

F ⊆ S is the set of final states.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Deterministic Finite Automata (Cont.)

To define when an Automaton accepts a string we extend the transition function,
δ, to a multiple transition function δ̂ : S × V∗ → S :

δ̂(s, ϵ) = s

δ̂(s, xa) = δ(δ̂(s, x), a); ∀x ∈ V∗,∀a ∈ V

A DFA accepts an input string, w , if starting from the initial state with w as
input the Automaton stops in a final state:

δ̂(s0,w) = f , and f ∈ F .

Language accepted by a DFA, A = (S ,V, δ, s0,F):

L(A) = {w ∈ V∗ | δ̂(s0,w) ∈ F}

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Transition Graphs

A DFA can be represented by Transition Graphs where the nodes are the
states and each labeled edge represents the transition function.

The initial state has an input arch marked start. Final states are indicated by
double circles.

Example. DFA that accepts strings in the Language L((a | b)∗abb).

0 1 2 3
start a b b

b b

a

a

a

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Transition Table

Transition Tables implement transition graphs, and thus Automata.

A Transition Table has a row for each state and a column for each input
symbol.

The value of the cell (si , aj) is the state that can be reached from state si with
input aj .

Example. The table implementing the previous transition graph will have 4
rows and 2 columns, let us call the table δ, then:

δ(0, a) = 1 δ(0, b) = 0
δ(1, a) = 1 δ(1, b) = 2
δ(2, a) = 1 δ(2, b) = 3
δ(3, a) = 1 δ(3, b) = 0

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Summary

Lexemes and Tokens.

Lexer Representation: Regular Expressions.

Implementing a Recognizer of RE’s: Automata.
Lexical Analyzer Implementation.

Breaking the Input in Substrings.
Dealing with conflicts.
Lexical Analyzer Architecture.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Main Objective

What we want to accomplish:

Given a way to describe Lexemes of the input language, automatically
generate the Lexical Analyzer.

This objective can be split in the following sub-problems:

1 Lexer specification language: How to represent Lexemes of the input
language (Regular Expressions).

2 The lexical analyzer mechanism: How to generate Tokens starting from
Lexeme representations (Side-Effect of Automata recognition process).

3 Lexical analyzer implementation: Coding (1) + (2) + breaking inputs into
substrings corresponding to the pair Lexeme/Token.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Lexical Analyzer Implementation

Given that the source program is just a single string, the Lexical Analyzer
must do two things:

1 Breaking the input string by recognizing substrings corresponding to Lexemes;
2 Return the pair ⟨Token, Attribute⟩ for each Lexeme.

Compare this procedure to Automata:
1 Automata accept or reject a string, they do not “brake” it.
2 We need to do more than just implement an Automaton.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Lexical Analyzer Implementation (Cont.)

The goal is to partition the source program into Lexemes which is implemented by:

1 Reading left-to-right, recognizing one lexeme at a time.
2 To “brake” an input string we need to solve conflicts. E.g., pos Vs. position

as identifiers.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Summary

Lexemes and Tokens.

Lexer Representation: Regular Expressions.

Implementing a Recognizer of RE’s: Automata.
Lexical Analyzer Implementation.

Breaking the Input in Substrings.
Dealing with conflicts.
Lexical Analyzer Architecture.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Dealing with Conflicts

There are two possible conflicts:

Case 1. The same Lexeme is recognized by two different RE’s.

Case 2. The same RE can recognize portion of a Lexeme.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Dealing with Conflicts (Case 1)

Let’s assume we have the following RE’s:

R1 → abb
id → letter(letter | digit)∗

The Lexeme “abb” matches both R1 and id.

Solution: Ordering between RE’s. If ′′a1 . . . a′′n ∈ L(Rj) and
′′a1 . . . a′′n ∈ L(Rk) we use the RE listed first (j , if j < k).

Remark. To distinguish between keywords and identifiers insert the regular
expression for keywords before the one for identifiers.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Dealing with Conflicts (Case 2)

Let’s consider the RE for Identifiers and the string ”position”:

id→ letter(letter | digit)∗

“p” matches id;

“po” matches id;

. . .;

“position” matches id.

Solution: Maximal Lexemes. The lexeme for a given token must be maximal.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Maximal Lexemes Strategies (1)

Solution 1. Use Automata with Lookahead.

Example: Automaton for id with lookahead.

0 1 2
∗start letter other

letter

digit

The label other refers to any character not indicated by any other edge living
the node;

The ∗ indicates that we read an extra character and we must retract the
forward input pointer by one character.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Maximal Lexemes Strategies (2)

Solution 2. Change the response to non-acceptance.

Don’t stop when reaching an accepting state;

When failure occurs revert back to the last accepting state.

This technique is the preferred one—used also by Lex.

Example: Automaton for numbers:

0 1 2 3 4 5 6
start digit . digit e + digit

digit digit digit

e digit

-

Try with the following input: “61.23Express”.
Exercise. Modify the above Automaton to comply with the Lookahead technique.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Conflict Resolution in Lex

When several possible lexemes of the input match one or more RE’s:

1 Always prefer a longer lexeme.
2 If the longest lexeme is matched by two or more RE’s prefer the RE listed first.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Summary

Lexemes and Tokens.

Lexer Representation: Regular Expressions.

Implementing a Recognizer of RE’s: Automata.
Lexical Analyzer Implementation.

Breaking the Input in Substrings.
Dealing with conflicts.
Lexical Analyzer Architecture.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

From Regular Expressions to Lexical Analyzers

1 For each Token write the associated Regular Expression;
2 Build the Automaton for each Regular Expression;
3 Combine all the Automata (Ai) into a single big Automaton adding a new

start state with ϵ-transitions (ϵ-NFA) to each of the start states of the Ai

Automata.
4 Read the input to map Lexemes into Tokens till we successfully read the whole

input or the Automaton fails without recognizing the input left (case of
Lexical error).

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Lexical Analyzer Example

Consider the following Regular Expressions:

R1 → a
R2 → abb
R3 → a∗b+

Construct the Automaton and consider as input ”abb”.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Lexical Analyzer Example (Cont.)

Single NFA Automaton.

0 1 2 3 4

5 6

7 8

start ϵ a b b

ϵ

ϵ

a

a

b

b

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Reading the Input

The lexical analysis is the only phase that reads the input.

Such reading can be time consuming: It is necessary to adopt efficient
buffering techniques (see the book, Chapter 3.2, for more details).

Two pointers, begin and forward, to the input buffer are maintained.

The begin pointers always points at the beginning of the lexeme to be
recognized.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Lexical Analyzer Architecture

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Breaking the Input into Lexemes

Two pointers, begin and forward, to the input buffer are maintained:
1 Initially, both pointers point to the first character of the Lexeme to be found;
2 The forward pointer scans ahead the input until there are no more next states

in the Automaton—we are sure that the longest lexeme has been found.
3 We go back in the sequence of set of states (assuming the Automaton is NFA)

till we find a set that contains one or more accepting states, otherwise fail.
4 If there are more accepting states prefer the state associated with the RE listed

first.
5 When the Lexeme is successfully processed transmit the token and its attribute

to the parser, and set both pointers to the next character immediately past the
Lexeme.

6 If there are no more input characters then succeed else go to point 1.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

Summary of Lecture VI

Lexemes and Tokens.

Lexer Representation: Regular Expressions.

Implementing a Recognizer of RE’s: Automata.
Lexical Analyzer Implementation.

Breaking the Input in Substrings.
Dealing with conflicts.
Lexical Analyzer Architecture.

Alessandro Artale Formal Languages and Compilers Lecture VI: Lexical Analysis

