
Prof. Bodik  CS 164  Fall 2003 1 

Run-time organization 
and 

General Principles of Code Generation 

Lecture 12 



Prof. Bodik  CS 164  Fall 2003 2 

Status 

•  We have covered the front-end phases 
–  Lexical analysis 
–  Parsing 
–  Semantic analysis 

•  Next are the back-end phases 
–  Intermediate Code Generation 
–  Optimization 
–  Code generation 

•  We’ll do code generation first . . . 
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Run-time environments 

•  Before discussing code generation, we need to 
understand what we are trying to generate 

•  There are a number of standard techniques 
for structuring executable code that are 
widely used 
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Outline 

•  Management of run-time resources 

•  Correspondence between static (compile-time) 
and dynamic (run-time) structures 

•  Storage organization 
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Run-time Resources 

•  Execution of a program is initially under the 
control of the operating system 

•  Run-Time Enviroment: Where the program is 
being executed 

•  When a program is invoked: 
–  The OS allocates space for the program 
–  The code is loaded into part of the space 
–  The OS jumps to the entry point (i.e., “main”) 
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Memory Layout 

Low Address 

High Address 

Memory 

Code 

Other Space 
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Notes 

•  By tradition, pictures of machine organization 
have: 
–  Low address at the top 
–  High address at the bottom 
–  Lines delimiting areas for different kinds of data 

•  These pictures are simplifications 
–  E.g., not all memory need be contiguous 
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What is Other Space? 

•  Holds all data for the program 
•  Other Space = Data Space 

•  Compiler is responsible for: 
–  Generating code 
–  Orchestrating use of the data area 
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Code Generation Goals 

•  Two goals: 
–  Correctness 
–  Speed 

•  Most complications in code generation come 
from trying to be fast as well as correct 
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Assumptions about Execution 

1.  Execution is sequential; control moves from 
one point in a program to another in a well-
defined order. 

2.  When a procedure is called, control 
eventually returns to the point immediately 
after the call. 

 
Do these assumptions always hold? 
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Activations 

•  An invocation of procedure P is an activation 
of P 

•  The lifetime of an activation of P is 
–  All the steps (instructions sequence) to execute P 
–  Including all the steps in procedures that P calls 
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Lifetimes of Variables 

•  The lifetime of a variable x is the portion of 
execution in which x is defined 

•  Note that 
–  Lifetime is a dynamic (run-time) concept 
–  Scope is a static concept 
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Activation Trees 

•  Assumption (2) requires that when P calls Q, 
then Q returns before P does 

•  Lifetimes of procedure activations are 
properly nested 

•  Activation lifetimes can be depicted as a tree 
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Example 

class Main { 
 int g() { return 1; } 
 int f() {return g(); } 
 void main() { g(); f(); } 

} 
 Main 

f g 

g 
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Example 2 

class Main { 
 int g() { return 1; } 
 int f(int x) {  
  if (x == 0) { return g(); } 
  else { return f(x - 1); }  
 } 
 void main() { f(3); } 

} 
 
What is the activation tree for this example? 
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Notes 

•  The activation tree depends on run-time 
behavior, in particular: 

•  The activation tree may be different for a 
different input 

•  Since activations are properly nested, a stack 
can track currently active procedures 
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Example 

class Main { 
 int g() { return 1; } 
 int f() { return g(); } 
 void main() { g(); f(); } 

} 
 Main Stack 

Main 
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Example 

Main 

g 

Stack 

Main 

g 

class Main { 
 int g() { return 1; } 
 int f() { return g(); } 
 void main() { g(); f(); } 

} 
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Example 

Main 

g f 

Stack 

Main 

f 

class Main { 
 int g() { return 1; } 
 int f() { return g(); } 
 void main() { g(); f(); } 

} 
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Example 

Main 

f g 

g 

Stack 

Main 

f 
g 

class Main { 
 int g() { return 1; } 
 int f() { return g(); } 
 void main() { g(); f(); } 

} 
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Revised Memory Layout 

Low Address 

High Address 

Memory 

Code 

Stack 
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Activation Records (Stack Allocation) 

•  The information needed to manage one 
procedure activation is called an activation 
record (AR) or frame 

 
•  Each live activation has its own AR pushed in 

the stack which is popped when it terminates 
 
•  If procedure F calls G, then G’s activation 

record contains a mix of info about F and G. 
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What is in G’s AR when F calls G? 

•  F is “suspended” until G completes, at which 
point F resumes.  G’s AR contains information 
needed to resume execution of F. 

•  G’s AR may also contain: 
–  G’s return value (to resume F) 
–  Actual parameters to G (supplied by F) 
–  Space for G’s local variables 
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The Contents of a Typical AR for G 

1.  Space for G’s return value 
2.  Actual parameters 
3.  Pointer to the previous activation record: 

The optional Control Link 
4.  Pointer to previous activation records 

–  The (optional) control link points to AR of the 
immediate super-nested procedure, needed to 
access non-local data stored in other ARs due to 
scope nexting of variables 

5.   Machine status prior to calling G 
–  Contents of registers & program  counter 

6.  Local and Temporary variables 
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Discussion 

•  The advantage of placing the return value 1st 
in a AR is that the caller can find it at a fixed 
offset from the end of its own AR without 
knowing the layout of the AR for the callee. 

 
•  Similar considerations apply for the local 

parameters. 
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Example 2, Revisited 

class Main { 
 int g() { return 1; } 
 int f(int x) {  
  if (x == 0) { return g(); } 
  else { return f(x - 1); (**) }  
 } 
 void main() { f(3); (*) } 

}  
 

                        AR for f: 

return result 
parameters 
control link 
return address 
and Registers 
Local+Temporary 
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Stack After Two Calls to f 

Main 

(**) 

2 
(result) f 
(*) 

3 
(result) f 
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Notes 

•  Main has no argument or local variables and its 
result is never used; its AR is uninteresting 

•  (*) and (**) are return addresses of the 
invocations of f 
–  The return address is where execution resumes 

after a procedure call finishes 

•  This is only one of many possible AR designs 
–  Would also work for C, Pascal, FORTRAN, etc. 
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Local Variables 

•  Locals are stored in different AR for each 
different procedure execution: 
–  Locals are bound to different storage in each 

activation (think of recursive calls) 
•  Storage is lost (free) when the activation ends 
•  The position of an AR is decided at run-time 

and stored in the SP (Stack Pointer) Register: 
a pointer to the beginning of the AR . 

•  Addresses for locals are determined at run-
time as an offset from the SP Register and 
computed starting from the offset stored in 
the Symbol Table 
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The Main Point 

 
The compiler must determine, at compile-time, 

the layout of activation records and generate 
code that correctly accesses locations in the 

activation record 
 

Thus, the AR layout and the code generator 
must be designed together! 
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Example 

The picture shows the state after the call to 
2nd invocation of f returns 

 Main 

(**) 

2 
1 f 
(*) 

3 
(result) f 
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Discussion 

 
•  There is nothing magic about this organization 

–  Can rearrange order of AR elements 
–  Can divide caller/callee responsibilities differently 
–  An organization is better if it improves execution 

speed or simplifies code generation 
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Globals 

•  All references to a global variable point to the 
same object 
–  Can’t store a global in an activation record 

•  Globals are assigned a fixed address once 
–  Variables with fixed address are “statically 

allocated” 
•  Depending on the language, there may be 

other statically allocated values 
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Memory Layout with Static Data 

Low Address 

High Address 

Memory 

Code 

Stack 

Static Data 
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The Heap Storage 

•  A value that outlives the procedure that 
creates it cannot be kept in the AR 

  Bar  
 foo() { return new Bar } 

The Bar value must survive deallocation of foo’s AR 
•  Languages with dynamically allocated data use 

the heap to store dynamic data 
•  Memory requests are satisfied by allocating 

portions from a large pool of memory called 
the heap or free store. 
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Memory Layout  

•  The code area contains object code 
–  For most languages, fixed size and read only 

•  The static area contains data (not code) with 
fixed addresses (e.g., global data) 
–  Fixed size, may be readable or writable 

•  The stack contains an AR for each currently 
active procedure 
–  Each AR usually fixed size, contains locals 

•  The Heap contains all other data 
–  Dynamic Data Structures 
–  In C, the heap is managed by malloc and free 
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Memory Layout (Cont.) 

•  Both the heap and the stack grow 

•  Must take care that they don’t grow into each 
other 

•  Solution: start heap and stack at opposite 
ends of memory and let the grow towards each 
other 



Prof. Bodik  CS 164  Fall 2003 38 

Code for AR Allocation/Deallocation 

return address 
Local+Temporary 

•  In the following we introduce a simplified 
Stack-Allocation code for AR 

 
•  We assume a simplified AR containing just 

the return address and Local+Temporary 
variables. 



Procedure Call 
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•  The code for the first procedure initializes the stack by 
setting SP to the start of the of the Stack Area in Memory: 

 MOV #stackstart, SP  /* #stackstart given by OS */ 
 
•  A Procedure Call Sequence must: 

•  Increment the SP to point to the next AR 
•  Transfer control to the called procedure 
 

 ADD #caller.recordsize, SP 
 MOV *PC+16, *SP    /* save return address */ 
 GOTO calle.code_area 

 
Note: The constant caller.recordsize is determined at complile 
time for each procedure using info in the Symbol Table. 

 



Return Sequence 
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•  The called procedure transfers control to the caller procedure 
using the return address stored at the beginning of its AR: 

  GOTO *0(SP)  /* return to caller */ 
 
•  While 0(SP) denotes the address of first word in AR, *0(SP) is 

the return address saved there. 
 
•  In the caller procedure we need to decrement SP by restoring 

SP to point to the beginning of the caller AR: 
 

 SUB #caller.recordsize, SP 
 
 



General Principles of Code Generation 
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•  The target language depends on the particular 
architecture, e.g., RISC, CISC, Stack Machine,… 

 
•  3 MAIN TASKS: 

1.  Instruction Selection 
2.  Register Allocation 
3.  Instruction Ordering 
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Instruction Selection 
 
•  Select the most appropriate instruction-set based on 

the set of instructions available in the target 
language (e.g., INC x must be preferred to x := x+1) 
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Register Allocation 
 
•  Register are fast but limited in space: decide what 

variables to hold in Registers and what to hold in 
main memory; 

•  Good performing algorithms for Registers allocation 
makes a huge difference in performance; 

•  Avoid redundant LOAD and STORE operations; 
•  Minimize register usage for intermediate results. 
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Instruction Ordering 
 
•  Involves deciding in what order to schedule the 

execution of instructions; 
•  Important in modern multi-processors machine that 

can execute several operations in a single clock cycle; 
•  The compiler is responsible for deciding what part of 

the generated code can be executed in parallel. 

 


