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Useless Symbols

We say that X ∈ VN is useful if:

S ⇒
∗ αXβ ⇒

∗ w

with w ∈ VT
∗ and α, β ∈ V

∗

A symbol is useless if it does not participate in any derivation and can be

eliminated.
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Useless Symbols (cont.)

• X ∈ VN is generating if:

X ⇒
∗ w, for w ∈ VT

∗

• X ∈ VN is reachable if:

S ⇒
∗ αXβ, for α, β ∈ V

∗

Definition. We say that a symbol X is useful if it is both generating and

reachable.
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Variables That Derive Nothing 
“Non-Generating” 

 Consider: S -> AB
A -> aA | a 
B -> AB 

 Although A derives all strings of a’s, B
derives no terminal strings (can you
prove this fact?).

 Thus, S derives nothing, and the
language is empty.
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Testing Whether a Variable 
Derives Some Terminal String 
 Basis: If there is a production A -> w,

where w has no variables, then A
derives a terminal string.

 Induction: If there is a production
A -> α, where α consists only of
terminals and variables known to derive
a terminal string, then A derives a
terminal string.



Eliminating Non-Generating Symbols

To eliminate Non-Generating Symbols we need to:
1 Compute the set H of generating symbols, and then
2 Eliminate all productions containing a symbol in NG = VN \ H (set of

Non-Generating symbols).

GENERATING-SYMBOLS(G)
H = VT;
while there is a change in H do

for each production A→ X1 . . .Xk in P do
if {X1, . . . ,Xk} ⊆ H then

H = H ∪ {A};

return H
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Testing – (2) 

 Eventually, we can find no more 
variables. 

 An easy induction on the order in which 
variables are discovered shows that 
each one truly derives a terminal string. 

 Conversely, any variable that derives a 
terminal string will be discovered by this 
algorithm. 
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Proof of Converse 

 The proof is an induction on the height 
of the least-height parse tree by which 
a variable A derives a terminal string. 

 Basis: Height = 1.  Tree looks like: 
 Then the basis of the algorithm 
 tells us that A will be discovered. 

A 

a1 an . . . 



6 

Induction for Converse 

 Assume IH for parse trees of height < 
h, and suppose A derives a terminal 
string via a parse tree of height h: 

 By IH, those Xi’s that are 
 variables are discovered. 
 Thus, A will also be discovered, because 

it has a right side of terminals and/or 
discovered variables. 

A 

X1 Xn . . . 

w1 wn 
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Algorithm to Eliminate 
Non-Generating Variables 

1.  Discover all variables that derive 
terminal strings. 

2.  For all other variables, remove all 
productions in which they appear 
either on the left or the right. 
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Example: Eliminate Variables 
S -> AB | C 
A -> aA | a 
B -> bB 
C -> c 
  Basis: A and C are identified because 

of A -> a and C -> c. 
  Induction: S is identified because of   

S -> C. 
  Nothing else can be identified. 
  Result: S -> C, A -> aA | a, C -> c 
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Unreachable Symbols 

 Another way a terminal or variable 
deserves to be eliminated is if it cannot 
appear in any derivation from the start 
symbol. 

 Basis: We can reach S (the start symbol). 
 Induction: if we can reach A, and there is 

a production A -> α, then we can reach all 
symbols of α. 



Eliminating Non-Reachable Symbols

To eliminate Non-Reachable Symbols we need to:
1 Compute the set R of reachable symbols, and then
2 Eliminate all productions containing a symbol in NR = VN \ R (set of

Non-Reachable symbols).

REACHABLE-SYMBOLS(G)
R = {S};
while there is a change in R do

for each production A→ X1 . . .Xk in P do
if A ∈ R then

R = R ∪ {X1, . . . ,Xk};

return R
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Unreachable Symbols – (2) 

 Easy inductions in both directions show 
that when we can discover no more 
symbols, then we have all and only the 
symbols that appear in derivations from S. 

 Algorithm: Remove from the grammar all 
symbols not discovered reachable from S 
and all productions that involve these 
symbols.  
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Eliminating Useless Symbols 

  A symbol is useful  if it appears in 
some derivation of some terminal 
string from the start symbol. 

  Otherwise, it is useless. 
Eliminate all useless symbols by: 

1.  Eliminate non-generating symbols; 
2.  Eliminate unreachable symbols. 
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Example: Useless Symbols – (2) 

 S -> AB 
       A -> C  
       C -> c  
       B -> bB 
 If we eliminated unreachable symbols

first, we would find everything is
reachable.

 A, C, and c would never get eliminated.

| b
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Why It Works 

 After step (1), every symbol remaining 
derives some terminal string. 

 After step (2) the only symbols 
remaining are all derivable from S. 

 In addition, they still derive a terminal 
string, because such a derivation can 
only involve symbols reachable from S. 
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Epsilon Productions 

 We can almost avoid using productions of 
the form A -> ε (called ε-productions ). 
  The problem is that ε cannot be in the 

language of any grammar that has no ε–
productions. 

 Theorem: If L is a CFL, then L-{ε} has a 
CFG with no ε-productions. 
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Nullable Symbols 

 To eliminate ε-productions, we first
need to discover the nullable variables 
= variables A such that A =>* ε.

 Basis: If there is a production A -> ε,
then A is nullable. 

 Induction: If there is a production
A -> α, and all symbols of α are
nullable, then A is nullable.



Compute Nullable Symbols

The following algorithm computes the set N of nullable symbols.

NULLABLE-SYMBOLS(G)
N = ∅;
for each production A→ ϵ in P do

N = N ∪ {A}
while there is a change in N do

for each production A→ X1 . . .Xk in P do
if {X1, . . . ,Xk} ⊆ N then

N = N ∪ {A};

return N
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Example: Nullable Symbols 

  S -> AB, A -> aA | ε, B -> bB | A 
 Basis: A is nullable because of A -> ε. 
 Induction: B is nullable because of       

B -> A. 
 Then, S is nullable because of S -> AB. 



17 

Proof of Nullable-Symbols 
Algorithm 

 The proof that this algorithm finds all
and only the nullable variables is very
much like the proof that the algorithm
for symbols that derive terminal strings
works.

 Do you see the two directions of the
proof?

 On what is each induction?
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Eliminating ε-Productions 

 Key idea: turn each production
A -> X1…Xn into a family of productions. 

 For each subset of nullable X’s, there is 
one production with those eliminated 
from the right side “in advance.”
  Except, if all X’s are nullable, do not make 

a production with ε as the right side.

Finally, eliminate all ε-Productions except 
the one for S. 



19 

Example: Eliminating ε-
Productions 

S -> ABC, A -> aA | ε, B -> bB | ε, C -> ε 
 A, B, C, and S are all nullable. 
 New grammar: 
 S -> ABC | AB | AC | BC | A | B | C 
 A -> aA | a 
 B -> bB | b 

Note: C is now useless. 
Eliminate its productions. 
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Why it Works 

  Prove that for all variables A: 
1.  If w ≠ ε and A =>*old w, then A =>*new w. 
2.  If A =>*new w then w ≠ ε and A =>*old w. 

  Then, letting A be the start symbol 
proves that L(new) = L(old) – {ε}. 

  (1) is an induction on the number of 
steps by which A derives w in the old 
grammar. 
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Proof of 1 – Basis 

 If the old derivation is one step, then   
A -> w must be a production. 

 Since w ≠ ε, this production also 
appears in the new grammar. 

 Thus, A =>new w. 
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Proof of 1 – Induction 

 Let A =>*old w be an n-step derivation, 
and assume the IH for derivations of 
less than n steps. 

 Let the first step be A =>old X1…Xn. 
 Then w can be broken into w = w1…wn, 
 where Xi =>*old wi, for all i, in fewer 

than n steps.  
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Induction – Continued 

 By the IH, if wi ≠ ε, then Xi =>*new wi. 
 Also, the new grammar has a 

production with A on the left, and just 
those Xi’s on the right such that wi ≠ ε. 
  Note: they all can’t be ε, because w ≠ ε. 

 Follow a use of this production by the 
derivations Xi =>*new wi to show that A 
derives w in the new grammar. 
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Proof of Converse 

 We also need to show part (2) – if w is 
derived from A in the new grammar, 
then it is also derived in the old. 

 Induction on number of steps in the 
derivation. 

 We’ll leave the proof for reading in the 
text. 
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Unit Productions 

 A unit production  A -> B, with B ε VN. 
 These productions can be eliminated. 
1.  Key idea:  

 - Remove ε-productions 
 - If A =>* B by a series of unit 

productions, and B -> α is a non-unit-
production, then add production A -> α 
 Then, drop all unit productions. 



Unit Productions (cont.)

To check that A⇒∗ B, by a series of unit productions, note that:

Since we have not ϵ-predictions then A⇒∗ B iff:

A⇒ B1 ⇒ B2 ⇒ . . .⇒ Bk−1 ⇒ Bk ⇒ B

Each single derivation, Bi ⇒ Bi+1 must correspond to a unit production
Bi → Bi+1 in P.
We can construct the Graph of Unit Productions and check whether B is
reachable from A:

There is a node for each symbol in VN;
There is an edge (X ,Y ) in the graph if the unit production X → Y is in P.



29 

Cleaning Up a Grammar 

  Theorem: if L is a CFL, then there is a 
CFG for L – {ε} that has: 

1.  No useless symbols. 
2.  No ε-productions. 
3.  No unit productions. 

  I.e., every right side is either a single 
terminal or has length > 2. 
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Cleaning Up – (2) 

  Proof: Start with a CFG for L. 
  Perform the following steps in order: 

1.  Eliminate ε-productions. 
2.  Eliminate unit productions. 
3.  Eliminate variables that derive no 

terminal string. 
4.  Eliminate variables not reached from the 

start symbol. Must be first.  Can create 
unit productions or useless 
variables. 
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Chomsky Normal Form 

  A CFG is said to be in Chomsky 
Normal Form  if every production is of 
one of these two forms: 

1.  A -> BC (right side is two variables). 
2.  A -> a (right side is a single terminal). 

  Theorem: If L is a CFL, then L – {ε} 
has a CFG in CNF. 
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Summary of Decision Properties 

 As usual, when we talk about “a CFL”
we really mean “a representation for
the CFL, e.g., a CFG or a PDA (Push-
Down Automata) accepting by final
state or empty stack.

 There are algorithms to decide if:
1. String w is in CFL L: Parsers.
2. CFL L is empty: Check if S is useless.
3. CFL L is infinite.
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Non-Decision Properties 

 Many questions that can be decided for 
regular languages cannot be decided for 
CFL’s. 

 Example: Are two CFL’s the same? 
 Example: Are two CFL’s disjoint? 
 Need theory of Turing machines and 

decidability to prove no algorithm exists. 
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Closure Properties of CFL’s 

 CFL’s are closed under union, 
concatenation, and Kleene closure. 

 But not under intersection or difference. 
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Closure of CFL’s Under Union 

 Let L and M be CFL’s with grammars G 
and H, respectively. 

 Assume G and H have no variables in 
common. 
  Names of variables do not affect the 

language. 

 Let S1 and S2 be the start symbols of G 
and H. 
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Closure Under Union – (2) 

 Form a new grammar for L ∪ M by 
combining all the symbols and 
productions of G and H. 

 Then, add a new start symbol S. 
 Add productions S -> S1 | S2. 
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Closure Under Union – (3) 

 In the new grammar, all derivations 
start with S. 

 The first step replaces S by either S1 or 
S2. 

 In the first case, the result must be a 
string in L(G) = L, and in the second 
case a string in L(H) = M. 
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Closure of CFL’s Under 
Concatenation 

 Let L and M be CFL’s with grammars G 
and H, respectively. 

 Assume G and H have no variables in 
common. 

 Let S1 and S2 be the start symbols of G 
and H. 
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Closure Under Concatenation – (2) 

 Form a new grammar for LM by starting 
with all symbols and productions of G 
and H. 

 Add a new start symbol S. 
 Add production S -> S1S2. 
 Every derivation from S results in a 

string in L followed by one in M. 
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Closure Under Kleen Closure 
(Star) 

 Let L have grammar G, with start symbol S1. 
 Form a new grammar for L* by introducing 

to G a new start symbol S and the 
productions S -> S1S | ε. 

 A derivation from S generates a sequence of 
zero or more S1’s, each of which generates 
some string in L. 
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Nonclosure Under Intersection 

 Unlike the regular languages, the class of 
CFL’s is not closed under ∩. 

 We know that L1 = {0n1n2n | n > 1} is 
not a CFL (use the pumping lemma). 

 However, L2 = {0n1n2i | n > 1, i > 1} is. 
  CFG: S -> AB, A -> 0A1 | 01, B -> 2B | 2. 

 So is L3 = {0i1n2n | n > 1, i > 1}. 
 But L1 = L2 ∩ L3. 
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Nonclosure Under Difference 

 We can prove something more general: 
  Any class of languages that is closed under 

difference is closed under intersection. 

 Proof: L ∩ M = L – (L – M). 
 Thus, if CFL’s were closed under 

difference, they would be closed under 
intersection, but they are not. 




