
Free University of Bozen-Bolzano

Faculty of Computer Science

Bachelor in Computer Science and Engineering

Prof. Alessandro Artale

Formal Languages and Compilers – A.Y. 2016/2017 – 23.June.2017

Compiler Part

Time: 1h50 minutes

STUDENT NAME:

STUDENT NUMBER:

STUDENT SIGNATURE:

This is a closed book exam. The use of Pencils is not allowed! Write clearly,

in the sense of logic, language and legibility. The clarity of your explanations

affects your grade. Write your name and ID on every solution sheet.

1

1 Exercise: Lexical Analyser [6 Points]

1. Lexeme, Attribute and Token. Describe these notions, what kind of information

is associated to each of them and during what phase of the compilation we need these

information.

Make an example where you show what is a lexeme what is a token and what is the

attribute when the tokens are identifier and the keyword while. [2 Point]

2. During the lexical analysis there are 2 kinds of conflicts:

Case 1. The same Lexeme is recognized by two different RE’s.

Case 2. A given RE can recognize portion of a Lexeme.

How is the first case solved? Furthermore, describe one technique that can solve the sec-

ond case and show how it works in the case we need to recognize identifiers. [4 Points]

2 Exercise: LL(1) Top-Down Parsing [8 Points]

Given the following grammar with terminals V T = {a, b, c}:

S → S F c | G c | ε
F → a | a F

G → a | b G a

1. Show why it is not LL(1). [2 Points]

Given the following grammar with terminals V T = {id, , ,=, : , ; , real, int}:

P → SL

SL → S ; SL | ε
S → VD | id = id

VD → real : VL | int : VL

VL → id L

L → , id L | ε

2. Show the value of the function FIRST for all the non terminal symbols. [1 Point]

3. Show the value of the function FOLLOW for all the non terminal symbols. [1 Point]

4. Show the parsing table for the LL(1) Top Down Parser recognizing the grammar.

[2 Points]

5. Show the stack and the moves of the LL(1) parser on the input: “int : id1;”. [2 Points]

2

3 Exercise: Bottom-Up Parsing [12 Points]

Consider the following grammar with terminals V T = {a, b}:

S → A a | b
A → B | a
B → a | ε

1. Prove that the above Grammar is not LR(1). Hint: It is enough to generate the starting

state I0. [3 Points]

Consider the following grammar with terminals V T = {; , if, then.+, (,), id, oth}:

SL → S ; SL | S
S → if E then S | oth
E → E + id | (E) | id

Show the following:

2. The canonical SLR collection. [4 Points]

3. The transition diagram describing the automaton which recognizes handles at the top

of the stack. [1 Point]

4. The parsing table for the SLR parser. [2 Points]

5. The stack and the moves of the SLR parser on input: “if x then oth”. [2 Points]

3

4 Exercise: Semantic Analysis [7 Points]

Consider the following grammar with terminals V T = {:, id, vect, num, of, [,], int, string}:

Decl → T : VL

T → int | real | vect [num] of T

VL → VL, id | id

which accepts vector declarations of the form: vect[10] of int : x, y.

1. Complete the following syntax directed definition:

Production Semantic Rules

Decl→ T : VL ??

T→ int T.type = ’int’

T→ real T.type = ’real’

T→ vect [num] of T1 T.type = vect(num.val, ??)

VL→ VL1, id VL1.type = ??

VL→ id addtype(id.ptr, ??)

Where addtype is a function that adds to the symbol table entry id.ptr its type. [2 Points]

Given the following syntax directed definition:

Production Semantic Rules

Prog → S S.next := newlabel;Prog.code := S.code || gen(S.next ′ :′)

S → S1 ; S2 S1.next := newlabel;S2.next := S.next;

S.code := S1.code || gen(S1.next
′ :′) || S2.code

S → while Test do {S1} Test.begin := newlabel; Test.true := newlabel;

Test.false := S.next; S1.next := Test.begin;

S.code := gen(Test.begin ′ :′) || Test.code || gen(Test.true ′ :′) ||
S1.code || gen(′goto′ Test.begin)

S → id := E S.code := E.code || gen(id.place ′ :=′ E.place)

Test→ id1 relop id2 Test.code := gen(′if ′ id1.place relop.op id2.place
′goto′ Test.true) ||

gen(′goto′ Test.false)

E → E1 + id E.place := newtemp;

E.code := E1.code || gen(E.place ′ :=′ E1.place
′ +′ id.place)

E → id E.place := id.place;E.code :=′ ′

Where:

• The function newlabel generates new symbolic labels: l1, l2, . . .

• The function newtemp generates new variables names: t1, t2, . . .

4

• The function gen generates strings such that everything in quotes is generated literally

while the rest is evaluated.

• The attribute code produces the three-address code.

• The attribute id.place represents the name of the variable associated to the token id.

• The attribute relop.op represents the comparison operators (i.e., <,<=,=, <>,>,>=).

• The symbol || means string concatenation.

Given the input:

w := a + b;

while w > z do {
z := z + a}

Show the following:

2. The annotated parse tree (without the code attribute) for the input together with the

values of the attributes. [2 Points]

3. The three-address code produced by the semantic actions for the given input. [3 Points]

5

