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1 Exercise: Lexical Analyser [7 Points]

Lexeme, Token and Attribute. [3 Points]

1. Make an example where you show what is a lexeme what is a token and what is an

attribute. [1 Point]

2. During what phase of the compilation we need the information attached to the Token?

and in what phase is needed the information attached to an Attribute? [2 Points]

Conflicts in lexical analysis. [4 Points]

3. During the lexical analysis there are 2 kinds of conflicts:

Case 1. The same Lexeme is recognized by two different RE’s.

Case 2. A given RE can recognize portion of a Lexeme.

For the Case 2, describe the 2 different techniques that can solve it. [4 Points]

2 Exercise. Top-Down Parsing [8 Points]

Given the following grammar with terminals V T = {num,+, ∗, (, ), ,}, where num stands for

the terminal “number’.

E → LE RE

RE → ∗ E | ε
LE → num | ( + LS )

LS → num LSR

LSR → , LS | ε

1. Show the value of the function FIRST for all the non terminal symbols. [1 Point]

2. Show the value of the function FOLLOW for all the non terminal symbols. [1 Point]

3. Show the parsing table for the LL(1) Top Down Parser recognizing the grammar.

[3 Points]

4. Show how the stack of the LL(1) parser evolves and the resulting parse tree for the

input: “3 ∗ (+ 6, 9)”. [3 Points]
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3 Exercise: Bottom-Up Parsing [14 Points]

Consider the following grammar with terminals V T = {∗, COS, id}:

E→ COS E | E∗E | id

1. Show that the above Grammar is not SLR by showing a state with a conflict. In

particular, describe: [4 Points]

• The kind of conflict;

• The default decision taken by YACC when dealing with such a conflict;

• A technique to eliminate the conflict.

Consider now the following grammar with terminals V T = {array, of, int, id, num, ,, ;}

SL → S ; SL | S
S → T VL

T → array num of T | int

VL → id , VL | id

Show the following:

2. The canonical SLR collection. [4 Points]

3. The transition diagram describing the automaton which recognizes handles at the top

of the stack. [2 Points]

4. The parsing table for the SLR parser. Show in full the table for the states I0 and I1

while for all the other states show just the reduce actions. [2 Points]

5. The stack and the moves of the SLR parser on input: ”array 10 of int x”. [2 Points]

3



4 Exercise: Semantic Analysis [4 Points]

1. Complete the following syntax directed definition:

Production Semantic Rules

Decl→ T : VL ?

T→ int T.type = ?

T→ real T.type = ?

T→ vect [num] of T1 T.type = vect(num.val, ?)

VL→ VL1, id VL1.type = ?

VL→ id addtype(id.ptr, ?)

Where addtype is a function that adds to the symbol table entry id.ptr its type. [2 Points]

Given the following syntax directed definition:

Production Semantic Rules

Prog → S S.next := newlabel;Prog.code := S.code || gen(S.next ′ :′)

S → S1 ; S2 S1.next := newlabel;S2.next := S.next;

S.code := S1.code || gen(S1.next
′ :′) || S2.code

S → if Test then {S1} Test.true := newlabel; Test.false := S.next; S1.next := S.next;

S.code := Test.code || gen(Test.true ′ :′) || S1.code
. . . . . .

Where:

• The function newlabel generates new symbolic labels: l1, l2, . . .

• The function gen generates strings such that everything in quotes is generated literally

while the rest is evaluated.

• The symbol || means string concatenation.

Show the following:

2. Discuss the notion of L-Attributed Definitions by giving the definition for such notion

and individuate the inherited attributes of the production: S → if Test then {S1}.
[2 Points]
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