
Prof. Bodik CS 164 Fall 2003 1

Run-time organization
and

General Principles of Code Generation

Lecture 12

Prof. Bodik CS 164 Fall 2003 2

Status

•  We have covered the front-end phases
–  Lexical analysis
–  Parsing
–  Semantic analysis

•  Next are the back-end phases
–  Intermediate Code Generation
–  Optimization
–  Code generation

•  We’ll do code generation first . . .

Prof. Bodik CS 164 Fall 2003 3

Run-time environments

•  Before discussing code generation, we need to
understand what we are trying to generate

•  There are a number of standard techniques
for structuring executable code that are
widely used

Prof. Bodik CS 164 Fall 2003 4

Outline

•  Management of run-time resources

•  Correspondence between static (compile-time)
and dynamic (run-time) structures

•  Storage organization

Prof. Bodik CS 164 Fall 2003 5

Run-time Resources

•  Execution of a program is initially under the
control of the operating system

•  Run-Time Enviroment: Where the program is
being executed

•  When a program is invoked:
–  The OS allocates space for the program
–  The code is loaded into part of the space
–  The OS jumps to the entry point (i.e., “main”)

Prof. Bodik CS 164 Fall 2003 6

Memory Layout

Low Address

High Address

Memory

Code

Other Space

Prof. Bodik CS 164 Fall 2003 7

Notes

•  By tradition, pictures of machine organization
have:
–  Low address at the top
–  High address at the bottom
–  Lines delimiting areas for different kinds of data

•  These pictures are simplifications
–  E.g., not all memory need be contiguous

Prof. Bodik CS 164 Fall 2003 8

What is Other Space?

•  Holds all data for the program
•  Other Space = Data Space

•  Compiler is responsible for:
–  Generating code
–  Orchestrating use of the data area

Prof. Bodik CS 164 Fall 2003 9

Code Generation Goals

•  Two goals:
–  Correctness
–  Speed

•  Most complications in code generation come
from trying to be fast as well as correct

Prof. Bodik CS 164 Fall 2003 10

Assumptions about Execution

1.  Execution is sequential; control moves from
one point in a program to another in a well-
defined order.

2.  When a procedure is called, control
eventually returns to the point immediately
after the call.

Do these assumptions always hold?

Prof. Bodik CS 164 Fall 2003 11

Activations

•  An invocation of procedure P is an activation
of P

•  The lifetime of an activation of P is
–  All the steps (instructions sequence) to execute P
–  Including all the steps in procedures that P calls

Prof. Bodik CS 164 Fall 2003 12

Lifetimes of Variables

•  The lifetime of a variable x is the portion of
execution in which x is defined

•  Note that
–  Lifetime is a dynamic (run-time) concept
–  Scope is a static concept

Prof. Bodik CS 164 Fall 2003 13

Activation Trees

•  Assumption (2) requires that when P calls Q,
then Q returns before P does

•  Lifetimes of procedure activations are
properly nested

•  Activation lifetimes can be depicted as a tree

Prof. Bodik CS 164 Fall 2003 14

Example

class Main {
 int g() { return 1; }
 int f() {return g(); }
 void main() { g(); f(); }

}
 Main

f g

g

Prof. Bodik CS 164 Fall 2003 15

Example 2

class Main {
 int g() { return 1; }
 int f(int x) {
 if (x == 0) { return g(); }
 else { return f(x - 1); }
 }
 void main() { f(3); }

}

What is the activation tree for this example?

Prof. Bodik CS 164 Fall 2003 16

Notes

•  The activation tree depends on run-time
behavior, in particular:

•  The activation tree may be different for a
different input

•  Since activations are properly nested, a stack
can track currently active procedures

Prof. Bodik CS 164 Fall 2003 17

Example

class Main {
 int g() { return 1; }
 int f() { return g(); }
 void main() { g(); f(); }

}
 Main Stack

Main

Prof. Bodik CS 164 Fall 2003 18

Example

Main

g

Stack

Main

g

class Main {
 int g() { return 1; }
 int f() { return g(); }
 void main() { g(); f(); }

}

Prof. Bodik CS 164 Fall 2003 19

Example

Main

g f

Stack

Main

f

class Main {
 int g() { return 1; }
 int f() { return g(); }
 void main() { g(); f(); }

}

Prof. Bodik CS 164 Fall 2003 20

Example

Main

f g

g

Stack

Main

f
g

class Main {
 int g() { return 1; }
 int f() { return g(); }
 void main() { g(); f(); }

}

Prof. Bodik CS 164 Fall 2003 21

Revised Memory Layout

Low Address

High Address

Memory

Code

Stack

Prof. Bodik CS 164 Fall 2003 22

Activation Records (Stack Allocation)

•  The information needed to manage one
procedure activation is called an activation
record (AR) or frame

•  Each live activation has its own AR pushed in

the stack which is popped when it terminates

•  If procedure F calls G, then G’s activation

record contains a mix of info about F and G.

Prof. Bodik CS 164 Fall 2003 23

What is in G’s AR when F calls G?

•  F is “suspended” until G completes, at which
point F resumes. G’s AR contains information
needed to resume execution of F.

•  G’s AR may also contain:
–  G’s return value (to resume F)
–  Actual parameters to G (supplied by F)
–  Space for G’s local variables

Prof. Bodik CS 164 Fall 2003 24

The Contents of a Typical AR for G

1.  Space for G’s return value
2.  Actual parameters
3.  Pointer to the previous activation record:

The optional Control Link
4.  Pointer to previous activation records

–  The (optional) control link points to AR of the
immediate super-nested procedure, needed to
access non-local data stored in other ARs due to
scope nexting of variables

5.  Machine status prior to calling G
–  Contents of registers & program counter

6.  Local and Temporary variables

Prof. Bodik CS 164 Fall 2003 25

Discussion

•  The advantage of placing the return value 1st
in a AR is that the caller can find it at a fixed
offset from the end of its own AR without
knowing the layout of the AR for the callee.

•  Similar considerations apply for the local

parameters.

Prof. Bodik CS 164 Fall 2003 26

Example 2, Revisited

class Main {
 int g() { return 1; }
 int f(int x) {
 if (x == 0) { return g(); }
 else { return f(x - 1); (**) }
 }
 void main() { f(3); (*) }

}

 AR for f:

return result
parameters
control link
return address
and Registers
Local+Temporary

Prof. Bodik CS 164 Fall 2003 27

Stack After Two Calls to f

Main

(**)

2
(result) f
(*)

3
(result) f

Prof. Bodik CS 164 Fall 2003 28

Notes

•  Main has no argument or local variables and its
result is never used; its AR is uninteresting

•  (*) and (**) are return addresses of the
invocations of f
–  The return address is where execution resumes

after a procedure call finishes

•  This is only one of many possible AR designs
–  Would also work for C, Pascal, FORTRAN, etc.

Prof. Bodik CS 164 Fall 2003 29

Local Variables

•  Locals are stored in different AR for each
different procedure execution:
–  Locals are bound to different storage in each

activation (think of recursive calls)
•  Storage is lost (free) when the activation ends
•  The position of an AR is decided at run-time

and stored in the SP (Stack Pointer) Register:
a pointer to the beginning of the AR .

•  Addresses for locals are determined at run-
time as an offset from the SP Register and
computed starting from the offset stored in
the Symbol Table

Prof. Bodik CS 164 Fall 2003 30

The Main Point

The compiler must determine, at compile-time,

the layout of activation records and generate
code that correctly accesses locations in the

activation record

Thus, the AR layout and the code generator
must be designed together!

Prof. Bodik CS 164 Fall 2003 31

Example

The picture shows the state after the call to
2nd invocation of f returns

 Main

(**)

2
1 f
(*)

3
(result) f

Prof. Bodik CS 164 Fall 2003 32

Discussion

•  There is nothing magic about this organization

–  Can rearrange order of AR elements
–  Can divide caller/callee responsibilities differently
–  An organization is better if it improves execution

speed or simplifies code generation

Prof. Bodik CS 164 Fall 2003 33

Globals

•  All references to a global variable point to the
same object
–  Can’t store a global in an activation record

•  Globals are assigned a fixed address once
–  Variables with fixed address are “statically

allocated”
•  Depending on the language, there may be

other statically allocated values

Prof. Bodik CS 164 Fall 2003 34

Memory Layout with Static Data

Low Address

High Address

Memory

Code

Stack

Static Data

Prof. Bodik CS 164 Fall 2003 35

The Heap Storage

•  A value that outlives the procedure that
creates it cannot be kept in the AR

 Bar
 foo() { return new Bar }

The Bar value must survive deallocation of foo’s AR
•  Languages with dynamically allocated data use

the heap to store dynamic data
•  Memory requests are satisfied by allocating

portions from a large pool of memory called
the heap or free store.

Prof. Bodik CS 164 Fall 2003 36

Memory Layout

•  The code area contains object code
–  For most languages, fixed size and read only

•  The static area contains data (not code) with
fixed addresses (e.g., global data)
–  Fixed size, may be readable or writable

•  The stack contains an AR for each currently
active procedure
–  Each AR usually fixed size, contains locals

•  The Heap contains all other data
–  Dynamic Data Structures
–  In C, the heap is managed by malloc and free

Prof. Bodik CS 164 Fall 2003 37

Memory Layout (Cont.)

•  Both the heap and the stack grow

•  Must take care that they don’t grow into each
other

•  Solution: start heap and stack at opposite
ends of memory and let the grow towards each
other

Prof. Bodik CS 164 Fall 2003 38

Code for AR Allocation/Deallocation

return address
Local+Temporary

•  In the following we introduce a simplified
Stack-Allocation code for AR

•  We assume a simplified AR containing just

the return address and Local+Temporary
variables.

Procedure Call

Prof. Bodik CS 164 Fall 2003 39

•  The code for the first procedure initializes the stack by
setting SP to the start of the of the Stack Area in Memory:

 MOV #stackstart, SP /* #stackstart given by OS */

•  A Procedure Call Sequence must:

•  Increment the SP to point to the next AR
•  Transfer control to the called procedure

 ADD #caller.recordsize, SP
 MOV *PC+16, *SP /* save return address */
 GOTO calle.code_area

Note: The constant caller.recordsize is determined at complile
time for each procedure using info in the Symbol Table.

Return Sequence

Prof. Bodik CS 164 Fall 2003 40

•  The called procedure transfers control to the caller procedure
using the return address stored at the beginning of its AR:

 GOTO *0(SP) /* return to caller */

•  While 0(SP) denotes the address of first word in AR, *0(SP) is

the return address saved there.

•  In the caller procedure we need to decrement SP by restoring

SP to point to the beginning of the caller AR:

 SUB #caller.recordsize, SP

General Principles of Code Generation

Prof. Bodik CS 164 Fall 2003 41

•  The target language depends on the particular
architecture, e.g., RISC, CISC, Stack Machine,…

•  3 MAIN TASKS:

1.  Instruction Selection
2.  Register Allocation
3.  Instruction Ordering

General Principles of Code Generation

Prof. Bodik CS 164 Fall 2003 42

Instruction Selection

•  Select the most appropriate instruction-set based on

the set of instructions available in the target
language (e.g., INC x must be preferred to x := x+1)

General Principles of Code Generation

Prof. Bodik CS 164 Fall 2003 43

Register Allocation

•  Register are fast but limited in space: decide what

variables to hold in Registers and what to hold in
main memory;

•  Good performing algorithms for Registers allocation
makes a huge difference in performance;

•  Avoid redundant LOAD and STORE operations;
•  Minimize register usage for intermediate results.

General Principles of Code Generation

Prof. Bodik CS 164 Fall 2003 44

Instruction Ordering

•  Involves deciding in what order to schedule the

execution of instructions;
•  Important in modern multi-processors machine that

can execute several operations in a single clock cycle;
•  The compiler is responsible for deciding what part of

the generated code can be executed in parallel.

