Formal Languages and Compilers

Lecture XI—Principles of Code Optimization

Alessandro Artale

Free University of Bozen-Bolzano
Faculty of Computer Science — POS Building, Room: 2.03
artale@inf.unibz.it
http://www.inf.unibz.it/~artale/

Formal Languages and Compilers — BSc course

2017/18 — First Semester

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Summary of Lecture Xl

@ Code Optimization

@ Basic Blocks and Flow Graphs

@ Sources of Optimization
@ Common Subexpression Elimination
© Copy Propagation
@ Dead-Code Elimination

@ Constant Folding
© Loop Optimization

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Code Optimization: Intro

@ Intermediate Code undergoes various transformations—called
Optimizations—to make the resulting code running faster and taking less
space.

@ Optimization never guarantees that the resulting code is the best possible.

@ We will consider only Machine-Independent Optimizations—i.e., they don't
take into consideration any property of the target machine.
@ The techniques used are a combination of Control-Flow and Data-Flow
analysis.
o Control-Flow Analysis. ldentifies loops in the flow graph of a program since
such loops are usually good candidates for improvement.
e Data-Flow Analysis. Collects information about the way variables are used in a
program.

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Criteria for Code-Improving Transformations

@ The best transformations are those that yield the most benefit for the least
effort.

@ A transformation must preserve the meaning of a program. It's better to miss
an opportunity to apply a transformation rather than risk changing what the
program does.

@ A transformation must, on the average, speed up a program by a measurable
amount.

© Avoid code-optimization for programs that run occasionally or during debugging.

@ Remember! Dramatic improvements are usually obtained by improving the
source code: The programmer is always responsible in finding the best possible
data structures and algorithms for solving a problem.

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Quicksort: An Example Program

@ We will use the sorting program Quicksort to illustrate the effects of the
various optimization techniques.

void quicksort(m,n)
int m,n;
{
int 1i,j,v,x;
if (n <= m) return;
i=m-1; j =n; v=alnl; /* fragment begins here */
while (1) {
do i = i+1; while (al[il<v);
do j = j-1; while (al[jl>v);
if (i>=j) break;
x = alil; ali] = aljl; alj] =x;
3
x = al[il; ali] = alnl; aln] =x; /* fragment ends here */
quicksort(m, j); quicksort(i+i,n);

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Quicksort: An Example Program (Cont.)

@ The following is the three-address code for a fragment of Quicksort.

(D
(2)
(3)
(4)
(5)
(6)
(7)
(8)
9
(10)
(1)
(12)
(13)
(14)
(15)

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

i = m-1
g =
t, := 4*n
v = alt]
qt= i
t2 = 4xi
t3 .= a[tz]
if t3 < v goto (9)
J g
ty = 4%
t5 = a[t4]
if ts > v goto (9)
if i >= j goto (23)
t() 1= 4]
X = a[t()]

(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)

St

a[tlz]

t15 :

alts]

@ Code Optimization

@ Basic Blocks and Flow Graphs

@ Sources of Optimization
@ Common Subexpression Elimination
© Copy Propagation
@ Dead-Code Elimination

@ Constant Folding
© Loop Optimization

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Basic Blocks and Flow Graphs

@ The Machine-Independent Code-Optimization phase consists of control-flow
and data-flow analysis followed by the application of transformations.
@ During control-flow analysis, a program is represented as a Flow Graph where:
o Nodes represent Basic Blocks: Sequence of consecutive statements in which
flow-of-control enters at the beginning and leaves at the end without halt or
branches;
o Edges represent the flow of control.

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Flow Graph: An Example

@ Flow graph for the three-address code fragment for quicksort. Each B; is a
basic block.

4%3
alty]
ts > v goto B

Formal Languages and Compilers Lecture XI—Principles of Code Optimi

The Principal Sources of Optimization

@ After the control-flow analysis we can individuate the basic transformations as
the result of data-flow analysis.

@ We distinguish /ocal transformations—involving only statements in a single
basic block—from global transformations.

@ A basic block computes a set of expressions: A number of transformations can
be applied to a basic block without changing the expressions computed by the
block.

@ Common Subexpressions elimination;
© Copy Propagation;

@ Dead-Code elimination;

@ Constant Folding.

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

@ Code Optimization

@ Basic Blocks and Flow Graphs

@ Sources of Optimization
@ Common Subexpression Elimination
© Copy Propagation
@ Dead-Code Elimination

@ Constant Folding
© Loop Optimization

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Common Subexpressions Elimination

@ Frequently a program will include calculations of the same value.

@ Definition. An occurrence of an expression E is called a Common
Subexpression if E was previously computed, and the values of variables in E
did not change since the previous computation.

@ Common Subexpression Elimination: Assignments to temporary variables
involving common subexpressions can be eliminated.

@ Example. Assignments to both t7 and tig in block Bs have common
subexpressions and can be eliminated. Bs is transformed as:

te i =4 %1
X 1= a[te]
tg:=4x%)
to := a[ts]
ats] :==to
alts] := x
goto B,

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Common Subexpressions Elimination (Cont.)

o Example (Cont.) After local elimination, Bs still evaluates 4 %/ and 4 % j
which are global common subexpressions.

@ 4 is evaluated in B; by t;. Then, the statements
tg := 4 xJ; to:= a[ts]; a[ts] :==x
can be replaced by
tg = a[t4]; a[t4] =X
@ Now, a[t4] is also a common subexpression, computed in Bs by ts. Then, the
statements
to := a[ta]; a[t6] = tg
can be replaced by
a[tﬁ] = t5.
@ Analogously, tg can be eliminated and replaced by t,; while the value of a[ty] is
the same as the value assigned to t3 in block Bs.

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Common Subexpressions Elimination (Cont.)

o Example. The following flow graph shows the result of eliminating both local
and global common subexpressions from basic blocks Bs and Bg.

i+1

tyis=dny

t3 = alt,]

if t; < v goto B,
% Bs

3t = el

ty 1= 4%]

s =t A e

if s > v goto B

=

i>=j goto B

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

DAGs for Determining Common Subexpressions

@ To individuate common subexpressions we represent a basic block as a DAG
showing how expressions are re-used in a block.
@ A DAG for a Basic Block has the following labels and nodes:

@ Leaves contain unique identifiers, either variable names or constants.

@ Interior nodes contain an operator symbol.

© Nodes can optionally be associated to a list of variables representing those
variables having the value computed at the node.

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

DAGs for Blocks: An Example

@ The following shows both a three-address code of a basic block and its
associated DAG.

(1) t1:=4x*i + _tg,prod

(2) tr := a[tl]

(3) tz:=4xi prod * s

EL? 4 = ol 12 i <= (1)
5) t5:= to * ty

(6) tz = prod + ts a/ b * ti, t3 +é i 20
(7) prod = ts / \/ \

(8) tr:=i+1 4 ' 1

(9) = t;

(10) if i <= 20 goto (1)

@ When a node contains more temporary variables we can eliminate all but one.

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

@ Code Optimization

@ Basic Blocks and Flow Graphs

@ Sources of Optimization
@ Common Subexpression Elimination
© Copy Propagation
@ Dead-Code Elimination

@ Constant Folding
© Loop Optimization

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Copy Propagation

@ Copy Propagation Rule: Given the copy statement, x := vy, use y for x
whenever possible after the copy statement.

@ Copy Propagation applied to Block Bs vyields:

X =13
altz] :==ts
afts] :==t3
goto B,

@ This transformation together with Dead-Code Elimination (see next slide) will
give us the opportunity to eliminate the assignment x := t3 altogether.

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Dead-Code Elimination

@ Intuition: A variable is /ive at a point in a program if its value can be used
subsequently, otherwise it is dead.

@ Dead Code. A piece of code is dead if data computed is never used elsewhere
and can be eliminated.

@ Dead-Code may appear as the result of previous transformation. Dead-Code
works well together with Copy Propagation.

o Example. Considering the Block Bs after Copy Propagation we can see that
x is never reused all over the code. Thus, x is a dead variable and we can
eliminate the assignment x := t3 from Bs.

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Constant Folding

@ Intuition: Based on deducing at compile-time that the value of an expression
(and in particular of a variable) is a constant.

@ Constant Folding is the transformation that substitutes an expression with a
constant.

@ Constant Folding is useful to discover Dead-Code.

e Example. Consider the conditional statement: if (x) goto L.
If, by Constant Folding, we discover that x is always false we can eliminate
both the if-test and the jump to L.

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

@ Code Optimization

@ Basic Blocks and Flow Graphs

@ Sources of Optimization
@ Common Subexpression Elimination
© Copy Propagation
@ Dead-Code Elimination

@ Constant Folding
© Loop Optimization

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Loop Optimization

@ The running time of a program can be improved if we decrease the amount of
instructions in an inner loop.
@ Three techniques are useful:

© Code Motion
@ Reduction in Strength
© Induction-Variable elimination

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

@ If the computation of an expression is loop-invariant this transformation places
such computation before the loop.

@ Example. Consider the following while statement:
while (i <= limit - 2) do
The expression limit - 2 is loop invariant. Code motion transformation will
result in:
t = limit -2;
while (i <=t) do

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Reduction in Strength

@ It is based on the replacement of a computation with a less expensive one.

o Example. Consider the assignment t; := 4 in Block Bs.
J is decremented by 1 each time, then t; := 4 x] — 4.
Thus, we may replace tg := 4 % j by t4 := t4 — 4.
Problem: We need to initialize t4 to t4 := 4 * j before entering the Block Bs.
e Result. The substitution of a multiplication by a subtraction will speed up the
resulting code.

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Induction Variables

@ A variable x is an Induction Variable of a loop if every time the variable x
changes values, it is incremented or decremented by some constant.

@ A common situation is the one in which an induction variable, say i, indexes an
array, and some other induction variable, say t, is the actual offset to access
the array:

o Often we can get rid of i.
@ In general, when there are two or more Induction Variables it is possible to get
rid of all but one.

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Induction Variables Elimination: An Example

@ Example. Consider the loop of Block Bs. The variables j and t4 are Induction
Variables. The same applies for variables i and t, in Block B>.

@ After Reduction in Strength is applied to both t, and t4, the only use of i and
J is to determine the test in By.

@ Since tr := 41 and t; := 4 x|, the test | > j is equivalent to tr, > t4.

@ After this replacement in the test, both i (in Block B,) and j (in Block Bs)
become dead-variables and can be eliminated! (see next slide for the new
optimized code).

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Induction Variables Elimination: An Example (Cont.)

@ Flow Graph after Reduction in Strength and Induction-Variables elimination.

< v goto B,

| B,
ty = t4-4
ts 1= alty]
if t5 > v goto B,

| B,
Ii t,>=t4 goto Béj
/ \

4= aE]
alt,] := ty
alt)] =t

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

Summary of Lecture Xl

@ Code Optimization

@ Basic Blocks and Flow Graphs

@ Sources of Optimization
@ Common Subexpression Elimination
© Copy Propagation
@ Dead-Code Elimination

@ Constant Folding
© Loop Optimization

Formal Languages and Compilers Lecture XI—Principles of Code Optimizati

