Lecture III:
Normal Forms and Properties for CFL" s

Eliminating Useless Variables
Removing Epsilon
Removing Unit Productions
Chomsky Normal Form
Properties of CFL's
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Useless Symbols
We say that X € Vy is useful if;

S="aXi=""w
withw € Vr*and a, 3 € V*

A symbol is useless if 1t does not participate in any derivation and can be

eliminated.
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Useless Symbols (cont.)

e X € Vy is generating if:
X =% w, for w e Vt*

e X € Vp isreachable if:

S ="aXg, for a,3 € V*

Definition. We say that a symbol X is useful if it is both generating and

reachable.



Variables That Derive Nothing
"Non-Generating”

& Consider: S -> AB
A->aA | a
B->AB

¢ Although A derives all strings of a’ s, B
derives no terminal strings (can you
prove this fact?).

®Thus, S derives nothing, and the
language is empty.



Testing Whether a Variable
Derives Some Terminal String

#Basis: If there is a production A -> w,
where w has no variables, then A
derives a terminal string.

¢ Induction: If there is a production
A -> o, where o consists only of
terminals and variables known to derive
a terminal string, then A derives a
terminal string.



Eliminating Non-Generating Symbols

To eliminate Non-Generating Symbols we need to:
@ Compute the set H of generating symbols, and then

@ Eliminate all productions containing a symbol in NG =V \ H (set of
Non-Generating symbols).

GENERATING-SYMBOLS(G)
H =V,
while there is a change in H do
for each production A — X1 ... Xk in P do
if {Xi,..., X} C H then
L | H=HU{A}L

return H



Testing — (2)

¢ Eventually, we can find no more
variables.

# An easy induction on the order in which
variables are discovered shows that
each one truly derives a terminal string.

# Conversely, any variable that derives a
terminal string will be discovered by this
algorithm.

4



Proof of Converse

# The proof is an induction on the height
of the least-height parse tree by which
a variable A derives a terminal string.

#Basis: Height = 1. Tree looks like:
¢ Then the basis of the algorithm @) ... (@)
tells us that A will be discovered.



Induction for Converse

® Assume IH for parse trees of height <
h, and suppose A derives a terminal
string via a parse tree of height

h:
#By IH, those X’ s that are % 4 %
Wy Wh

variables are discovered.

¢ Thus, A will also be discovered, because
it has a right side of terminals and/or
discovered variables.



Algorithm to Eliminate
Non-Generating Variables

1. Discover all variables that derive
terminal strings.

2. For all other variables, remove all
productions in which they appear
either on the left or the right.



. Eliminate Variables
S->AB
A->aA | a
B -> bB
C->cC
¢ Basis: A and C are identified because
of A->aand C->c.

¢ Induction: S is identified because of
S ->C.

¢ Nothing else can be identified.
2 :S->C,A->aA |3, C->c
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Unreachable Symbols

4 Another way a terminal or variable
deserves to be eliminated is if it cannot
appear in any derivation from the start
symbol.

#Basis: We can reach S (the start symbol).

¢ [nduction: if we can reach A, and there is
a production A -> o, then we can reach all
symbols of a.
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Eliminating Non-Reachable Symbols

To eliminate Non-Reachable Symbols we need to:
@ Compute the set R of reachable symbols, and then

@ Eliminate all productions containing a symbol in NR = Vy \ R (set of
Non-Reachable symbols).

REACHABLE-SYMBOLS(G)

R = {S};

while there is a change in R do
for each production A — X1 ... Xk in P do
L if A€ R then

return R



Unreachable Symbols — (2)

# Easy inductions in both directions show

that w
symbo
symbo

\ 4

nen we can discover no more
s, then we have all and only the

s that appear in derivations from S.
: Remove from the grammar all

symbols not discovered reachable from S
and all productions that involve these
symbols.
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Eliminating Useless Symbols

¢ A symbol is useful if it appears in
some derivation of some terminal
string from the start symbol.

& Otherwise, it is useless.
Eliminate all useless symbols by:
1. Eliminate non-generating symbols;
2. Eliminate unreachable symbols.
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: Useless Symbols — (2)

S->AB |Db
A->C
C->cC
B -> bB

¢ If we eliminated unreachable symbols
first, we would find everything is
reachable.

¢A, C, and c would never get eliminated.



Why It Works

¢ After step (1), every symbol remaining
derives some terminal string.

¢ After step (2) the only symbols
remaining are all derivable from S.

¢ In addition, they still derive a terminal
string, because such a derivation can
only involve symbols reachable from S.
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Epsilon Productions

¢ We can almost avoid using productions of
the form A -> € (called e-productions ).

D The problem is that € cannot be in the

language of any grammar that has no €—
productions.

: If L is a CFL, then L-{€} has a
CFG with no e-productions.
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Nullable Symbols

¢ To eliminate e-productions, we first
need to discover the nullable variables
= variables A such that A =>* €.

#Basis: If there is a production A -> €,
then A is nullable.

¢ Induction: If there is a production
A -> o, and all symbols of o are
nullable, then A is nullable.
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Compute Nullable Symbols

The following algorithm computes the set N of nullable symbols.

NULLABLE-SYMBOLS(G)

N=0;
for each production A — ¢ in P do
| N=NU{A}

while there is a change in N do
for each production A — Xi... X, in P do
L if {X1,..., X} C N then

return N



: Nullable Symbols

S->AB,A->aA | € B->bB|A
& Basis: A is nullable because of A -> €.

¢ Induction: B is nullable because of
B-> A.

#®Then, S is nullable because of S -> AB.
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Proof of Nullable-Symbols
Algorithm

® The proof that this algorithm finds all
and only the nullable variables is very
much like the proof that the algorithm
for symbols that derive terminal strings
works.

# Do you see the two directions of the
proof?

¢ On what is each induction?
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Eliminating e-Productions

4 : turn each production
A-> X;..X,Into a
® For of nullable X’ s, there is

one production with those eliminated

from the right side “in advance.”
D Except, if all X’ s are nullable, do not make
a production with € as the right side.

Finally, eliminate all e-Productions except
the one for S. 13



Example: Eliminating e-
Productions

S->ABC,A->aA |, B->bB|€, C->¢€
®A, B, C, and S are all nullable.
¢ New grammar:

S->ABS | AB |-AS|B&| A | B F&<

A->aA | a

B->bB|Db

Note: Cis now useless.
Eliminate its productions.
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Why it Works

¢ Prove that for all variables A:
1. Ifw=eand A=>*,w, then A =>*__ w.
2. IfA=>*_,wthenw =€ and A =>*_, W.

¢ Then, letting A be the start symbol
proves that L(new) = L(old) — {€}.
¢ (1) is an induction on the number of

steps by which A derives w in the old
grammar.
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Proof of 1 — Basis

¢ If the old derivation is one step, then
A -> w must be a production.

#Since w = €, this production also
appears in the new grammar.

®Thus, A=>__, W.
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Proof of 1 — Induction

®Let A =>*_, w be an n-step derivation,
and assume the IH for derivations of
less than n steps.

¢ Let the first step be A =>4 X;...X...
¢ Then w can be broken into w = w;..w,,

®where Xi =>*_, w, for all i, in fewer
than n steps.
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Induction — Continued

®By the IH, if w; = €, then X, =>*__ W

.

#Also, the new grammar has a
production with A on the left, and just
those X." s on the right such that w, = €.

D : they all can’ t be €, because w = €.

¢ Follow a use of this production by the
derivations X; =>*__ w. to show that A
derives w in the new grammar.
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Proof of Converse

# We also need to show part (2) — if w is
derived from A in the new grammar,
then it is also derived in the old.

¢ Induction on number of steps in the
derivation.

¢ We' |l leave the proof for reading in the
text.
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Unit Productions

® A unit production A -> B, with B € V.
# These productions can be eliminated.
1.

- Remove e-productions

- If A =>* B by a series of unit
productions, and B -> a is a non-unit-
production, then add production A -> a

¢ Then, drop all unit productions.
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Unit Productions (cont.)

To check that A =" B, by a series of unit productions, note that:

@ Since we have not e-predictions then A =* B iff:
A=B =B =...=B1=B=1B

@ Each single derivation, B; = Bj.1 must correspond to a unit production
B — B,‘+1 in P.

@ We can construct the Graph of Unit Productions and check whether B is
reachable from A:

@ There is a node for each symbol in Vy;
e There is an edge (X, Y) in the graph if the unit production X — Y is in P.



Cleaning Up a Grammar

& Theorem: if L is a CFL, then there is a
CFG for L — {€} that has:

1. No useless symbols.
2. No e-productions.
3. No unit productions.

¢ I.e,, every right side is either a single
terminal or has length > 2.
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Cleaning Up — (2)

¢ Proof: Start with a CFG for L.
¢ Perform the following steps in order:

1.
2.
3.

Eliminate e-productions.
Eliminate unit productions.

Eliminate variables that derive™o
terminal string.

Eliminate variables not reached fromthe
start symbol.
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Chomsky Normal Form

¢ A CFG is said to be in Chomsky
Normal Form if every production is of
one of these two forms:

1. A -> BC (right side is two variables).
2. A -> a (right side is a single terminal).
¢ Theorem: If Lis a CFL, then L —{€}
has a CFG in CNF.
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Summary of Decision Properties

¢ As usual, when we talk about “a CFL”
we really mean “a representation for
the CFL, e.g., a CFG or a PDA (Push-
Down Automata) accepting by final
state or empty stack.

¢ There are algorithms to decide if:
1. String w is in CFL L: Parsers.

2. CFL L is empty: Check if S is useless.
3. CFL L is infinite. 37



Non-Decision Properties

# Many questions that can be decided for
regular languages cannot be decided for
CFL’ s.

& : Are two CFL’ s the same?
. : Are two CFL’ s disjoint?

# Need theory of Turing machines and
decidability to prove no algorithm exists.
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Closure Properties of CFL" s

¢ CFL’ s are closed under union,
concatenation, and Kleene closure.

€ But not under intersection or difference.
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Closure of CFL’ s Under Union

¢Let L and M be CFL’ s with grammars G
and H, respectively.

¢ Assume G and H have no variables in
common.

D Names of variables do not affect the
language.
®Let S, and S, be the start symbols of G
and H.
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Closure Under Union — (2)

¢ Form a new grammar for L U M by
combining all the symbols and
productions of G and H.

¢ Then, add a new start symbol S.
¢ Add productions S -> S, | S..
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Closure Under Union — (3)

4 In the new grammar, all derivations
start with S.

¢ The first step replaces S by either S, or
S,.
® In the first case, the result must be a

string in L(G) = L, and in the second
case a string in L(H) = M.
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Closure of CFL’ s Under
Concatenation

¢Let L and M be CFL’ s with grammars G
and H, respectively.

¢ Assume G and H have no variables in
common.

®Let S, and S, be the start symbols of G
and H.
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Closure Under Concatenation — (2)

¢®Form a new grammar for LM by starting
with all symbols and productions of G
and H.

4 Add a new start symbol S.
¢ Add production S -> S,S..

® Every derivation from S results in a
string in L followed by one in M.
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Closure Under Kleen Closure
(Star)

¢ Let L have grammar G, with start symbol S,.

¢ Form a new grammar for L* by introducing
to G a new start symbol S and the
productions S -> S,S | €.

# A derivation from S generates a sequence of
zero or more S, s, each of which generates
some string in L.
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Nonclosure Under Intersection

¢ Unlike the regular languages, the class of
CFL’ s is not closed under N.

®We know that L, = {0"1"2" | n > 1} is
not a CFL (use the pumping lemma).
¢®However, L, ={0"1"2' | n>1,i> 1} is.
» CFG: S-> AB,A->0A1|01,B->2B| 2.
®Soisl; ={01"2" | n>1,i>1}.
¢ButlL, =L, N Ls.
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Nonclosure Under Difference

¢ We can prove something more general:

D Any class of languages that is closed under
difference is closed under intersection.

®Proof: LN M=L-(L—-M).

¢ Thus, if CFL' s were closed under
difference, they would be closed under
intersection, but they are not.
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