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Summary of Lecture IV

Regular Expressions (RE).

Implementing a Recognizer of RE’s: Automata.

Deterministic Finite Automata (DFA).

Nondeterministic Finite Automata (NFA).

From Regular Expressions to NFA.

ϵ-NFA: NFA with ϵ Transitions.

From NFA to DFA.
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Type 3, Regular Grammars

Regular Grammars, also called Type 3 Grammars, are formal Grammars, G=

(VT,VN,S,P), such that all productions in P respect the following condition:

Type 3. A→ aB, or A→ a
with A,B ∈ VN and a ∈ VT.
Furthermore, a rule of the form:

S→ ϵ
is allowed if S does not appear on the right side of any rule.

The above define the Right-Regular Grammars. The following

Productions:

A→ Ba, or A→ a
define Left-Regular Grammars.

Right-Regular and Left-Regular Grammars define the same set of

Languages.

Regular Grammars are commonly used to define the lexical structure of

programming languages.
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Regular Expressions

Each Regular Expression, say R, denotes a Language, L(R). The following
are the rules to build them over an alphabet V:

1 If a ∈ V ∪ {ϵ} then a is a Regular Expression denoting the language {a};
2 If R,S are Regular Expressions denoting the Languages L(R) and L(S)
then:

1 R | S is a Regular Expression denoting L(R) ∪ L(S);
2 R · S is a Regular Expression denoting the concatenation L(R) · L(S), i.e.,
L(R) · L(S) = {r · s | r ∈ L(R) and s ∈ L(S)};

3 R∗ (Kleen closure) is a Regular Expression denoting L(R)∗, zero or more
concatenations of L(R), i.e., L(R)∗ =

∪∞
i=0 L(R)

i—where L(R)0 = {ϵ};
4 (R) is a Regular Expression denoting L(R).

Precedence of Operators: ∗ > · > |
E | F · G ∗ = E | (F · (G ∗))
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Regular Expressions: Examples

Example. Let V = {a, b}.
1 The Regular Expression a | b denotes the Language {a, b}.
2 The Regular Expression (a | b)(a | b) denotes the Language
{aa, ab, ba, bb}.

3 The Regular Expression a∗ denotes the Language of all strings of zero or

more a’s, {ϵ, a, aa, aaa, . . .}.
4 The Regular Expression (a | b)∗ denotes the Language of all strings of a’s
and b’s.
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Regular Expressions: Shorthands

Notational shorthands are introduced for frequently used constructors.

1 +: One or more instances. If R is a Regular Expression then R+ ≡ RR∗.
2 ?: Zero or one instance. If R is a Regular Expression then R? ≡ ϵ | R.
3 Character Classes. If a, b, . . . , z ∈ V then [a, b, c] ≡ a | b | c, and

[a − z ] ≡ a | b | . . . | z .
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Regular Definitions

Regular Definitions are used to give names to regular Expressions and

then to re-use these names to build new Regular Expressions.

A Regular Definition is a sequence of definitions of the form:

D1 → R1
D2 → R2
. . .

Dn → Rn
Where each Di is a distinct name and each Ri is a Regular Expression

over the extended alphabet V ∪ {D1,D2, . . . ,Di−1}.
Note: Such names for Regular Expression will be often the Tokens

returned by the Lexical Analyzer. As a convention, names are printed in

boldface.
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Regular Definitions: Examples

Example 1. Identifiers are usually strings of letters and digits beginning with a

letter:

letter → A | B |. . . | Z | a | b | . . . | z
digit → 0 | 1 | · · · | 9
id → letter(letter | digit)∗

Using Character Classes we can define identifiers as:

id → [A− Za − z ][A− Za − z0− 9]∗
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Regular Definitions: Examples (Cont.)

Example 2. Numbers are usually strings such as 5230, 3.14, 6.45E4, 1.84E-4.
digit → 0 | 1 | · · · | 9
digits → digit+

optional-fraction → (.digits)?
optional-exponent → (E(+ | −)?digits)?

num → digits optional-fraction optional-exponent
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Regular Expressions VS. Regular Grammars

Languages captured by Regular Expressions could be captured by Regular

Grammars (Type 3 Grammars).

Regular Expressions are a notational variant of Regular Grammars:

Usually they give a more compact representation.

Example. The Regular Expression for numbers can be captured by a

Regular Grammar with the following Productions (Num is the scope and

digit is a terminal symbol):
Num → digit | digit Z
Z → digit | digit Z | . Frac-Exp | E Exp-Num

Frac-Exp → digit | digit Frac-Exp | digit Exp
Exp → E Exp-Num

Exp-Num → +Digits | −Digits | digit | digit Digits
Digits → digit | digit Digits
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Summary

Regular Expressions.

Implementing a Recognizer of RE’s: Automata.

Deterministic Finite Automata (DFA).

Nondeterministic Finite Automata (NFA).

From Regular Expressions to NFA.

ϵ-NFA: NFA with ϵ Transitions.

From NFA to DFA.
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Finite Automata

We need a mechanism to recognize Regular Expressions.

While Regular Expressions are a specification language, Finite Automata
are their implementation.

Given an input string, x , and a Regular Language, L, they answer “yes” if

x ∈ L and “no” otherwise.
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Deterministic Finite Automata

A Deterministic Finite Automata, DFA for short, is a tuple:

A = (S,V, δ, s0,F ):

S is a finite non empty set of states;

V is the input symbol alphabet;

δ : S × V→ S is a total function called the Transition Function;
s0 ∈ S is the initial state;
F ⊆ S is the set of final states.

Alessandro Artale Formal Languages and Compilers Lecture IV: Regular Languages and Finite Automata



Transition Graphs

A DFA can be represented by Transition Graphs where the nodes are the

states and each labeled edge represents the transition function.

The initial state has an input arch marked start.

Final states are indicated by double circles.

Example. DFA that accepts strings in the Language L((a | b)∗abb).

0 1 2 3
start a b b

b
b

a

a

a
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Transition Table

Transition Tables implement transition graphs, and thus Automata.

A Transition Table has a row for each state and a column for each input

symbol.

The value of the cell (si , aj) is the state that can be reached from state
si with input aj .

Example. The table implementing the previous transition graph will have

4 rows and 2 columns, let us call the table δ, then:
δ(0, a) = 1 δ(0, b) = 0
δ(1, a) = 1 δ(1, b) = 2
δ(2, a) = 1 δ(2, b) = 3
δ(3, a) = 1 δ(3, b) = 0
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DFA: An Example

Example. NFA that accepts strings in the Language L((a | b)∗abb).

0 1 2 3
start a b b

b
b

a

a

a

a b

→ 0 1 0

1 1 2

2 1 3

∗3 1 0
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Deterministic Finite Automata Vs. Languages

To define when an Automaton accepts a string we extend the transition

function, δ, to a multiple transition function δ̂ : S × V∗ → S:

δ̂(s, ϵ) = s

δ̂(s, xa) = δ(δ̂(s, x), a); ∀x ∈ V∗,∀a ∈ V

A DFA accepts an input string, w , if starting from the initial state with w as

input the Automaton stops in a final state:

δ̂(s0,w) = f , and f ∈ F .

Language accepted by a DFA, A = (S,V, δ, s0,F ):

L(A) = {w ∈ V∗ | δ̂(s0,w) ∈ F}
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Summary

Regular Expressions.

Implementing a Recognizer of RE’s: Automata.
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Nondeterministic Finite Automata

A Finite Automaton is said Nondeterministic if we could have more than one

transition with a given input symbol.

A Nondeterministic Finite Automata, NFA, is a tuple: A = (S,V, δ, s0,F ):

S is a finite non empty set of states;

V is the input symbol alphabet;

δ : S × V→ 2S is a total function called the Transition Function;
s0 ∈ S is the initial state;
F ⊆ S is the set of final states.

Note 1. Values in Transition Tables for NFA will be set of states.

Note 2. δ(s, a) may be the empty set, i.e., the NFA makes no transition on
that input.
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NFA: An Example

Given an input string and an NFA there will be, in general, more then one

path that can be followed: An NFA accepts an input string if there is at least

one path ending in a final state.

Example. NFA that accepts strings in the Language L((a | b)∗abb).

0 1 2 3
start a b b

b

a

Exercise. Check that δ(0, aaabb) is accepted by the above NFA.
Given an input, w , we can represent the computation of a NFA as a tree of

possible execution, and check for acceptance looking for at least one path

that ends in a final state.
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NFA: An Example (cont.)

Example. NFA that accepts strings in the Language L((a | b)∗abb).

0 1 2 3
start a b b

b

a

a b

→ 0 {0, 1} {0}
1 ∅ {2}
2 ∅ {3}
∗3 ∅ ∅
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Nondeterministic Finite Automata (Cont.)

To formally define when an NFA accepts a string we extend the transition

function, δ, to the domain S × V∗:

δ̂(s, ϵ) = {s}
δ̂(s, xa) =

∪
si∈δ̂(s,x) δ(si , a); ∀x ∈ V

∗, ∀a ∈ V

An NFA accepts an input string, w , if starting from the initial state with w

as input the Automaton reaches a final state:

∃s.s ∈ δ̂(s0,w), and s ∈ F .

Language accepted by a NFA, A = (S,V, δ, s0,F ):

L(A) = {w ∈ V∗ | δ̂(s0,w) ∩ F ̸= ∅}
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DFA Vs. NFA

Both DFA and NFA are capable of recognizing all Regular

Languages/Expressions:

L(NFA) = L(DFA)

The main difference is a Space Vs. Time tradeoff:

DFA are faster than NFA;

DFA are bigger (exponentially larger) than NFA.
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Summary

Regular Expressions.

Implementing a Recognizer of RE’s: Automata.

Deterministic Finite Automata (DFA).

Nondeterministic Finite Automata (NFA).

From Regular Expressions to NFA.

ϵ-NFA: NFA with ϵ Transitions.

From NFA to DFA.
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From Regular Expressions to NFA (1)

The algorithm that generates an NFA for a given Regular Expression

(RE) is guided by the syntactic structure of the RE.

Given a RE, say r , the Thompson’s construction generates an NFA

accepting L(r).

The Thompson’s construction is a recursive procedure guided by the

structure of the regular expression.
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From Regular Expressions to NFA (2)

The NFA resulting from the Thompson’s construction has important

properties:

1 It is an ϵ-NFA: The automaton can make a transition without consuming

an input symbol—the automaton can non-deterministically change state;

2 It has exactly one final state;

3 No edge enters the start state;

4 No edge leaves the final state.
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From Regular Expressions to NFA (3)

Notation: if r is a RE then N(r) is its NFA with transition graph:

N(r)

Algorithm RE to NFA: Thompson’s Construction

1 For ϵ, the NFA is

i f
start ϵ

Where i is the new start state and f the new final state.

2 For a ∈ V, the NFA is

i f
start a

Where i is the new start state and f the new final state.
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From Regular Expressions to NFA (4)

3 Suppose now that N(s) and N(t) are NFA’s then

1 For RE s | t, the NFA is

i

N(s)

N(t)

f
start

ϵ

ϵ

ϵ

ϵ

Where i and f are the new starting and accepting states, respectively.
2 For RE st, the NFA is

N(s) fN(t)
start

Where the start state of N(s) is the start state of the new NFA, the final
state of N(t) is the final state of the new NFA, the final state of N(s) is
merged with the initial state of N(t).
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From Regular Expressions to NFA (5)

3 (Cont.)

3 For RE s∗, the NFA is

i N(s) f
start ϵ

ϵ

ϵ

ϵ

Where i is the new start state and f the new final state.
4 For RE (s) use the same NFA as N(s).
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From Regular Expressions to NFA (6)

Remarks.

Every time we insert new states we introduce a new name for them to

maintain all the states distinct.

Even if a symbol appears many times we construct a new NFA for each

instance.
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RE to NFA: An Example

Exercise. Build the NFA for the RE (a | b)∗abb.
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Summary

Regular Expressions.

Implementing a Recognizer of RE’s: Automata.

Deterministic Finite Automata (DFA).

Nondeterministic Finite Automata (NFA).

From Regular Expressions to NFA.

ϵ-NFA: NFA with ϵ Transitions.

From NFA to DFA.
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NFAs with ϵ-Transitions

We can allow state-to-state transitions on ϵ input.

These transitions are done spontaneously, without looking at the input

string.

Useful to compose NFA’s (as showed in the Thompson-construction).

A convenience at times, but still only regular languages are accepted.

Note: See also Prof. J. Ullman slides.
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NFAs with ϵ-Transitions (cont.)

An ϵ-NFA is a tuple: Aϵ = (S,V, δ, s0,F ), where S,V, s0,F are as for an NFA,
and:

δ : S × (V ∪ {ϵ})→ 2S
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ϵ-closure

Definition [ϵ-closure]. For s ∈ S, ϵ-closure(s) is the set of all states
reachable from s using a sequence of ϵ-moves.

Inductive Definition.

Base. s ∈ ϵ-closure(s);
Induction. If q ∈ ϵ-closure(s) and q′ ∈ δ(q, ϵ), then, q′ ∈ ϵ-closure(s).

We can extend this notion to set of states, Q ⊆ S:

ϵ-closure(Q) =
∪
qi∈Q

ϵ-closure(qi)
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Extended Delta for ϵ-NFA

We need to define δ̂(s,w), for w ∈ V∗:

Base: δ̂(s, ϵ) = ϵ-closure(s).

Induction: δ̂(s, x ·a) =
∪
si∈δ̂(s,x) ϵ-closure(δ(si , a)).

Intuition: δ̂(s,w) is the set of all states reachable from s along paths whose
labels on arcs, apart from ϵ-labels, yield w .

Note: The Language recognized by an ϵ-NFA is still defined in the same way

as for NFA:

L(Aϵ) = {w ∈ V∗ | δ̂(s0,w) ∩ F ̸= ∅}
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Equivalence of NFA and ϵ-NFA

Every NFA is an ϵ-NFA: It just has no transitions on ϵ.

Converse: It requires us to take an ϵ-NFA and construct an NFA that

accepts the same language.

See Lecture Notes by J. Ullman for transforming an ϵ-NFA into an NFA.
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Equivalence of NFA and ϵ-NFA (cont.)

Let Aϵ = (S,V, δϵ, s0,F ), the equivalent NFA, AN = (S,V, δN , s0,F
′), is as

follows.

We compute δN(s, a) as follows:
1 δN(s, a) =

∪
si∈ϵ-closure(s) δϵ(si , a).

F ′ is the set of states s ∈ S such that ϵ-closure(s) contains a state of F .
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From NFA to DFA

NFA are hard to simulate with a computer program.

1 There are many possible paths for a given input string caused by the

nondeterminism;
2 The acceptance condition says that there must be at least one path

ending with a final state;
3 We may need to find all the paths before accepting/excluding a string

(BackTracking).

To map an NFA into an equivalent DFA we use the so called Subset

Construction.

Main Idea: Each DFA state corresponds to a set of NFA states, thus

encoding all the possible states an NFA could reach after reading an

input symbol.
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From NFA to DFA: Subset Construction

The Subset Construction transforms an NFA to an equivalent DFA.

Definition. [NFA to DFA]

Let NFA = (SN ,V, δN , s0,FN) then the equivalent DFA = (SD ,V, δD , s
′
0,FD)

where:

SD = 2SN ;

s ′0 = {s0};
FD is the set of states in SD containing at least one element from FN ;

δD({s1, . . . , sn}, a) = {q1, . . . , qm}
iff {q1, . . . , qm} =

∪
si∈{s1,...,sn}

δN(si , a).
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ϵ-NFA to NFA to DFA: Exercise

0 1

2 3

4 5

6 7 8 9 10
start ϵ

ϵ

a

ϵ

b

ϵ

ϵ

ϵ a b b

ϵ

ϵ
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